
~TEXAS
INSTRUMENTS

TMS320C3x

1994 Digital Signal Processing Products
================::.::::::::=---"':

TMS320C3x
User's Guide

2558539-9721 revision J
October 1994

~lExAs
INSTRUMENTS ~.

primed on recycled paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage ("Critical Applicationsj.

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer's applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1994, Texas Instruments Incorporated

IillliI

Preface

Read This First
111"1

About This Manual

This user's guide serves as a reference book for the TMS320C3x generation
of digital signal processors, which includes the TMS320C30, TMS320C30-27,
TMS320C30-40, TMS320C31, TMS320C31-27, TMS320C31-40,
TMS320C31-50, TMS320LC31, and TMS320C31 PQA. Throughout the book,
all references to 'C3x refer collectively to 'C30 and 'C31 , and the TMS320C30
and TMS320C31 refer to all speed variations unless an exception is noted.
This document provides information to assist managers and
hardware/software engineers in application development.

How to Use This Book

This revision of the TMS320C3x User's Guide incorporates the following
changes:

o Updated reference list of publications

o Improved description of repeat modes and interrupts in Chapter 6

o Description of power management modes in Chapter 6

o Improved description of serial ports and DMA coprocessor in Chapter 8

o Description of power management instructions in Chapter 10

o Description of low-power-mode interrupt interface in Chapter 12

o More detailed information on MPSD emulator interface, signal timings,
and connections between emulator and target system

o Current timing specification in Chapter 13

o TMS320C30PPM pinout, mechanical drawing, and timings in Chapter 13

o Development support description and device/tool part numbers in
Appendix B

o Data sheet for current military versions of the 'C3x in Appendix E

Read This First iii

Notational Conventions

Notational Conventions

iv

This document uses the following conventions:

o Program listings, program examples, interactive displays, filenames, and
symbol names are shown in a special font. Examples use a bold version
of the special font for emphasis. Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 • even

o In syntax descriptions, the instruction, command, or directive is in a bold
face font and parameters are in italics. Portions of a syntax that are in
bold face should be entered as shown; portions of a syntax that are in
italics describe the type of information that should be entered. Here is an
example of a directive syntax:

.asect "section name", address

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

o Square brackets ([and 1) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don't enter the brackets themselves. Here's an example of an instruction
that has an optional parameter:

LALK 16-bit constant £ shift]

The LALK instruction has two parameters. The first parameter, 16-bit
constant. is required. The second parameter, shift, is optional. As this
syntax shows, if you use the optional second parameter, you must
precede it with a comma.

Square brackets are also used as part of the path name specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

o Braces ({and}) indicate a list. The symbol I (read as 0" separates items
within the list. Here's an example of a list:

{ * I *+ I*-}
This provides three choices: *, *+, or *-.
Unless the list is enclosed in square brackets, you must choose one item
from the list.

Notational Conventions / Information About Cautions / Related Documentation from Texas Instruments

o Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is

.byte va/ue1 [, ... , va/uen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters separated
by commas.

Information About Cautions

This book may contain cautions and warnings.

o A caution describes a situation that could potentially cause your system
to behave unexpectedly.

The information in a caution is provided for your information. Please read each
caution carefully.

Related Documentation From Texas Instruments

The following books describe the TMS320 floating-point devices and related
support tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

TMS320 Floating-Point DSP Assembly Language Tools User's Guide
(literature number SPRU035) describes the assembly language tools
(assembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C3x and 'C4x generations of
devices.

TMS320 Floating-Point DSP Optimizing C Compiler User's Guide
(literature number SPRU034) describes the TMS320 floating-point C
compiler. This C compiler accepts ANSI standard C source code and
produces TMS320 assembly language source code for the 'C3x and
'C4x generations of devices.

Read This First v

Related Documentation from Texas Instruments / References

References

vi

TMS320C3x C Source Debugger (literature number SPRU053) describes
the 'C3x debugger for the emulator, evaluation module, and simulator.
This book discusses various aspects of the debugger interface, including
window management, command entry, code execution, data
management, and breakpoints. It also includes a tutorial that introduces
basic debugger functionality.

TMS320 Family Development Support Reference Guide (literature number
SPRU011) describes the '320 family of digital signal processors and the
various products that support it. This includes code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). This book also
lists related documentation, outlines seminars and the university
program, and provides factory repair and exchange information.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties who supply various
products that serve the family of '320 digital signal processors, including
software and hardware development tools, speech recognition, image
processing, noise cancellation, modems, etc.

The publications in the following reference list contain useful information
regarding functions, operations, and applications of digital signal processing
(DSP). These books also provide other references to many useful technical
papers. The reference list is organized into categories of general DSP, speech,
image processing, and digital control theory and is alphabetized by author.

D General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hili Company, Inc., 1979.

Bateman, A., and Yates, w., Digital Signal Processing Design. Salt Lake
City, Utah: W. H. Freeman and Company, 1990.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S., and Parks, T.W., DFT/FFTandConvolutionAlgorithms. New
York, NY: John Wiley and Sons, Inc., 1984.

Chassaing, R., and Horning, D., Digital Signal Processing with the
TMS320C25. New York, NY: John Wiley and Sons, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. I.
Texas Instruments, 1986; Prentice-Hall, Inc., 1987.

References

Digital Signal Processing Applications with the TMS320 Family, Vol. II.
Texas Instruments, 1990; Prentice-Hall, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. III.
Texas Instruments, 1990; Prentice-Hall, Inc., 1990.

Gold, Bernard, and Rader, C.M., Digital Processing of Signals. New York,
NY: McGraw-Hili Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

Hutchins, B., and Parks, T., A Digital Signal Processing Laboratory Using
the TMS320C25. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal
Processing. New York, NY: IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L., and Parks, T.W., A Digital Signal Processing Laboratory
Using the TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Lim, Jae, and Oppenheim, Alan V. (Editors), Advanced Topics in Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carleton University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V., and Schafer, R.W., Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V., and Schafer, R.W., Discrete-Time Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989.

Oppenheim, Alan V., and Willsky, A.N., with Young, I.T., Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W., and Burrus, C.S., Digital Filter Design. New York, NY: John
Wiley and Sons, Inc., 1987.

Rabiner, Lawrence R., and Gold, Bernard, Theory and Application of
Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Treichler, J.R., Johnson, Jr., C.R., and Larimore, M.G., Theory and Design
of Adaptive Filters. New York, NY: John Wiley and Sons, Inc., 1987.

o Speech:

Gray, A.H., and Markel, J.D., Linear Prediction of Speech. New York, NY:
Springer-Verlag, 1976.

Jayant,N.S., and Noll, Peter, Digital Coding of Waveforms. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Read This First vii

References

viii

Papamichalis, Panos, Practical Approaches to Speech Coding.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Parsons, Thomas., Voice and Speech Processing. New York, NY:
McGraw Hill Company, Inc., 1987.

Rabiner, Lawrence R., and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Shaughnessy, Douglas., Speech Communication. Reading, MA:
Addison-Wesley, 1987.

o Image Processing:

Andrews, H.C., and Hunt, B.R., Digital Image Restoration. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C., and Wintz, Paul, Digital Image Processing. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley and
Sons, 1978.

o Multlrate DSP:

Crochiere, R.E., and Rabiner, L.R., Multirate Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Vaidyanathan, P.P., Multirate Systems and Filter Banks. Englewood Cliffs,
NJ: Prentice-HaU, Inc.

o Digital Control Theory:

Dote, Y., Servo Motor and Motion Control Using Digital Signal Processors.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel
Dekker, Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and
Winston, Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback
Compensators. Cambridge, MA: The MIT Press, 1983.

Phillips, C., and Nagle, H., Digital Control System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

o Adaptive Signal Processing:

Haykin, S., Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1991.

Wid row, B., and Stearns, S.D. Adaptive Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1985.

References / If You Need Assistance / Trademarks

o Array Signal Processing:

Haykin, S., Justice, J.H., Owsley, N.L., Yen, J.L., and Kak, A.C. Array
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985.

Hudson, J.E. Adaptive Array Principles. New York, NY: John Wiley and
Sons, 1981.

Monzingo, R.A., and Miller, J.W. Introduction to Adaptive Arrays. New
York, NY: John Wiley and Sons, 1980.

If You Need Assistance • ..

Trademarks

If you want to •••

Order Texas Instruments
documentation

Ask questions about product
operation or report suspected
problems

Report mistakes in this document
or any other TI documentation

Do this •••

Call the TI Literature Response Center:
(800) 4n-8924

Call the DSP hotline:
(713) 274-2320
FAX: (713) 274-2324
Electronic Mail: 4389750@mclmalJ.com.
European fax line: +33-1-3070-1032

Fill out and return the reader response card at
the end of this book, or send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

ABEL is a registered trademark of Data I/O Corporation.
CodeView, MS, MS-DOS, MS-Windows, and Presentation Manager are trademarks of
Microsoft Corp.
DEC, Digital OX, Ultrix, VAX, and VMS and are trademarks of Digital Equipment Corp.
HPGL is a registered trademark of Hewlett-Packard Co.
Macintosh and MPW are trademarks of Apple Computer Corp.
Micro Channel, OS/2, PC-DOS, and PGA are trademarks of IBM Corp.
SPARC, Sun 3, Sun 4, Sun Workstation, SunView, and SunWindows are trademarks
of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Read This First ix

x

Contents

1 Introduction. .. 1·1
A general description of the TMS320C30 and TMS320C31, their key features, and typical
applications.

1 .1 General Description .. 1-2
1.2 TMS320C30 Key Features .. 1-6
1.3 TMS320C31 Key Features. 1-8
1.4 Typical Applications ... , 1-10

2 TMS320C3x Architecture 2·1
Functional block diagram, TMS320C3x design description, hardware components, device
operation, and instruction set summary.

2.1 Architectural Overview .. 2-2
2.2 Central Processing Unit (CPU) ... 2-4

2.2.1 Multiplier. .. 2-6
2.2.2 Arithmetic Logic Unit (ALU) ... 2-6
2.2.3 Auxiliary Register Arithmetic Units (ARAUs) .. 2-6
2.2.4 CPU Register File ... 2-7

2.3 Memory Organization .. 2-11
2.3.1 RAM, ROM, and Cache ... 2-11
2.3.2 Memory Maps .. 2-13
2.3.3 Memory Addressing Modes .. 2-16

2.4 Instruction Set Summary ... 2-17
2.5 Internal Bus Operation ... 2-22
2.6 Parallel Instruction Set Summary .. 2-23
2.7 External Bus Operation .. , 2-26

2.7.1 External Interrupts .. 2-26
2.7.2 Interlocked-Instruction Signaling 2-26

2.8 Peripherals. .. 2-27
2.8.1 Timers. .. 2-28
2.8.2 Serial Ports 2-28

2.9 Direct Memory Access (DMA) ... 2-29
2.10 TMS320C30 and TMS320C31 Differences 2-30

2.10.1 Data/Program Bus Differences 2-30
2.10.2 Serial-Port Differences .. 2-30
2.10.3 Reserved Memory Locations .. , 2-30

xi

Contents

2.10.4 Effects on the IF and IE Interrupt Registers 2-31
2.10.5 User Program/Data ROM .. 2-31
2.10.6 Development Considerations. .. 2-31

2.11 System Integration .. 2-32

3 CPU Registers, Memory, and Cache. • • •• 3-1
Description of the registers in the CPU register file. Includes memory maps and explains
instruction cache architecture, algorithm, and control bits.
3.1 CPU Register File .. 3-2

3.1.1 Extended-Precision Registers (R7-RO) .. 3-3
3.1.2 Auxiliary Registers (AR7-ARO) .. 3-3
3.1.3 Data-Page Pointer (DP) .. 3-4
3.1.4 Index Registers (IRO, IR1) .. 3-4
3.1 .5 Block Size Register (BI<) ... 3-4
3.1 .6 System Stack Pointer (SP) .. 3-4
3.1.7 Status Register (Sl) ... 3-4
3.1.8 CPU/DMA Interrupt Enable Register (IE) 3-7
3.1.9 CPU Interrupt Flag Register (IF) 3-9
3.1.10 I/O Flags Register (IOF) ... 3-10
3.1.11 Repeat-Count (RC) and Block-Repeat Registers (RS, RE) 3-11
3.1.12 Program Counter (PC) .. 3-11
3.1.13 Reserved Bits and Compatibility 3-12

3.2 Memory .. 3-13
3.2.1 TMS320C3x Memory Maps .. 3-13
3.2.2 TMS320C31 Memory Maps .. 3-17
3.2.3 Reset/lnterrupt!Trap Vector Map 3-17
3.2.4 Peripheral Bus Map .. 3-20

3.3 Instruction Cache .. 3-21
3.3.1 Cache Architecture ... 3-21
3.3.2 Cache Algorithm ... 3-23
3.3.3 Cache Control Bits. .. 3-24

3.4 Using the TMS320C31 Boot Loader .. 3-26
3.4.1 Boot-Loader Operations .. 3-26
3.4.2 Invoking the Boot Loader .. 3-26
3.4.3 Mode Selection .. 3-29
3.4.4 External Memory Loading ... 3-30
3.4.5 Examples of External Memory Loads 3-30
3.4.6 Serial-Port Loading ... 3-33
3.4.7 Interrupt and Trap-Vector Mapping 3-33
3.4.8 Precautions. .. 3-35

4 Data Formats and Floating-Point Operation•.•.............................. 4-1
Description of signed and unsigned integer and floating-point formats. Discussion of
floating-point multiplication, addition, subtraction, normalization, rounding, and conversions.

4.1 Integer Formats .. 4-2
4.1.1 Short-Integer Format. .. 4-2
4.1.2 Single-Precision Integer Format " 4-2

xii

Contents

4.2 Unsigned-Integer Formats ... 4-3
4.2.1 Short Unsigned-Integer Format. .. 4-3
4.2.2 Single-Precision Unsigned-Integer Format 4-3

4.3 Floating-Point Formats .. 4-4
4.3.1 Short Floating-Point Format .. , 4-4
4.3.2 Single-Precision Floating-Point Format , 4-6
4.3.3 Extended-Precision Floating-Point Format 4-6
4.3.4 Conversion Between Floating-Point Formats 4-8

4.4 Floating-Point Multiplication ... 4-10
4.5 Floating-Point Addition and Subtraction 4-14
4.6 Normalization Using the NORM Instruction .. 4-18
4.7 Rounding: The RND Instruction .. 4-20
4.8 Floating-Point-to-Integer Conversion ... 4-22
4.9 Integer-to-Floating-Point Conversion ... 4-24

5 Addressing. .. 5-1
Operation, encoding, and implementation of addreSSing modes. Format descriptions. System
stack management.

5.1 Types of Addressing .. 5-2
5.1 .1 Register Addressing ... 5-3
5.1.2 Direct Addressing ... 5-4
5.1.3 Indirect AddreSSing .. 5-5
5.1.4 Short-Immediate Addressing 5-16
5.1.5 Long-Immediate Addressing ... 5-17
5.1.6 PC-Relative Addressing ... 5-17

5.2 Groups of Addressing Modes ... 5-19
5.2.1 General Addressing Modes .. 5-19
5.2.2 Three-Operand AddreSSing Modes 5-20
5.2.3 Parallel Addressing Modes .. 5-21
5.2.4 Conditional-Branch Addressing Modes 5-23

5.3 Circular Addressing .. 5-24
5.4 Bit-Reversed Addressing ... 5-29
5.5 System and User Stack Management .. 5-31

5.5.1 System Stack Pointer ... 5-31
5.5.2 Stacks. .. 5-32
5.5.3 Queues , .. 5-33

6 Program Flow Control ... 6-1
Software control of program flow with repeat modes and branching. Interlocked operations.
Reset and interrupts.

6.1 Repeat Modes ... 6-2
6.1.1 Repeat-Mode Control Bits .. 6-3
6.1.2 Repeat-Mode Operation .. 6-3
6.1.3 RPTB Instruction .. 6-4

Contents xiii

Contents

6.1.4 RPTS Instruction .. 6-5
6.1.5 Repeat-Mode Restrictions .. 6-6
6.1.6 RC Register Value After Repeat Mode Completes 6-6
6.1 .7 Nested Block Repeats ... 6-7

6.2 Delayed Branches .. 6-8
6.3 Calls, Traps, and Returns ... 6-10
6.4 Interlocked Operations ... 6-12
6.5 Reset Operation 6-18
6.6 Interrupts. .. 6-23

6.6.1 Interrupt Vector Table ... 6-23
6.6.2 Interrupt Prioritization ... 6-25
6.6.3 Interrupt Control Bits .. 6-26
6.6.4 Interrupt Processing .. 6-27
6.6.5 CPU Interrupt Latency .. 6-30
6.6.6 CPU/DMA Interaction ... 6-30
6.6.7 TMS320C3x Interrupt Considerations 6-31
6.6.8 TMS320C30 Interrupt Considerations 6-32
6.6.9 Prioritization and Control .. 6-34

6.7 TMS320LC31 Power Management Modes 6-36
6.7.1 IDLE2 ... 6-36
6.7.2 LOPOWER .. 6-38

7 External Bus Operation .. 7·1
Description of primary and expansion interfaces. External interface timing diagrams.
Programmable wait-states and bank switching.

7.1 External Interface Control Registers ... 7-2
7.1.1 Primary-Bus Control Register ... 7-3
7.1.2 Expansion-Bus Control Register. .. 7-5

7.2 External Interface Timing .. 7-6
7.2.1 Primary-Bus Cycles .. 7-6
7.2.2 Expansion-Bus I/O Cycles ... 7-11

7.3 Programmable Wait States .. 7-28
7.4 Programmable Bank Switching .. 7-30

8 Peripherals .. 8·1
Description of the DMA controller, timers, and serial ports.

8.1 Timers. .. 8-2
8.1.1 Timer Global-Control Register .. 8-3
8.1.2 Timer Period and Counter Registers 8-8
8.1.3 Timer Pulse Generation .. 8-8
8.1 .4 Timer Operation Modes ... 8-10
8.1.5 Timer Interrupts .. 8-11
8.1.6 Timer Initialization/Reconfiguration 8-12

8.2 Serial Ports ... 8-13
8.2.1 Serial-Port Global-Control Register 8-15
8.2.2 FSXlDXlCLKX Port-Control Register .. 8-18

xiv

Contents

8.2.3 FSRlDRlCLKR Port-Control Register. .. 8-20
8.2.4 Receive/Transmit Timer-Control Register 8-21
8.2.5 Receive/Transmit Timer-Counter Register 8-22
8.2.6 Receive/Transmit Timer-Period Register .. 8-23
8.2.7 Data-Transmit Register .. 8-23
8.2.8 Data-Receive Register .. 8-24
8.2.9 Serial-Port Operation Configurations 8-24
8.2.10 Serial-Port Timing .. 8-26
8.2.11 Serial-Port Interrupt Sources .. 8-29
8.2.12 Serial-Port Functional Operation 8-30
8.2.13 Serial-Port Initialization/Reconfiguration 8-36
8.2.14 TMS320C3x Serial-Port Interface Examples 8-36

8.3 DMA Controller .. 8-43
8.3.1 DMA Global-Control Register .. 8-47
8.3.2 Destination- and Source-Address Registers .. 8-47
8.3.3 Transfer-Counter Register 8-47
8.3.4 CPUlDMA Interrupt-Enable Register 8-47
8.3.5 DMA Memory Transfer Operation. 8-49
8.3.6 Synchronization of DMA Channels. 8-54
8.3.7 DMA Interrupts ... 8-56
8.3.8 DMA Initialization/Reconfiguration 8-57
8.3.9 Hints for DMA Programming ... 8-57
8.3.10 DMA Programming Examples 8-58

9 Pipeline Operation. .. 9-1
Discussion of the pipeline of operations on the TMS320C3x.

9.1 Pipeline Structure .. , 9-2
9.2 Pipeline Conflicts ... 9-4

9.2.1 Branch Conflicts. .. 9-4
9.2.2 Register Conflicts ... , 9-7
9.2.3 Memory Conflicts ... 9-10

9.3 Resolving Register Conflicts .. 9-18
9.4 Resolving Memory Conflicts. .. 9-21
9.5 Clocking of Memory Accesses. .. 9-23

9.5.1 Program Fetches .. 9-23
9.5.2 Data Loads and Stores .. 9-24

10 Assembly Language Instructions .. 10-1
Functional listing of instructions. Condition codes defined. Alphabetized individual instruction
descriptions with examples.

10.1 Instruction Set. .. 10-2
10.1.1 Load-and-Store Instructions ... 10-2
10.1.2 Two-Operand Instructions ... 10-3
10.1.3 Three-Operand Instructions. 10-4

Contents xv

Contents

10.1.4 Program-Control Instructions .. 10-5
10.1.5 Low-Power Control Instructions 10-5
10.1.6 Interlocked-Operations Instructions 10-6
10.1 .7 Parallel-Operations Instructions 10-7
10.1.8 Illegal Instructions .. 10-9

10.2 Condition Codes and Flags .. 10-10
10.3 Individual Instructions ... 10-14

10.3.1 Symbols and Abbreviations ... 10-14
10.3.2 Optional Assembler Syntax ... 10-16
10.3.3 Individual Instruction Descriptions 10-18

11 Software Applications .. 11-1
Software application examples for the use of various TMS320C3x instruction set features.

11.1 Processor Initialization ... 11-2
11 .2 Program Control .. , 11-6

11 .2.1 Subroutines.. 11-6
11.2.2 Software Stack .. 11-8
11.2.3 Interrupt Service Routines ... 11-9
11 .2.4 Delayed Branches .. 11-17
11 .2.5 Repeat Modes .. 11-18
11.2.6 Computed GOTOs .. 11-22

11 .3 Logical and Arithmetic Operations .. 11-23
11.3.1 Bit Manipulation ... 11-23
11 .3.2 Block Moves .. 11-25
11.3.3 Bit-Reversed Addressing ... 11-25
11.3.4 Integer and Floating-Point Division. .. 11-26
11.3.5 Square Root 11-34
11.3.6 Extended-Precision Arithmetic 11-38
11.3.7 IEEE/TMS320C3x Floating-Point Format Conversion 11-42

11 .4 Application-Oriented Operations 11-53
11.4.1 Companding.. 11-53
11.4.2 FI R, II R, and Adaptive Filters. 11-58
11.4.3 Matrix-Vector Multiplication ... 11-70
11.4.4 Fast Fourier Transforms (FFT) 11-73
11 .4.5 Lattice Filters .. 11-125

11.5 Programming Tips ... 11-131
11.5.1 C-Callable Routines .. 11-131
11.5.2 Hints for Assembly Coding ... 11-131
11.5.3 Low-Power-Mode Wakeup Example 11-133

12 Hardware Applications. .. 12-1

xvi

Hardware design techniques and application examples for interfacing to memories,
peripherals, or other microcomputers/microprocessors.

12.1 System Configuration Options Overview .. 12-2
12.1.1 Categories of Interfaces on the TMS320C3x 12-2
12.1.2 Typical System Block Diagram 12-3

Contents

12.2 Primary Bus Interface .. 12-4
12.2.1 Zero-Wait-State Interface to Static RAMs 12-4
12.2.2 Ready Generation .. 12-9
12.2.3 Bank Switching Techniques ... 12-13

12.3 Expansion Bus Interface ... 12-19
12.3.1 AID Converter Interface " , '" 12-19
12.3.2 D/A Converter Interface .. 12-23

12.4 System Control Functions ... 12-27
12.4.1 Clock Oscillator Circuitry ... 12-27
12.4.2 Reset Signal Generation ... 12-29

12.5 Serial-Port Interface. .. 12-32
12.6 Low-Power-Mode Interrupt Interface .. 12-36
12.7 XDS Target Design Considerations ... 12-39

12.7.1 Designing Your MPSD Emulator Connector (12-Pin Header) 12-39
12.7.2 MPSD Emulator Cable Signal Timing 12-40
12.7.3 Connections Between the Emulator and the Target System 12-41
12.7.4 Mechanical Dimensions for the 12-Pin Emulator Connector 12-43
12.7.5 Diagnostic Applications ... 12-45

13 TMS320C3x Signal Descriptions and Electrical Characteristics .•...•••..•.•...•••. 13-1
Pin locations, pin descriptions, dimensions, electrical characteristics, signal timing diagrams,
and characteristics.

13.1 Pinout and Pin Assignments .. 13-2
13.1 .1 TMS320C30 Pinouts and Pin Assignments 13-2
13.1.2 TMS320C30 PPM Pinouts and Pin Assignments 13-8
13.1.3 TMS320C31 Pinouts and Pin Assignments 13-12

13.2 Signal Descriptions ... 13-16
13.2.1 TMS320C30 Signal Descriptions 13-16
13.2.2 TMS320C31 Signal Descriptions 13-22

13.3 Electrical Specifications ... 13-25
13.4 Signal Transition Levels ... 13-29

13.4.1 TTL-Level Outputs. .. 13-29
13.4.2 TTL-Level Inputs .. 13-29

13.5 Timing .. 13-30
13.5.1 X2/CLKI N, H 1 , and H3 Timing 13-30
13.5.2 Memory Read/Write Timing ... 13-32
13.5.3 XFO and XF1 Timing When Executing LDFI or LOll 13-38
13.5.4 XFO Timing When Executing STFI and STII 13-40
13.5.5 XFO and XF1 Timing When Executing SIGI 13-41
13.5.6 Loading When the XF Pin Is Configured as an Output 13-42
13.5.7 Changing the XF Pin From an Output to an Input 13-43
13.5.8 Changing the XF Pin From an Input to an Output 13-44
13.5.9 Reset Timing. .. 13-45
13.5.10 SHZ Pin Timing ... 13-51

Contents xvii

Contents

13.5.11 Interrupt Response Timing .. 13-52
13.5.12 Interrupt Acknowledge Timing .. 13-54
13.5.13 Data Rate Timing Modes ... 13-55
13.5.14 HOLD Timing ... 13-61
13.5.15 General-Purpose I/O Timing .. 13-63
13.5.16 Timer Pin Timing .. 13-66

A Instruction Opcodes•.. A-1
List of the opcode fields for the TMS320C3x instructions.

B Development Support/Part Ordering Information B-1
Lists of the hardware and software available to support the TMS320C3x devices.

B.1 TMS320C3x Development Support Tools B-2
B.1 .1 TMS320 Third Parties .. B-4
B.1.2 TMS320 Literature. .. B-5
B.1.3 DSP Hotline .. B-5
B.1.4 Bulletin Board Service (BBS) .. B-5
B.1.5 Technical Training Organization (TTO) TMS320 Workshop B-6

B.2 TMS320C3x Part Ordering Information .. B-7
B.2.1 Device and Development Support Tool Prefix Designators B-8
B.2.2 Device Suffixes ... B-9

C Quality and Reliability•.. C-1
Discussion of Texas Instruments quality and reliability criteria for evaluating performance.

C.1 Reliability Stress Tests .. C-2
C.2 TMS320C31 PQFP Reflow Soldering Precautions C-7

D Calculation of TMS320C30 Power Dissipation D-1

xviii

Discussion of information used to determine the power dissipation and the thermal
management requirements for the TMS320C30.

0.1 Fundamental Power Dissipation Characteristics 0-2
0.1.1 Components of Power Supply Current Requirements 0-2
0.1.2 Dependencies .. 0-2
0.1.3 Determining Algorithm Partitioning 0-4
0.1.4 Test Setup Description ... 0-4

0.2 Current Requirement for Internal Circuitry 0-5
0.2.1 Quiescent. .. 0-5
0.2.2 Internal Operations .. 0-5
0.2.3 Internal Bus Operations .. 0-6

0.3 Current Requirement for Output Driver Circuitry 0-9
0.3.1 Primary Bus ... 0-10
0.3.2 Expansion Bus ... 0-13
0.3.3 Data Dependency .. 0-14
0.3.4 Capacitive Load Dependence .. 0-16

Contents

D.4 Calculation of Total Supply Current. D-18
D.4.1 Combining Supply Current Due to All Components D-18
D.4.2 Supply Voltage, Operating Frequency, and Temperature Dependencies ... D-19
D.4.3 Design Equation .. D-21
D.4.4 Peak Versus Average Current .. D-22
D.4.S Thermal Management Considerations D-23

D.S Supply Current Calculations .. , D-26
D.S.1 Processing ... , D-26
D.S.2 Data Output ... D-26
D.S.3 Average Current .. D-27
D.S.4 Experimental Results ... D-27

D.6 Summary ... D-28
D.7 Photo of 100 for FFT ... D-29
D.S FFT Assembly Code ... D-30

E SMJ320C3x Digital Signal Processor Data Sheet•. E-1
Data sheet for the military version of the digital signal processor, the SMJ320C30.

F Analog Interface Peripherals and Applications•.........••......•...••. F-1
Devices that interface to the TMS320 DSPs.

F.1 Multimedia Applications ... F-2
F.1 .1 System Design Considerations F-2
F.1.2 Multimedia-Related Devices .. F-4

F.2 Telecommunications Applications F-S
F.3 Dedicated Speech Synthesis Applications F-11
F.4 Servo Control/Disk Drive Applications .. F-14
F.S Modem Applications ... F-17
F.6 Advanced Digital Electronics Applications for Consumers F-20

G Boot Loader Source Code •.•..•.•..••.....•............•....•.•.................• G-1
Source code for the TMS320C3x boot loader.

Contents xix

Figures

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
2-7
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

4-10

xx

IW'l
7 tId;; ';1' ""&

TMS320 Device Evolution .. 1-3
TMS320C3x Block Diagram .. 1-5
TMS320C3x Block Diagram .. 2-3
Central Processing Unit (CPU) 2-5
Memory Organization .. 2-12
TMS320C30 Memory Maps ... 2-14
TMS320C31 Memory Maps ... 2-15
Peripheral Modules. .. 2-27
DMA Controller .. 2-29
Extended-Precision Register Floating-Point Format .. 3-3
Extended-Precision Register Integer Format 3-3
Status Register ... 3-5
CPU/DMA Interrupt Enable Register (IE) ... 3-7
CPU Interrupt-Flag Register (IF) .. 3-9
I/O-Flag Register (IOF) ... 3-10
TMS320C30 Memory Maps ... 3-15
TMS320C31 Memory Maps ... 3-16
Reset, Interrupt, and Trap-Vector Locations
for the TMS320C30{TMS320C31 Microprocessor Mode .. 3-18
Interrupt and Trap Branch Instructions for the TMS320C31 Microcomputer Mode 3-19
Peripheral Bus Memory Map .. 3-20
Instruction Cache Architecture ... 3-22
Address Partitioning for Cache Control Algorithm .. 3-22
Boot-Loader-Mode Selection Flowchart ... 3-27
Boot-Loader Memory-Load Flowchart .. 3-28
Boot-Loader Serial-Port Load-Mode Flowchart .. 3-29
Short-Integer Format and Sign Extension of Short Integers 4-2
Single-Precision Integer Format. .. 4-2
Short Unsigned-Integer Format and Zero Fill 4-3
Single-Precision Unsigned-Integer Format .. 4-3
Generic Floating-Point Format 4-4
Short Floating-Point Format .. 4-5
Single-Precision Floating-Point Format. .. 4-6
Extended-Precision Floating-Point Format. .. 4-7
Converting From Short Floating-Point Format
to Single-Precision Floating-Point Format .. 4-8
Converting From Short Floating-Point Format
to Extended-Precision Floating-Point Format 4-8

4-11

4-12

4-13
4-14
4-15
4-16
4-17
4-18
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12

Figures

Converting From Single-Precision Floating-Point Format
to Extended-Precision Floating-Point Format 4-9
Converting From Extended-Precision Floating-Point Format
to Single-Precision Floating-Point Format .. 4-9
Flowchart for Floating-Point Multiplication 4-11
Flowchart for Floating-Point Addition .. 4-15
Flowchart for NORM Instruction Operation 4-19
Flowchart for Floating-Point Rounding by the RND Instruction 4-21
Flowchart for Floating-Point-to-Integer Conversion by FIX Instructions 4-23
Flowchart for Integer-to-Floating-Point Conversion by FLOAT Instructions 4-24
Direct Addressing ... 5-4
Instruction Encoding Format .. 5-7
Encoding for 24-Bit PC-Relative Addressing Mode 5-18
Encoding for General Addressing Modes .. 5-20
Encoding for Three-Operand Addressing Modes 5-21
Encoding for Parallel Addressing Modes .. 5-21
Encoding for Conditional-Branch Addressing Modes .. 5-23
Flowchart for Circular Addressing .. 5-25
Circular Buffer Implementation ... 5-26
Data Structure for FIR Filters .. 5-28
System Stack Configuration ... 5-31
Implementations of High-to-Low Memory Stacks 5-32
Implementations of Low-to-High Memory Stacks 5-33
CALL Response Timing .. 6-11
Multiple TMS320C3xs Sharing Global Memory. .. 6-15
Zero-Logic Interconnect of TMS320C3xs , 6-16
Interrupt Logic Functional Diagram ... 6-23
Interrupt Processing 6-28
IDLE2 Timing .. 6-37
Interrupt Response Timing After IDLE2 Operation 6-37
LOPOWER Timing ... 6-38
MAXSPEED Timing .. 6-38
Memory-Mapped External Interface Control Registers 7-2
Primary-Bus Control Register ... 7-3
Expansion-Bus Control Register .. 7-5
Read-Read-Write for (M)STRB = 0 .. 7-7
Write-Write-Read for (M)STRB = 0 .. 7-8
Use of Wait States for Read for (M)STRB = 0 7-9
Use of Wait States for Write for (M) STRB = 0 7-10
Read and Write for 10STRB = 0 .. 7-11
Read With One Wait State for 10STRB = 0 7-12
Write With One Wait State for 10STRB = 0 7-13
Memory Read and I/O Write for Expansion Bus 7-14
Memory Read and I/O Read for Expansion Bus 7-15

Contents xxi

Figures

7-13 Memory Write and I/O Write for Expansion Bus 7-16
7-14 Memory Write and I/O Read for Expansion Bus 7-17
7-15 I/O Write and Memory Write for Expansion Bus 7-18
7-16 I/O Write and Memory Read for Expansion Bus 7-19
7-17 I/O Read and Memory Write for Expansion Bus 7-20
7-18 I/O Read and Memory Read for Expansion Bus , ., 7-21
7-19 I/O Write and I/O Read for Expansion Bus 7-22
7-20 I/O Write and I/O Write for Expansion Bus 7-23
7-21 I/O Read and I/O Read for Expansion Bus 7-24
7-22 Inactive Bus States for 10STRB , 7-25
7-23 Inactive Bus States for STRB and MSTRB 7-26
7-24 HOLD and HOLDA Timing .. 7-27
7-25 BNKCMP Example ... 7-30
7-26 Bank-Switching Example .. 7-31
8-1 Timer Block Diagram .. 8-2
8-2 Memory-Mapped Timer Locations 8-3
8-3 Timer Global-Control Register .. 8-4
8-4 Timer Modes as Defined by CLKSRC and FUNC .. 8-6
8-5 Timer Timing ... 8-7
8-6 Timer Output Generation Examples ... 8-9
8-7 Timer I/O Port Configurations .. 8-10
8-8 Serial-Port Block Diagram 8-14
8-9 Memory-Mapped Locations for the Serial Ports 8-15
8-10 Serial-Port Global-Control Register .. 8-18
8-11 FSXlDXlCLKX Port-Control Register ... 8-19
8-12 FSR/DR/CLKR Port-Control Register ... 8-20
8-13 Receive/Transmit Timer-Control Register .. 8-22
8-14 Receive/Transmit Timer-Counter Register 8-22
8-15 Receive/Transmit Timer-Period Register .. 8-23
8-16 Transmit Buffer Shift Operation .. 8-23
8-17 Receive Buffer Shift Operation .. 8-24
8-18 Serial-Port Clocking in I/O Mode ... 8-25
8-19 Serial-Port Clocking in Serial-Port Mode .. 8-26
8-20 Data Word Format in Handshake Mode ... 8-28
8-21 Single Zero Sent as an Acknowledge Bit .. 8-28
8-22 Direct Connection Using Handshake Mode 8-29
8-23 Fixed Burst Mode .. 8-31
8-24 Fixed Continuous Mode With Frame Sync 8-31
8-25 Fixed Continuous Mode Without Frame Sync 8-33
8-26 Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal 8-34
8-27 Variable Burst Mode .. 8-35
8-28 Variable Continuous Mode With Frame Sync 8-35
8-29 Variable Continuous Mode Without Frame Sync. .. 8-36
8-30 TMS320C3x Zero-Glue-Logic Interface to TLC3204x Example 8-40

xxii

8-31
8-32
8-33
8-34
8-35
8-36
9-1
9-2
9-3
9-4
9-5
9-6
10-1
11-1
11-2
11-3
11-4
11-5
11-6
11-7
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-24

Figures

DMA Global-Control Register .. 8-47
CPU/DMA Interrupt-Enable Register .. 8-49
No DMA Synchronization•... 8-54
DMA Source Synchronization .. 8-55
DMA Destination Synchronization .. 8-55
DMA Source and Destination Synchronization 8-56
TMS320C3x Pipeline Structure ... 9-3
Two-Operand Instruction Word. .. 9-24
Three-Operand Instruction Word ... 9-25
Multiply or CPU Operation With a Parallel Store .. 9-28
Two Parallel Stores .. 9-29
Parallel Multiplies and Adds ... 9-29
Status Register ... 10-11
Data Memory Organization for an FIR Filter 11-58
Data Memory Organization for a Single Biquad 11-60
Data Memory Organization for N Biquads 11-63
Data Memory Organization for Matrix-Vector Multiplication 11-71
Structure of the Inverse Lattice Filter. .. 11-126
Data Memory Organization for Lattice Filters 11-126
Structure of the (Forward) Lattice Filter 11-128
External Interfaces on the TMS320C3x ... 12-2
Possible System Configurations. .. 12-3
TMS320C3x Interface to Cypress Semiconductor CY7C186 CMOS SRAM 12-6
Read Operations Timing .. 12-7
Write Operations Timing .. 12-8
Circuit for Generation of Zero, One, or Two Wait States for Multiple Devices 12-12
Bank Switching for Cypress Semiconductor's CY7C185 .. 12-15
Bank Memory Control Logic .. 12-16
Timing for Read Operations Using Bank Switching 12-18
Interface to AD1678 AID Converter. 12-20
Read Operations Timing Between the TMS320C30 and AD1678 12-22
Interface Between the TMS320C30 and the AD565A 12-24
Write Operation to the D/A Converter Timing Diagram 12-25
Crystal Oscillator Circuit ... 12-27
Magnitude of the Impedance of the Oscillator LC Network ., .. 12-28
Reset Circuit ... 12-29
Voltage on the TMS320C30 Reset Pin ... 12-30
AIC to TMS320C30 Interface ... 12-33
Synchronous Timing of TLC32044 to TMS320C3x .. 12-35
Asynchronous Timing of TLC32044 to TMS320C30 12-35
Interrupt Generation Circuit for Use With IDLE2 Operation 12-36
12-Pin Header Signals and Header Dimensions .. 12-39
Emulator Cable Pod Interface. .. 12-40
Emulator Cable Pod Timings ... 12-41

Contents xxiii

Figures

12-25
12-26

12-27
12-28
12-29
12-30
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24
13-25
13-26
13-27
13-28
13-29
13-30
13-31
13-32
13-33
13-34
13-35
13-36
B-1

xxiv

Signals Between the Emulator and the 'C3x With No Signals Buffered 12-42
Signals Between the Emulator and the 'C3x
With Transmission Signals Buffered ... 12-42
All Signals Buffered ... 12-43
Pod/Connector Dimensions .. 12-44
12-Pin Connector Dimensions .. 12-45
TBC Emulation Connections for 'C3x Scan Paths 12-46
TMS320C30 Pinout (Top View) .. 13-3
TMS320C30 Pinout (Bottom View) ... 13-4
TMS320C30 181-Pin PGA Dimensions-GEL Package 13-5
TMS320C30 PPM Pinout (Top View) ... 13-8
TMS320C30 PPM 208-Pin Plastic Ouad Flat Pack-POL Package 13-9
TMS320C31 Pinout (Top View) ... 13-12
TMS320C31 132-Pin Plastic Ouad Flat Pack-POL Package 13-13
Test load Circuit .. 13-28
TIL-level Outputs .. 13-29
TIL-level Inputs .. 13-29
Timing for X2/ClKIN ... 13-31
Timing for H1/H3 .. 13-31
Timing for Memory ((M)STRB = 0) Read 13-34
Timing for Memory ((M)STRB = 0) Write 13-35
Timing for Memory (10STRB = 0) Read. .. 13-36
Timing for Memory (10STRB = 0) Write. .. 13-37
Timing for XFO and XF1 When Executing lDFI or lOll 13-39
Timing for XFO When Executing an STFI or STII 13-40
Timing for XFO and XF1 When Executing SIGI 13-41
Timing for loading XF Register When Configured as an Output Pin. 13-42
Timing for Change of XF From Output to Input Mode 13-43
Timing for Change of XF From Input to Output Mode 13-44
Timing for RESET .. 13-48
ClKIN to H1/H3 as a Function of Temperature 13-49
ClKIN to H1/H3 as a Function of Temperature 13-49
ClKIN to H1/H3 as a Function of Temperature " 13-50
Timing for SHZ Pin .. 13-51
Timing for INT3-INTO Response .. 13-53
Timing for lACK. .. 13-54
Timing for Fixed Data Rate Mode ... 13-55
Timing for Variable Data Rate Mode ... 13-56
liming for HOLD/HOLDA .. 13-61
Timing for Peripheral Pin General-Purpose I/O .. 13-63
Timing for Change of Peripheral Pin From General-Purpose Output to Input Mode. .. 13-64
Timing for Change of Peripheral Pin From General-Purpose Input to Output Mode ... 13-65
Timing for Timer Pin ... 13-67
TMS320 Device Nomenclature ... B-10

Figures

D-1 Current Measurement Test Setup ... D-4
D-2 Internal Bus Current Versus Transfer Rate D-7
D-3 Internal Bus Current Versus Data Complexity Derating Curve 0-7
D-4 Primary Bus Current Versus Transfer Rate and Wait States .. D-11
D-5 Primary Bus Current Versus Transfer Rate at Zero Wait States 0-12
D-6 Expansion Bus Current Versus Transfer Rate and Wait States 0-13
D-7 Expansion Bus Current Versus Transfer Rate at Zero Wait States 0-14
D-8 Primary Bus Current Versus Data Complexity Derating Curve 0-15
D-9 Expansion Bus Current Versus Data Complexity Derating Curve 0-16
D-10 Current Versus Output Load Capacitance 0-17
D-11 Current Versus Frequency and Supply Voltage . D-20
D-12 Current Versus Operating Temperature Change D-20
D-13 Load Currents ... D-23
F-1 System Block Diagram ... F-2
F-2 Multimedia Speech Encoding and Modem Communication F-3
F-3 TMS320C25 to TLC32047 Interface ... F-3
F-4 Typical DSP/Combo Interface " F-6
F-5 DSP/Combo Interface Timing , F-7
F-6 General Telecom Applications .. F-9
F-7 Generic Telecom Applications ... F-10
F-8 Generic Servo Control Loop ... F-14
F-9 Disk Drive Control System Block Diagram F-15
F-10 TMS320C14-TLC32071 Interface .. F-16
F-11 High-Speed V.32 Bis and Multistandard Modem With the TLC320AC01 AIC F-18
F-12 Applications Performance Requirements .. F-20
F-13 Video Signal Processing Basic System ... F-21
F-14 Typical Digital Audio Implementation .. F-21

Contents xxv

Tables
i ;

1-1 Typical Applications of the TMS320 Family 1-10
2-1 CPU Registers .. 2-8
2-2 Instruction Set Summary .. 2-17
2--3 Parallel Instruction Set Summary. .. 2-24
2-4 Feature Set Comparison 2-30
2-5 TMS320C31 Reserved Memory Locations 2-31
3-1 CPU Registers .. 3-2
3-2 Status Register Bits Summary .. 3-6
3--3 IE Register Bits Summary .. 3-8
3-4 IF Register Bits Summary .. 3-9
3-5 IOF Register Bits Summary ... 3-11
3-6 Combined Effect of the CE and CF Bits ... 3-25
3-7 Loader Mode Selection ... 3-30
3-8 External Memory Loader Header .. 3-30
3-9 TMS320C31 Interrupt and Trap Memory Maps 3-34
5-1 CPU Register Address/Assembler Syntax and Function 5-3
5-2 Indirect Addressing. .. 5-6
5--3 Index Steps and Bit-Reversed Addressing. .. 5-30
6-1 Repeat-Mode Registers. .. 6-2
6-2 Interlocked Operations .. 6-12
6-3 Pin Operation at Reset. .. 6-19
6-4 Reset, Interrupt, and Trap-Vector Locations

for the TMS320C30/TMS320C31 Microprocessor Mode .. 6-24
6-5 Reset, Interrupt, and Trap-Vector Locations

for the TMS320C31 Microcomputer Boot Mode 6-25
6-6 Reset and Interrupt Vector Priorities .. 6-26
6-7 Interrupt Latency .. 6-29
6-8 Reset and Interrupt Vector Locations ... 6-35
7-1 Primary-Bus Control Register Bits Summary 7-4
7-2 Expansion-Bus Control Register Bits Summary 7-5
7--3 Wait-State Generation When SWW = 00 .. 7-29
7-4 Wait-State Generation When SWW = 01 .. 7-29
7-5 Wait-State Generation When SWW = 1 0 , 7-29
7-6 Wait-State Generation When SWW = 1 1 .. 7-29
7-7 BNKCMP and Bank Size .. 7-30
8-1 Timer Global-Control Register Bits Summary 8-4
8-2 Result of a Write of Specified Values of GO and HLD 8-8

xxvi

8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
9-1
9-2
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
11-1
11-2
12-1
12-2
12-3
12-4
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9

Tables

Serial-Port Global-Control Register Bits Summary .. 8-15
FSXlDXlCLKX Port-Control Register Bits Summary 8-19
FSR/DR/CLKR Port-Control Register Bits Summary 8-20
Receive/Transmit limer-Control Register " 8-21
Memory-Mapped Locations for a DMA Channel 8-44
DMA Global-Control Register Bits 8-45
START Bits and Operation of the DMA (Bits 0-1) .. 8-46
STAT Bits and Status of the DMA (Bits 2-3) 8-46
SYNC Bits and Synchronization of the DMA (Bits 8-9) 8-46
CPU/DMA Interrupt-Enable Register Bits 8-48
DMA liming When Destination Is On-Chip 8-50
DMA liming When Destination Is a Primary Bus 8-51
DMA liming When Destination Is an Expansion Bus. .. 8-52
Maximum DMA Transfer Rates When Cr = Cw = 0 " 8-53
Maximum DMA Transfer Rates When Cr = 1, Cw = 0 8-53
Maximum DMA Transfer Rates When Cr = 1, Cw = 1 8-53
One Program Fetch and One Data Access for Maximum Performance 9-21
One Program Fetch and Two Data Accesses for Maximum Performance 9-22
Load-and-Store Instructions ... 10-2
Two-Operand Instructions 10-3
Three-Operand Instructions ... 10-4
Program Control Instructions .. 10-5
Low-Power Control Instructions 10-5
Interlocked Operations Instructions 10-6
Parallel Instructions .. 10-7
Output Value Formats ... 10-10
Condition Codes and Flags .. , 10-13
Instruction Symbols ... 10-15
CPU Register Syntax '" .. 10-18
TMS320C3x FFT liming Benchmarks (Cycles) 11-125
TMS320C3x FFT liming Benchmarks (Milliseconds) 11-125
Bank Switching Interface liming .. 12-18
Key liming Parameter for D/A Converter Write Operation 12-26
12-Pin Header Signal Descriptions and Pin Numbers 12-39
Emulator Cable Pod liming Parameters 12-41
TMS320C30-PGA Pin Assignments (Alphabetical) 13-6
TMS320C30-PGA Pin Assignments (Numerical) 13-7
TMS320C30-PPM Pin Assignments (Alphabetical) 13-10
TMS320C30-PPM Pin Assignments (Numerical) 13-11
TMS320C31 Pin ASSignments (Alphabetical) 13-14
TMS320C31 Pin Assignments (Numerical) 13-15
TMS320C30 Signal Descriptions .. 13-17
TMS320C31 Signal Descriptions 13-22
Absolute Maximum Ratings Over Specified Temperature Range 13-25

Contents xxvii

Tables

13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24
13-25
13-26
13-27
13-28
13-29
13-30

13-31

13-32
13-33
A-1
B-1
B-2
C-1
C-2
C-3
0-1
F-1
F-2
F-3
F-4
F-5
F-6
F-7
F-8
F-9
F-10
F-11

xxviii

Recommended Operating Conditions .. 13-26
Electrical Characteristics Over Specified Free-Air Temperature Range 13-27
Timing Parameters for X2/CLKI N, Hi, and H3 13-30
Timing Parameters for a Memory ((M)STR8) = 0) Read/Write 13-33
Timing Parameters for a Memory (IOSTR8 = 0) Read 13-35
Timing Parameters for a Memory (IOSTR8 = 0) Write 13-37
Timing Parameters for XFO and XF1 When Executing LDFI or LDII 13-39
Timing Parameters for XFO When Executing STFI or STII 13-40
Timing Parameters for XFO and XF1 When Executing SIGI 13-41
Timing Parameters for Loading the XF Register When Configured as an Output Pin . 13-42
Timing Parameters of XF Changing From Output to Input Mode 13-43
Timing Parameters of XF Changing From Input to Output Mode 13-44
Timing Parameters for RESET for the TMS320C30 .. 13-46
Timing Parameters for RESET for the TMS320C31 13-47
Timing Parameters for the SHZ Pin 13-51
Timing Parameters for I NT3-1 NTO .. 13-52
Timing Parameters for lACK .. 13-54
Serial-Port Timing Parameters .. 13-57
Timing Parameters for HOLD/HOLDA. .. 13-62
Timing Parameters for Peripheral Pin General-Purpose I/O 13-63
Timing Parameters for Peripheral Pin
Changing From General-Purpose Output to Input Mode 13-64
Timing Parameters for Peripheral Pin
Changing From General-Purpose Input to Output Mode .. 13-64
Timing Parameters for Timer Pin .. 13-66
Timing Parameters for Timer Pin .. 13-67
TMS320C3x Instruction Opcodes ... A-2
TMS320C3x Digital Signal Processor Part Numbers , 8-7
TMS320C3x Support Tool Part Numbers ... 8-8
Microprocessor and Microcontroller Tests .. C-3
Definitions of Microprocessor Testing Terms C-4
TMS320C3x Transistors ... C-6
Current Equation Symbols .. D-22
Data Converter ICs .. F-4
Switched-Capacitor Filter ICs ... F-4
Telecom Devices .. F-8
Switched-Capacitor Filter ICs F-9
TI Voice Synthesizers .. F-11
Speech Memories .. F-12
Switched-Capacitor Filter ICs F-12
Speech Synthesis Development Tools .. F-13
Control-Related Devices .. F-16
Modem AFE Data Converters .. F-17
AudioNideo Analog/Digital Interface Devices F-23

Examples
II I j Kill iii

3-1 Byte-Wide Configured Memory .. 3-31
3-2 16-Bit-Wide Configured Memory ... 3-32
3-3 32-Bit-Wide Configured Memory ... 3-32
4-1 Floating-Point Multiply (Both Mantissas = -2.0) 4-12
4-2 Floating-Point Multiply (Both Mantissas = 1.5) 4-12
4-3 Floating-Point Multiply (Both Mantissas = 1.0) 4-13
4-4 Floating-Point Multiply Between Positive and Negative Numbers 4-13
4-5 Floating-Point Multiply by 0 .. 4-13
4-6 Floating-Point Addition ... , 4-16
4-7 Floating-Point Subtraction , .. , 4-16
4-8 Floating-Point Addition With a 32-Bit Shift 4-17
4-9 Floating-Point Addition/Subtraction With Floating-Point 0 .. 4-17
4-10 NORM Instruction .. 4-18
5-1 Direct Addressing ... 5-4
5-2 Auxiliary Register Indirect .. 5-5
5-3 Indirect With Predisplacement Add .. 5-8
5-4 Indirect With Predisplacement Subtract .. 5-8
5-5 Indirect With Predisplacement Add and Modify .. 5-9
5-6 Indirect With Predisplacement Subtract and Modify. .. 5-9
5-7 Indirect With Postdisplacement Add and Modify 5-10
5-8 Indirect With Postdisplacement Subtract and Modify 5-10
5-9 Indirect With Postdisplacement Add and Circular Modify 5-11
5-10 Indirect With Postdisplacement Subtract and Circular Modify 5-11
5-11 Indirect With Preindex Add .. 5-12
5-12 Indirect With Preindex Subtract .. 5-12
5-13 Indirect With PreindexAdd and Modify .. 5-13
5-14 Indirect With Preindex Subtract and Modify .. 5-13
5-15 Indirect With Postindex Add and Modify .. 5-14
5-16 Indirect With Postindex Subtract and Modify 5-14
5-17 Indirect With Postindex Add and Circular Modify 5-15
5-18 Indirect With Postindex Subtract and Circular Modify , 5-15
5-19 Indirect With Postindex Add and Bit-Reversed Modify. .. 5-16
5-20 Short-Immediate Addressing .. 5-17
5-21 Long-Immediate Addressing .. 5-17
5-22 PC-Relative Addressing. .. 5-18
5-23 Circular Addressing .. 5-27

Contents xxix

Examples

5-24 FIR Filter Code Using Circular Addressing 5-28
5-25 Bit-Reversed Addressing .. 5-29
6-1 Repeat-Mode Control Algorithm .. 6-4
6-2 RPTB Operation .. 6-4
6-3 Incorrectly Placed Standard Branch ... 6-6
6-4 Incorrectly Placed Delayed Branch .. 6-6
6-5 Pipeline Conflict in an RPTB Instruction .. 6-7
6-6 Incorrectly Placed Delayed Branches .. 6-9
6-7 Busy-Waiting Loop ... 6-14
6-8 Multiprocessor Counter Manipulation ... 6-14
6-9 Implementation ofV(S) ... 6-16
6-10 Implementation of P(S) ... 6-16
6-11 Code to Synchronize Two TMS320C3xs at the Software Level 6-17
8-1 Serial-Port Register Setup #1 .. 8-38
8-2 Serial-Port Register Setup #2 .. 8-38
8-3 CPU Transfer With Serial-Port Transmit Polling Method 8-39
8-4 TMS320C3x Zero-Glue-Logic Interface to Burr Brown NO and D/A 8-41
8-5 Array Initialization With DMA .. 8-58
8-6 DMA Transfer With Serial-Port Receive Interrupt 8-59
8-7 DMA Transfer With Serial-Port Transmit Interrupt. .. 8-61
9-1 Standard Branch .. 9-5
9-2 Delayed Branch .. 9-6
9-3 Write to an AR Followed by an AR for Address Generation 9-8
9-4 A Read of ARs Followed by ARs for Address Generation .. 9-9
9-5 Program Wait Until CPU Data Access Completes 9-11
9-6 Program Wait Due to Multicycle Access ... 9-12
9-7 Multicycle Program Memory Fetches ... 9-12
9-8 Single Store Followed by Two Reads ... 9-13
9-9 Parallel Store Followed by Single Read ... 9-14
9-10 Interlocked Load ... 9-15
9-11 Busy External Port ... 9-16
9-12 Multicycle Data Reads .. 9-17
9-13 Conditional Calls and Traps ;.................... 9-17
9-14 Address Generation Update of an AR Followed by an AR for Address Generation 9-18
9-15 Write to an AR Followed by an AR for Address Generation Without a Pipeline Conflict 9-19
9-16 Write to DP Followed by a Direct Memory Read Without a Pipeline Conflict 9-20
9-17 Dummy src2 Read ... 9-26
9-18 Operand Swapping Alternative .. 9-27
11-1 TMS320C3x Processor Initialization .. 11-3
11-2 Subroutine Call (Dot Product) .. 11-7
11-3 Use of Interrupts for Software Polling ... 11-9
11-4 Context Save for the TMS320C3x .. 11-12
11-5 Context Restore for the TMS320C3x .. 11-14
11-6 Interrupt Service Routine ... 11-16

xxx

Examples

11-7 Delayed Branch Execution '" 11-17
11-8 Loop Using Block Repeat .. 11-19
11-9 Use of Block Repeat to Find a Maximum 11-20
11-10 Loop Using Single Repeat. ... 11-21
11-11 Computed GOTO ... 11-22
11-12 Use of TSTB for Software-Controlled Interrupt 11-23
11-13 Copy a Bit From One Location to Another 11-24
11-14 Block Move Under Program Control ... 11-25
11-15 Bit-Reversed Addressing .. 11-26
11-16 Integer Division ... 11-29
11-17 Inverse of a Floating-Point Number .. 11-32
11-18 Square Root of a Floating-Point Number 11-35
11-19 64-Bit Addition .. 11-39
11-20 64-Bit Subtraction 11-39
11-21 32-Bit-by-32-Bit Multiplication ... 11-40
11-22 IEEE-to-TMS320C3x Conversion (Fast Version) 11-44
11-23 IEEE-to-TMS320C3x Conversion (Complete Version) 11-46
11-24 TMS320C3x-to-IEEE Conversion (Fast Version) 11-49
11-25 TMS320C3x-to-IEEE Conversion (Complete Version) ... '" 11-51
11-26 ~-Law Compression .. 11-54
11-27 ~-Law Expansion '" 11-55
11-28 A-Law Compression .. 11-56
11-29 A-Law Expansion ... 11-57
11-30 FIR Filter .. '" 11-59
11-31 IIR Filter (One Biquad) ... 11-61
11-32 IIR Filters (N > 1 Biquads) .. 11-64
11-33 Adaptive FIR Filter (LMS Algorithm) ... 11-68
11-34 Matrix limes a Vector Multiplication ... 11-72
11-35 Complex, Radix-2, DIF FFT .. 11-75
11-36 Table With Twiddle Factors for a 64-Point FFT 11-78
11-37 Complex, Radix-4, DIF FFT .. 11-81
11-38 Real, Radix-2 FFT .. 11-88
11-39 Real Inverse, Radix-2 FFT .. 11-108
11-40 Inverse Lattice Filter .. 11-127
11-41 Lattice Filter ... 11-129
11-42 Setup of IDLE2 Power-Down-Mode Wakeup 11-133
12-1 State Machine and Equations for the Interrupt Generation 16R4 PLD 12-37

Contents xxxi

xxxii

II

Chapter 1

Introduction

The TMS320C3x generation of digital signal processors (OSPs) are high-per­
formance CMOS 32-bit floating-point devices in the TMS320 family of
single-chip digital signal processors. Since 1982, when the TMS3201 0 was in­
troduced, the TMS320 family, with its powerful instruction sets, high-speed
number-crunching capabilities, and innovative architectures, has established
itself as the industry standard. It is ideal for OSP applications.

The 40-ns cycle time of the TMS320C31-50 allows it to execute operations at
a performance rate of up to 60 million floating-point instructions per second
(MFLOPS) and 30 million instructions per second (MIPS). This performance
was previously available only on a supercomputer. The generation's perform­
ance is further enhanced through its large on-chip memories, concurrent direct
memory access (OMA) controller, and two external interface ports.

This chapter presents the following major topics:

Topic Page

1-1

General Description

1.1 General Description

1-2

The TMS320 family consists of five generations: TMS320C1x, TMS320C2x,
TMS320C3x, TMS320C4x, and TMS320C5x (see Figure 1-1). The expan­
sion includes enhancements of earlier generations and more powerful new
generations of DSPs.

The TMS320's internal busing and special DSP instruction set have the speed
and flexibility to execute at up to 50 MFLOPS. The TMS320 family optimizes
speed by implementing functions in hardware that other processors imple­
ment through software or microcode. This hardware-intensive approach pro­
vides power previously unavailable on a single chip.

The emphasis on total system cost has resulted in a less expensive processor
that can be designed into systems currently using costly bit-slice processors.
Also, cost/performance selection is provided by the different processors in the
TMS320C3x generation:

0 TMS320C30: 6O-ns, single-cycle execution-time

0 TMS320C30-27: Lower cost; 74-ns, single-cycle execution time

0 TMS320C30-40: Higher speed; 50-ns, single-cycle execution time

0 TMS320C30-50: Highest speed; 40-ns, single-cycle execution time

0 TMS320C31: Low cost; 60-ns, single-cycle execution time

0 TMS320C31-27: Lower cost; 74-ns, single-cycle execution time

0 TMS320C31-40: Low cost; 50-ns, single-cycle execution time

0 TMS320C31 PQA: Low cost; extended temperature; 6O-ns, single-cycle
execution time

0 TMS320C31-50: Highest speed; 40-ns, single-cycle execution time

0 TMS320LC31 : Low power; 60-ns, single-cycle execution time,
3.3-volt operation

All of these processors are described in this user's guide. Essentially, their
functionality is the same. However, electrical and timing characteristics vary
(as described in Chapter 13); part numbering information is found in Section
B.2 on page B-7. Throughout this book, TMS320C3x is used to refer to the
TMS320C30 and TMS320C31 and all speed variations. TMS320C30 and
TMS320C31 are used to refer to all speed variants of those processors where
appropriate. Special references, such as TMS32OC30-40, are used to note
specific exceptions.

Figure 1-1. TMS320 Device Evolution

CI)
a.
g
u.
::?:
en-
a.
~
w
o z «
::?:
a:
fr
a: w
a.

TMS32OC1x

TMS320C10
TMS320C10-14/-25
TMS320C14
TMS320E14/P14
TMS320C15/LC15
TMS320E15/P15
TMS320C15-25
TMS320E15-25
TMS320C16
TMS320C17/LC17
TMS320E17/P17

U Fixed-Point Generations

TMS32OC25
TMS320E25
TMS320C25-33
TMS320C25-50
TMS320C26

TMS320C50
TMS320C51
TMS32OC52
TMS320C53

GENERATION

Floating-Point Generations

General Description

Introduction 1-3

General Description

1-4

The TMS320C30 and TMS320C31 can perform parallel multiply and arithme­
tic logic unit (ALU) operations on integer or floating-point data in a single cycle.
The processor also possesses a general-purpose register file, a program
cache, dedicated auxiliary register arithmetic units (ARAU), internal dual-ac­
cess memories, one DMA channel supporting concurrent 110, and a short ma­
chine-cycle time. High performance and ease of use are products of those fea­
tures.

General-purpose applications are greatly enhanced by the large address
space, multiprocessor interface, internally and externally generated wait
states, two external interface ports (one on the TMS320C31), two timers, two
serial ports (one on the TMS320C31), and multiple interrupt structure. The
TMS320C3x supports a wide variety of system applications from host proces­
sor to dedicated coprocessor.

High-level language is more easily implemented through a register-based ar­
chitecture, large address space, powerful addressing modes, flexible instruc­
tion set, and well-supported floating-point arithmetic.

General Description

Figure 1-2 is a functional block diagram that shows the interrelationships be­
tween the various TMS320C3x key components.

Figure 1-2. TMS320C3x Block Diagram

ROY
HOLD

HOLDA
STRB

RNI
031-0
A23-0

RESET --M

INT3-0 --M

lACK '---1
XF1-O .--..

MCBLlMP ~
X1 :g

X2/CLKIN 8
VDD
Vss --..
SHZ --N

..

Integer/
Floating-Point

Multiplier

Integer/
Floating-Point

ALU
8 Extended-Precision

Registers

Address
Generator 0

Address
Generator 1

8 Auxiliary Registers

12 Control Registers

Available on
TMS320C30,
TMS320C30-27, and
TMS320C30-40

Address Generators

Control Registers

Introduction 1-5

TMS320C30 Key Features

1.2 TMS320C30 Key Features

1-6

Some key features of the TMS320C30 are listed below.

o Performance

• TMS320C30 (33 MHz)

• 60-ns, single-cycle instruction execution time
• 33.3 MFLOPS
• 16.7 MIPS

• TMS320C30-27

• 74-ns, single-cycle instruction execution time
• 27 MFLOPS
• 13.5 MIPS

• TMS320C30-40

• 50-ns, single-cycle instruction execution time
• 40 MFLOPS
• 20 MIPS

Dane 4K x 32-bit, single-cycle, dual-access, on-chip, read-only memory
(ROM) block

o Two 1 K x 32-bit, single-cycle, dual-access, on-chip, random access
memory (RAM) blocks

o 64- x 32-bit instruction cache

o 32-bit instruction and data words

o 24-bit addresses

o 40-/32-bit floating-point/integer multiplier and ALU

o 32-bit barrel shifter

o Eight extended-precision registers (accumulators)

o Two address generators with eight auxiliary registers and two auxiliary
register arithmetic units

Dan-chip DMA controller for concurrent I/O and CPU operation

o Integer, floating-point, and logical operations

o Two- and three-operand instructions

o Parallel ALU and multiplier instructions in a single cycle

TMS320C30 Key Features

o Block repeat capability

o Zero-overhead loops with single-cycle branches

o Conditional calls and returns

o Interlocked instructions for multiprocessing support

o Two 32-bit data buses (24- and 13-bit address)

o Two serial ports to support 8/16/24/32-bit transfers

o Two 32-bit timers

o Two general-purpose external flags; four external interrupts

o 181-pin grid array (PGA) package; 1-~m CMOS

Introduction 1-7

TMS320C31 Key Features

1.3 TMS320C31 Key Features

1-8

The TMS320C31 is a low-cost 32-bit DSP that offers the advantages of a floa­
ting-point processor and ease of use. The TMS320C31 devices are object­
code compatible with the TMS320C30. Aside from lacking a ROM block and
having a single serial port, the TMS320C31 is functionally equivalent to the
TMS320C30 but differs in its respective electrical and timing characteristics.
Chapter 13 describes these differences in detail.

o The TMS320C31 {33 MHz} features are identical to those of the
TMS320C30 device, except that the TMS320C31 uses a subset of the
TMS320C30's standard peripheral and memory interfaces. This main­
tains the 33-MFLOPS performance of the TMS320C30's core CPU while
providing the cost advantages associated with 132-pin plastiC quad flat
pack (PQFP) packaging.

o The TMS320C31-27 is the slower speed version of the TMS320C31. The
TMS320C31-27 delivers 27 MFLOPS and runs at 27 MHz. The reduced
speed allows you to realize an immediate system cost reduction by using
slower off-chip memories and a lower-cost processor.

o The TMS320C31-40 is a high-speed version of the TMS320C31. The
40-MHz TMS320C31-40 runs with 50-ns cycle time and offers up to 40
MFLOPS in performance.

o The TMS320C31-50 is the highest-speed version ofthe TMS320C31. The
50-MHz TMS320C31-50 runs with 40-ns cycle time and offers up to 50
MFLOPS in performance.

o The TMS320C31 PQA (33 MHz) offers extended-temperature capabilities
to TMS320C31 performance. The TMS320C31 PQA will operate at case
temperatures ranging from -40 0 C to +85 0 C, making it a lower-cost floa­
ting-point solution for industrial and extended-temperature commercial
applications.

o The TMS320LC31 is the low-power version of the TMS320C31. The
TMS320LC31 runs with 60-ns cycle time and offers up to 33 MFLOPS in
performance at 3.3-volt operation.

Some key features of the TMS320C31, including those which differentiate it
from the TMS320C30, are summarized as follows:

o Performance

• TMS320C31 (PQLJPQA)

• 60-ns, single-cycle instruction execution time
• 33.3 MFLOPS
• 16.7 MIPS (million instructions per second)

TMS320C31 Key Features

• TMS32OC31-27

• 74-ns, single-cycle instruction execution time
• 27 MFLOPS
• 13.5 MIPS

• TMS320C31-4O

• 50-ns, single-cycle instruction execution time
• 40 MFLOPS
• 20 MIPS

• TMS32OC31-SO

• 4O-ns, single-cycle instruction execution time
• 50 MFLOPS
• 25 MIPS

• TMS320LC31

• 60-ns, single-cycle Instruction execution time
• 33.3 MFLOPS
• 16.7 MIPS
• Low-power, 3.3 volt operation
• Two power-down nodes; 2-MHz operation and Idle

o Flexible boot program loader

o One serial port to support 8-/16-/24-/32-bit transfers

o 132-pin PQFP package, .8 j.tm CMOS

Introduction 1-9

Typical Applications

1.4 Typical Applications

The TMS320 family's versatility, real-time performance, and multiple functions
offer flexible design approaches in a variety of applications, which are shown
in Table 1-1.

Table 1-1. Typical Applications of the TMS320 Family

General-Purpose DSP

Digital Filtering
Convolution
Correlation
Hilbert Transforms
Fast Fourier Transforms
Adaptive Filtering
Windowing
Waveform Generation

Voice/Speech

Voice Mail
Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech
Neural Networks

Telecommunications

Echo Cancellation
ADPCM Transcoders
Digital PBXs
Line Repeaters
Channel Multiplexing
1200- to 19200-bps Modems
Adaptive Equalizers
DTMF Encoding/Decoding
Data Encryption

Consumer

Radar Detectors
Power Tools
Digital Audio/TV
Music Synthesizer
Toys and Games
Solid-State Answering

Machines

1-10

Graphics/Imaging

3-D Transformations Rendering
Robot Vision
Image Transmission/Compression
Pattern Recognition
Image Enhancement
Homomorphic Processing
Workstations
Animation/Digital Map

Control

Disk Control
Servo Control
Robot Control
Laser Printer Control
Engine Control
Motor Control
Kalman Filtering

FAX
Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)
X.25 Packet Switching
Video Conferencing
Spread Spectrum
Communications

Industrial

Robotics
Numeric Control
Security Access
Power Line Monitors
Visual Inspection
Lathe Control
CAM

Instrumentation

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

Military

Secure Communications
Radar Processing
Sonar Processing
Image Processing
Navigation
Missile Guidance
Radio Frequency Modems
Sensor Fusion

Automotive

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning
Navigation
Voice Commands
Digital Radio
Cellular Telephones

Medical

Hearing Aids
Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics
Fetal Monitors
MR Imaging

!S! s:

Chapter 2
I

TMS320C3x Architecture

This chapter gives an architectural overview of the TMS320C3x processor.

Major areas of discussion are listed below.

Topic Page

2·1

Architectural Overview

2.1 Architectural Overview

2-2

The TMS320C3x architecture responds to system demands that are based on
sophisticated arithmetic algorithms and that emphasize both hardware and
software solutions. High performance is achieved through the precision and
wide dynamic range of the floating-point units, large on-chip memory, a high
degree of parallelism, and the direct memory access (OMA) controller.

Figure 2-1 is a block diagram of the TMS320C3x architecture.

Figure 2-1. TMS320C3x Block Diagram

ROy
HOLD

HOLDA ..

S~:~
031-0041
A23-A0 .. ,

P"""1.r
RESE"[~~
IN~~

lACK
MClMP~
XF(1.0)+t

VOo(3-0)~
IOOVoo(1.0)~
AOVoo(1.0)~

POVOO~
OOVOO(1.0j

MOVOO J
VSS(3-0)

OVSS(:Hl)
CVSS(1.0)~

IVSS~
VBBP
SUBS~

Xl+­
X2ICLKlN-t

Hl4-

EMU!::;
RSV1H+t1........

Cache
(64 x 32)

32

RAM
Block 0

(lK x 32)

24 32

L MULTIPLEXER '" r; ···M·"., ':'};

,,:::

:t'

;. . " . .
:;::{
~~ I

ii,

* ,. :

RAM
Block 1

(lK x 32)

24 24 32124
OMA Controler

Global Control
Reglater

0ee1IneII0n
Addreaa
Regla1er

TrIll1lfer
Counter
Regl_

Architectural Overview

SerIal Port 0

Port Control ... FSXO
RegI_ 1'-

1-~~_--1 ~ OXO
R/X llmer ~ ClKXO

I-~Reg-=-Ia1er~-I ~ FSRO
Data Tranemlt ~ ORO

RegI_ ~ CLKRO

t--=Data~~ReceIve~--I
Register

Serial Port 1

Global Control
RegIS1er

lImer Period
RegI_

lImer Counter
Regla1er

llmerl

Global Control
RegiS1er

llmer Period
Regl_

llmer Counter
Regl_

Port Con1rOl

~FSXl
~OXl
~CLKXl
~FSRl
~ORl
~CLKRl

~TCLKO

.. TCLKl

... PrIm.-y

...

TMS320C3x Architecture 2-3

Central Processing Unit (CPU)

2.2 Central Processing Unit (CPU)

2·4

The TMS320C3x has a register-based central processing unit (CPU) architec­
ture. The CPU consists of the following components:

o Floating-point/integer multiplier

o Arithmetic logic unit (ALU) for performing floating-point, integer, and log­
ical-operations arithmetic

o 32-bit barrel shifter

o Internal buses (CPU1/CPU2 and REG1IREG2)

o Auxiliary register arithmetic units (ARAUs)

o CPU register file

Figure 2-2 shows the various CPU components that are discussed In the
succeeding subsections.

Figure 2-2. Central Processing Unit (CPU)

Central Processing Unit (CPU)

Other
Registers

(12)

32

* Disp = an 8-bit integer displacement carried in a program control instruction

TMS320C3x Architecture 2-5

Central Processing Unit (CPU)

2.2.1 Multiplier

The multiplier performs single-cycle multiplications on 24-bit integer and 32-bit
floating-point values. The TMS320C3x implementation of floating-point arith­
metic allows for floating-point operations at fixed-point speeds via a 50-ns in­
struction cycle and a high degree of parallelism. To gain even higher through­
put, you can use parallel instructions to perform a multiply and ALU operation
in a Single cycle.

When the multiplier performs floating-point multiplication, the inputs are 32-bit
floating-point numbers, and the result is a 4O-bit floating-point number. When
the multiplier performs integer multiplication, the input data is 24 bits and yields
a 32-bit result. Refer to Chapter 4 for detailed information on data formats and
floating-point operation.

2.2.2 Arithmetic Logic Unit (ALU)

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical, and
40-bit floating-point data, including single-cycle integer and floating-point con­
versions. Results of the ALU are always maintained in 32-bit integer or 40-bit
floating-point formats. The barrel shifter is used to shift up to 32 bits left or right
in a Single cycle. Refer to Chapter 4 for detailed information on data formats
and floating-point operation.

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from
memory and two operands from the register file, thus allowing parallel multi­
plies and adds/subtracts on four integer or floating-point operands in a single
cycle.

2.2.3 Auxiliary Register Arithmetic Units (ARAUs)

2·6

Two auxiliary register arithmetic units (ARAUO and ARAU 1) can generate two
addresses in a single cycle. The ARAUs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (IRO
and IR1), and circular and bit-reversed addressing. Refer to Chapter 5 for a
description of addressing modes.

Central Processing Unit (CPU)

2.2.4 CPU Register File

The TMS320C3x provides 28 registers in a multiport register file that is tightly
coupled to the CPU. All of these registers can be operated upon by the multipli­
er and ALU and can be used as general-purpose registers. However, the regis­
ters also have some special functions. For example, the eight extended-preci­
sion registers are especially suited for maintaining extended-precision float­
ing-point results. The eight auxiliary registers support a variety of indirect ad­
dressing modes and can be used as general-purpose 32-bit integer and logical
registers. The remaining registers provide such system functions as address­
ing, stack management, processor status, interrupts, and block repeat. Refer
to Chapter 6 for detailed information and examples of stack management and
register usage.

The register names and assigned functions are listed in Table 2-1. Following
the table, the function of each register or group of registers is briefly described.
Refer to Chapter 3 for detailed information on each of the CPU registers.

TMS320C3x Architecture 2-7

Central Processing Unit (CPU)

Table 2-1. CPU Registers

2-8

Register
Name

RO
R1
R2
R3
R4
R5
R6
R7

ARO
AR1
AR2
AR3
AR4
AR5
AR6
AR7

DP
IRO
IR1
BK
SP

ST
IE
IF

10F

RS
RE
RC

Assigned Function

Extended-precision register 0
Extended-precision register 1
Extended-precision register 2
Extended-precision register 3
Extended-precision register 4
Extended-precision register 5
Extended-precision register 6
extended-precision register 7

Auxiliary register 0
Auxiliary register 1
Auxiliary register 2
Auxiliary register 3
Auxiliary register 4
Auxiliary register 5
Auxiliary register 6
Auxiliary register 7

Data-page pointer
Index register 0
Index register 1
Block size
System stack pointer

Status register
CPU/DMA interrupt enable
CPU interrupt flags
I/O flags

Repeat start address
Repeat end address
Repeat counter

The extended-precision registers (R7-RO) are capable of storing and sup­
porting operations on 32-bit integer and 40-bit floating-point numbers. Any in­
struction that assumes the operands are floating-point numbers uses bits
39-0. If the operands are either signed or unsigned integers, only bits 31-<)
are used; bits 3~2 remain unchanged. This is true for all shift operations.
Refer to Chapter 4 for extended-precision register formats for floating-point
and integer numbers.

The 32-bit auxiliary registers (AR7-ARO) can be accessed by the CPU and
modified by the two ARAUs. The primary function of the auxiliary registers is
the generation of 24-bit addresses. They can also be used as loop counters
or as 32-bit general-purpose registers that can be modified by the multiplier
and ALU. Refer to Chapter 5 for detailed information and examples of the use
of auxiliary registers in addressing.

Central Processing Unit (CPU)

The data page pointer (OP) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressing mode as a pointer to the page
of data being addressed. Data pages are 64K words long, with a total of 256
pages.

The 32-bit Index registers (IRO, IR1) contain the value used by the ARAU to
compute an indexed address. Refer to Chapter 5 for examples of the use of
index registers in addressing.

The ARAU uses the 32-bit block size register (BI<) in circular addressing to
specify the data block size.

The system stack pointer (SP) is a 32-bit register that contains the address
of the top of the system stack. The SP always points to the last element pushed
onto the stack. A push performs a preincrement of the system stack pointer;
a pop performs a postdecrement. The SP is manipulated by interrupts, traps,
calls, returns, and the PUSH and POP instructions. Refer to Section 5.5 for in­
formation about system stack management.

The status register (ST) contains global information relating to the state of the
CPU. Operations usually set the condition flags of the status register accord­
ing to whether the result is 0, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
register is loaded, however, a bit-for-bit replacement is performed with the con­
tents of the source operand, regardless of the state of any bits in the source
operand. Therefore, following a load, the contents of the status register are
identical to the contents of the source operand. This allows the status register
to be easily saved and restored. See Table 3-2 for a list and definitions of the
status register bits.

The CPU/OMA Interrupt enable register (IE) is a 32-bit register. The CPU
interrupt enable bits are in locations 10-0. The DMA interrupt enable bits are
in locations 26-16. A 1 in a CPU/DMA interrupt enable register bit enables the
corresponding interrupt. A 0 disables the corresponding interrupt. Refer to
subsection 3.1 .8 for bit definitions.

The CPU Interrupt flag register (IF) is also a 32-bit register (see subsection
3.1.9). A 1 in a CPU interrupt flag register bit indicates that the corresponding
interrupt is set. A 0 indicates that the corresponding interrupt is not set.

The I/O flags register (IOF) controls the function of the dedicated external
pins, XFO and XF1. These pins may be configured for input or output and may
also be read from and written to. See subsection 3.1.10 for detailed informa­
tion.

TMS320C3x Architecture 2·9

Central Processing Unit (CPU)

2-10

The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performing a block repeat. When
the processor is operating in the repeat mode, the 32-bit repeat start addr.ss
register (RS) contains the starting address of the block of program memory
to be repeated, and the 32-bit repeat end address register (RE) contains the
ending address of the block to be repeated.

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. Although the PC is not part of the CPU register
file, it is a register that can be modified by instructions that modify the program
flow.

Memory Organization

2.3 Memory Organization

The total memory space of the TMS320C3x is 16M (million) 32-bit words. Pro­
gram, data, and I/O space are contained within this 16M-word address space,
thus allowing tables, coefficients, program code, or data to be stored in either
RAM or ROM. In this way, memory usage is maximized and memory space
allocated as desired.

2.3.1 RAM, ROM, and Cache

Figure 2-3 shows how the memory is organized on the TMS320C3x. RAM
blocks 0 and 1 are each 1 K x 32 bits. The ROM block, available only on the
TMS320C30, is 4K x 32 bits. Each RAM and ROM block is capable of support­
ing two CPU accesses in a single cycle. The separate program buses, data
buses, and DMA buses allow for parallel program fetches, data reads and
writes, and DMA operations. For example: the CPU can access two data val­
ues in one RAM block and perform an external program fetch in parallel with
the DMA loading another RAM block, all within a single cycle.

TMS320C3x Architecture 2-11

Memory Organization

Figure 2-3. Memory Organization

Cache
(64 x 32)

Program Counter/
Instruction Register

DMA
Controller

f?///d Available on TMS320C30

2-12

A 64 X 32-bit instruction cache is provided to store often-repeated sections of
code, thus greatly reducing the number of off-chip accesses necessary. This
allows for code to be stored off-chip in slower,lower-cost memories. The exter­
nal buses are also freed for use by the DMA, external memory fetches, or other
devices in the system.

Refer to Chapter 3 for detailed information about the memory and instruction
cache.

Memory Organization

2.3.2 Memory Maps

The memory map depends on whether the processor is running in micropro­
cessor mode (MC/MP or MCBLJMP = 0) or microcomputer mode (MC/MP or
MCBLJMP = 1). The memory maps for these modes are similar (see
Figure 2-4 and Figure 2-5). Locations 800000h-801 FFFh are mapped to the
expansion bus. When this region, available only on the TMS32OC30, is ac­
cessed, MSTRB is active. Locations 802000h-803FFFh are reserved. Loca­
tions 804000h-805FFFh are mapped to the expansion bus. When this region,
available only on the TMS320C30, is accessed, IOSTRB is active. Locations
806000h-807FFFh are reserved. All of the memory-mapped peripheral bus
registers are in locations 808OO0h-8097FFh. In both modes, RAM block 0 is
located at addresses 809800h-809BFFh, and RAM block 1 is located at ad­
dresses 809C00h-809FFFh. Locations 80AOOOtHlFFFFFFh are accessed
over the external memory port (STRB active).

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is not mapped into the TMS320C3x memory map. Locations
OtHlBFh consist of interrupt vector, trap vector, and reserved locations, all of
which are accessed over the external memory port (STRB active). Locations
OCOh--7FFFFFh are also accessed over the external memory port.

In microcomputer mode, the 4K on-Chip ROM (TMS320C30) or boot loader
(TMS320C31) is mapped into locations OtHlFFFh. There are 192 locations
(OtHlBFh) within this block for interrupt vectors, trap vectors, and a reserved
space (TMS320C30). Locations 1000h--7FFFFFh are accessed over the ex­
ternal memory port (STRB active).

Section 3.2 on page 3-13 describes the memory maps in greater detail and
provides the peripheral bus map and vector locations for reset, interrupts, and
traps.

TMS320C3x Architecture 2-13

Memory Organization

Figure 2-4. TMS320C30 Memory Maps

2-14

Oh

03Fh
040h

7FFFFFh
SOOOOOh

S01FFFh
802000h

S03FFFh
S04000h

S05FFFh
S06000h

807FFFh
8OS000h

S097FFh
809800h

S09BFFh
809COOh

S09FFFh
SOAOOOh

OFFFFFFh

Reset, Interrupt, Trap Vectors,
and Reserved Locations (192)

(External STRB Active)

External
STRBActive

Expansion Bus
MSTRB Active

(SKWords)

Reserved
(SKWords)

Expansion Bus
IOSTRB Active

(SKWords)

Reserved
(SKWords)

Peripheral Bus
Memory-Mapped

Registers
(SK Words Internal)

RAM Block 0
(1 K Word Internal)

RAM Block 1
(1 K Word Internal)

External
STRBActive

(a) Microprocessor Mode

Oh

OBFh
OCOh

OFFFh
1000h

7FFFFFh
aooooOh

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

807FFFh
SOSOOOh

S097FFh
809S00h

S09BFFh
S09COOh

S09FFFh
SOAOOOh

OFFFFFFh

Reset, Interrupt, Trap Vectors,
and Reserved Locations (192)

ROM

(Internal)

External
STRB Active

Expansion Bus
MSTRB Active

(SKWords)

Reserved
(SKWords)

Expansion Bus
IOSTRB Active

(SKWords)

Reserved
(SKWords)

Peripheral Bus
Memory-Mapped

Registers
(Internal)

(SK Words Internal)

RAM Block 0
(1 K Word Internal)

RAM Block 1
(1 K Word Internal)

External
STRBActive

(b) Microcomputer Mode

Figure 2-5. TMS320C31 Memory Maps

Oh

03Fh
040h

7FFFFFh
800000h

807FFFh
SOSOOOh

8097FFh
S09800h

809BFFh
809COOh

S09FFFh
SOAOOOh

FFFFFFh

Reset, Interrupt, Trap Vectors,
and Reserved Locations (192)

(External STRB Active)

External
STRBActlve

Reserved
(32KWords)

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

RAM Block 0
(1 K Word Internal)

RAM Block 1
(1 K Word Internal)

External
STRBActive

(a) Microprocessor Mode

Memory Organization

(b) Microcomputer/Boot Loader Mode

TMS320C3x Architecture 2-15

Memory Organization .
2.3.3 Memory Addressing Modes

2-16

The TMS320C3x supports a base set of general-purpose instructions as well
as arithmetic-intensive instructions that are particularly suited for digital signal
processing and other numeric-intensive applications. Refer to Chapter 5 for
detailed information on addressing.

Five groups of addressing modes are provided on the TMS320C3x. Six types
of addressing can be used within the groups, as shown in the following list:

a General addressing modes:

• Register. The operand is a CPU register.
• Short immediate. The operand is a 16-bit immediate value.
• Direct. The operand is the contents of a 24-bit address.
• Indirect. An auxiliary register indicates the address of the operand.

a Three-operand addressing modes:

• Register. Same as for general addressing mode.
• Indirect. Same as for general addressing mode.

a Parallel addressing modes:

• Register. The operand is an extended-precision register.
• Indirect. Same as for general addressing mode.

a Long-immediate addressing mode.

The Long-immediate operand is a 24-bit immediate value.

a Conditional branch addressing modes:

• Register. Same as for general addressing mode.
• PC-relative. A signed 16-bit displacement is added to the PC.

Instruction Set Summary

2.4 Instruction Set Summary

Table 2-2 lists the TMS320C3x instruction set in alphabetical order. Each
table entry shows the instruction mnemonic, description, and operation. Refer
to Chapter 10 for a functional listing of the instructions and individual instruc­
tion descriptions.

Table 2-2. Instruction Set Summary

Mnemonic

ABSF

ABSI

ADDC

ADDC3

ADDF

ADDF3

ADDI

ADDI3

AND

AND3

ANDN

ANDN3

ASH

ASH3

Bcond

BcondD

BA

BAD

CALL

Legend: C
cond
Dreg
An
src1

Description

Absolute value of a floating-point number

Absolute value of an integer

Add integers with carry

Add integers with carry (3 operand)

Add floating-point values

Add floating-point values (3 operand)

Add integers

Add integers (3 operand)

Bitwise logical AND

Bitwise logical AND (3 operand)

Bitwise logical AND with complement

Bitwise logical ANDN (3 operand)

Arithmetic shift

Arithmetic shift (3 operand)

Branch conditionally (standard)

Branch conditionally (delayed)

Branch unconditionally (standard)

Branch unconditionally (delayed)

Call subroutine

carry bit
condition code
register address (any register)
register address (A7-AO)
three-operand addressing modes

Operation

Isrcj- An

Isrcj- Dreg

src + Dreg + C - Dreg

src1 + src2 + C - Dreg

src+ An - An
src1 + src2 - An

src + Dreg - Dreg

src1 + src2 + - Dreg

Dreg AND src - Dreg

src1 AND src2 - Dreg

Dreg AND SrC - Dreg

src1 AND src2 - Dreg

If count II: 0:
(Shifted Dreg left by count) - Dreg

Else:
(Shifted Dreg right by Icountl) - Dreg

If count II: 0:
(Shifted src left by count) - Dreg

Else:
(Shifted src right by Icount!) - Dreg

If cond = true:
If Csrc is a register, Csrc - PC
If Csrc is a value, Csrc + PC - PC

Else, PC + 1 - PC
If cond = true:

If Csrc is a register, Csrc - PC
If Csrc is a value, Csrc + PC + 3 - PC

Else, PC + 1 - PC

Value- PC

Value- PC

PC+ 1 -TOS
Value-PC

Csrc conditional-branch addressing modes
count shift value (general addressing modes)
PC program counter
src general addressing modes
src2 three-operand addressing modes

TMS320C3x Architecture 2-17

Instruction Set Summary

Table 2-2. Instruction Set Summary (Continued)

Mnemonic

CALLcond

CMPF

CMPF3

CMPI

CMPI3

DBcond

DBcondD

FIX

FLOAT

lACK

IDLE

LDE

LDF

LDFcond

LDFI

LDI

LDlcond

Legend:

2-18

ARn
Csrc
cond
Dreg
PC

Description

Call subroutine conditionally

Compare floating-point values

Compare floating-point values
(3 operand)

Compare integers

Compare integers (3 operand)

Decrement and branch conditionally
(standard)

Decrement and branch conditionally
(delayed)

Convert floating-point value to integer

Convert integer to floating-point value

Interrupt acknowledge

Idle until interrupt

Load floating-point exponent

Load floating-point value

Load floating-point value conditionally

Load floating-point value, interlocked

Load integer

Load integer conditionally

auxiliary register n (AR7-ARO
conditional-branch addressing modes
condition code
register address (any register)
program counter

Operation

If cond = true:
PC+ 1 -TOS
If Csrc is a register, Csrc - PC
If Csrc is a value, Csrc + PC - PC

Else, PC + 1 - PC

Set flags on Rn - src

Set flags on src1 - src2

Set flags on Dreg - src

Set flags on src1 - src2

ARn-1-ARn
If cond = true and ARn :it 0:

If Csrc is a register, Csrc - PC
If Csrc is a value, Csrc + PC + 1 - PC

Else, PC + 1 - PC

ARn-1-ARn
If cond = true and ARn :it 0:

If Csrc is a register, Csrc - PC
If Csrc is a value, Csrc + PC + 3 - PC

Else, PC + 1 - PC

Fix (src) - Dreg

Float(src) - Rn

Dummy read of src
lACK toggled low, then high

PC+ 1- PC
Idle until next interrupt

src(exponent) - Rn(exponent)

src- Rn

If cond = true, src - Rn
Else, Rn is not changed

Signal interlocked operation src - Rn

src- Dreg

If cond = true, src - Dreg
Else, Dreg is not changed

Rn
sra
src1
sr~

TOS

register address (R7 - RO)
general addressing modes
three-operand addressing modes
three-operand addressing modes
top of stack

Table 2-2. Instruction Set Summary (Continued)

Mnemonic

LDII

LDM

LSH

LSH3

MPYF

MPYF3

MPYI

MPYI3

NEGB

NEGF

NEGI

NOP

NORM

NOT

OR

OR3

POP

POPF

PUSH

PUSHF

Legend: AAn
C
Dreg
PC
An

Description

Load integer, interlocked

Load floating-point mantissa

Logical shift

Logical shift (3-operand)

Multiply floating-point values

Multiply floating-point value (3 operand)

Multiply integers

Multiply integers (3 operand)

Negate integer with borrow

Negate floating-point value

Negate integer

No operation

Normalize floating-point value

Bitwise logical complement

Bitwise logical OR

Bitwise logical OR (3 operand)

Pop integer from stack

Pop floating-point value from stack

Push integer on stack

Push floating-point value on stack

auxiliary register n (AA7-AAO)
carry bit
register address (any register)
program counter
register address (A7-AO)

Instruction Set Summary

Operation

Signal interlocked operation src - Dreg

src (mantissa) - Rn (mantissa)

If count Ot: 0:
(Dreg left-shifted by count) - Dreg

Else:
(Dreg right-shifted by Icount!) - Dreg

If count Ot: 0:
(src left-shifted by count) - Dreg

Else:
(src right-shifted by Icount!) - Dreg

src)(Rn - Rn

src1)(src2 - Rn

src)(Dreg - Dreg

src1)(src2 - Dreg

0- src- C - Dreg

O-src- Rn

O-src- Dreg

Modify ARn if specified

Normalize (src) - Rn

src- Dreg

Dreg OR src - Dreg

src1 OR src2 - Dreg

*SP-- Dreg

*SP-- Rn

Sreg *++ SP

Rn - *++ SP
SP
Sreg
src
src1
src2

stack pOinter
register address (any register)
general addressing modes
3-operand addressing modes
3-operand addressing modes

TMS320C3x Architecture 2-19

Instruction Set Summary

Table 2-2. Instruction Set Summary (Continued)

Mnemonic

RETlcond

RETScond

RND

ROL

ROLC

ROR

RORC

RPTS

RPTS

SIGI

STF

STFI

STI

STII

suss
Legend:

2-20

C
cond
Daddr
Dreg
GIE
PC
RC
RE

Description

Return from interrupt conditionally

Return from subroutine conditionally

Round floating-point value

Rotate left

Rotate left through carry

Rotate right

Rotate right through carry

Repeat block of instructions

Repeat single instruction

Signal, interlocked

Store floating-point value

Store floating-point value, interlocked

Store integer

Store integer, interlocked

Subtract integers with borrow

carry bit
condition code
destination memory address
register address (any register)
global interrupt enable register
program counter
repeat counter register
repeat interrupt register

Operation

If cond = true or missing:
*SP---PC
1 - ST (GIE)

Else, continue

If cond = true or missing:
*SP--- PC

Else, continue

Round (src) - Rn

Dreg rotated left 1 bit - Dreg

Dreg rotated left 1 bit through carry - Dreg

Dreg rotated right 1 bit - Dreg

Dreg rotated right 1 bit through carry - Dreg

src- RE
1 - ST(RM)
Next PC - RS

src-RC
1 - ST (RM)
Next PC- RS
Next PC - RE

Signal interlocked operation
Wait for interlock acknowledge
Clear interlock

Rn - Daddr

Rn- Daddr
Signal end of interlocked operation

Sreg - Daddr

Sreg - Daddr
Signal end of interlocked operation

Dreg - src - C - Dreg
RM repeat mode bit
RS repeat start register
Rn register address (R7-RO)
SP stack pointer
ST status register
Sreg register address (any register)
src general addressing modes

Table 2-2. Instruction Set Summary (Concluded)

Mnemonic Description

SUBB3 Subtract integers with borrow (3 operand)

SUBC Subtract integers conditionally

SUBF Subtract floating-point values

SUBF3 Subtract floating-point values (3 operand)

SUBI Subtract integers

SUBI3 Subtract integers (3 operand)

SUBRB Subtract reverse integer with borrow

SUBRF Subtract reverse floating-point value

SUBRI Subtract reverse integer

SWI Software interrupt

TRAPcond Trap conditionally

TSTB Test bit fields

TSTB3 Test bit fields (3 operand)

XOR Bitwise exclusive OR

XOR3 Bitwise exclusive OR (3 operand)

Legend: C
cond
Dreg
GIE
N
PC

carry bit
condition code
register address (any register)
global interrupt enable register
any trap vector 0-27
program counter

Instruction Set Summary

Operation

src1 - srd1. - C - Dreg

If Dreg - src ~ 0:
[(Dreg - src) « 1] OR 1 - Dreg
Else, Dreg« 1 - Dreg

Rn-src- Rn

src1 - srd1. - Rn

Dreg - src - Dreg

src1 - srd1. - Dreg

src - Dreg - C - Dreg

src-Rn - Rn

src - Dreg - Dreg

Perform emulator interrupt sequence

If cond = true or missing:
Next PC - * ++ SP
Trap vector N - PC
0- ST (GIE)

Else, continue

Dreg AND src

src1 AND srd1.

Dreg XOR src - Dreg

src1 XOR srd1. - Dreg

Rn
SP
src
src1
src2
ST

register address (R7-RO)
stack pointer
general addressing modes
3-operand addressing modes
3-operand addressing modes
status register

TMS320C3x Architecture 2-21

Internal Bus Operation

2.5 Internal Bus Operation

2-22

Much of the TMS320C3x's high performance is due to internal busing and par­
allelism. The separate program buses (PADDR and PDATA), data buses
(DADDR1, DADDR2, and DDATA), and DMA buses (DMAADDR and
DMADATA) allow for parallel program fetches, data accesses, and DMA ac­
cesses. These buses connect all of the physical spaces (on-chip memory,
off-chip memory, and on-chip peripherals) supported by the TMS32OC30.
Figure 2-3 shows these internal buses and their connection to on-chip and off­
chip memory blocks.

The PC is connected to the 24-bit program address bus (PADDR). The instruc­
tion register (IR) is connected to the 32-bit program data bus (PDATA). These
buses can fetch a single instruction word every machine cycle.

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data
data bus (DDATA) support two data memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The
CPU 1 and CPU2 buses can carry two data memory operands to the multiplier,
ALU, and register file every machine cycle. Also internal to the CPU are regis­
ter buses REG 1 and REG2, which can carry two data values from the register
file to the multiplier and ALU every machine cycle. Figure 2-2 shows the buses
internal to the CPU section of the processor.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a 32-bit data bus (DMADATA). These buses allow the DMA to perform memory
accesses in parallel with the memory accesses occurring from the data and
program buses.

Parallel Instruction Set Summary

2.6 Parallel Instruction Set Summary

Table 2-3 lists the 'C3x instruction set in alphabetical order. Each table entry
shows the instruction mnemonic, description, and operation. Refer to Section
10.3 on page 10-14 for a functional listing of the instructions and individual
instruction descriptions.

TMS320C3x Architecture 2-23

Parallel Instruction Set Summary

Table 2-3. Parallel Instruction Set Summary

Mnemonic Description Operation

Parallel Arithmetic With Store Instructions

ABSF
IISTF

ABSI
IISTI

ADDF3
IISTF

ADDI3
IISTI

AND3
II STI

ASH3
IISTI

FIX
II STI

FLOAT
IISTF

LDF
II STF

LDI
II STI

LSH3
IISTI

MPYF3
IISTF

MPYI3
IISTI

Legend:

2-24

count
dstt
dst2.

Absolute value of a floating point

Absolute value of an integer

Add floating point

Add integer

Bitwise logical AND

Arithmetic shift

Convert floating point to integer

Convert integer to floating point

Load floating point

Load integer

Logical shift

Multiply floating point

Multiply integer

register addr (R7-RO)
register addr (R7-RO)
indirect addr (disp = 0, 1, IRO, IRi)

Isrc2l- dsM
II src3 - dst2.

Isrc2l - dsM
I src3 - dst2.

src1 + src2 - dsM
II src3 - dst2.

src1 + src2 - dsM
II src3 - dst2.

src1 AND src2 - dsM
II src3 - dst2.

If count ~ 0:
src2 « count - dsM
II src3 - dst2.
Else:
src2 » Icountl - dsM
II src3 - dst2.

Fix(src2) - dsM
II src3 - dst2.

Float(src2) - dsM
II src3 - dst2.

src2 - dsM
II src3 - dst2.

src2 - dsM
II src3 - dst2.

If count ~ 0:
src2 « count - dsM
II src3 - dst2.
Else:
src2 » Icountl - dsM
II src3 - dst2.

src1 x src2 - dsM
II src3 - dst2.

src1 x src2 - dsM
II src3 - dst2.

sre1
src!J.
src3

register addr (R7-RO)
indirect addr (disp = 0, 1, IRO, IR1)
register addr (R7-RO)

Parallel Instruction Set Summary

Table 2-3. Parallel Instruction Set Summary (Continued)

Mnemonic Description Operation

NEGF
/I STF

NEGI
/lSTI

NOT
IISTI

OR3
/I STI

STF
/I STF

STI
/lSTI

SUBF3
/I STF

SUBI3
/lSTI

XOR3
/lSTI

LDF
/I LDF

LDI
II LDI

MPYF3
/I ADDF3

MPYF3
/I SUBF3

MPYI3
/lADDI3

MPYI3
/I SUBI3

Parallel Arithmetic With Store Instructions (Concluded)

Negate floating point

Negate integer

Complement

Bitwise logical OR

Store floating point

Store integer

Subtract floating point

Subtract integer

Bitwise exclusive OR

0- src2 - dst1
/I src3 - dst2.

0- src2 - dst1
/I src3 - dst2.

src1 - dst1
/I src3 - dst2.

src1 OR src2 - dst1
/I src3 - dst2.

src1 - dst1
/I src3 - dst2.

src1 - dst1
/I src3 - dst2.

src1 - src2 - dst1
/I src3 - dst2.

src1 - src2 - dst1
/I src3 - dst2.

src1 XOR src2 - dst1
/I src3 - dst2.

Parallel Load Instructions

Load floating point src2 - dst1
/I src4 - dst2.

Load integer src2 - dst1
/I src4 - dst2.

Parallel Multiply And Add/Subtract Instructions

Multiply and add floating point op1 x op2 - op3
/I op4 + op5 - op6

Multiply and subtract floating point op1 x op2 - op3
/I op4 - op5 - op6

Multiply and add integer op1 x op2 - op3
/I op4 + op5 - op6

Multiply and subtract integer op1 x op2 - op3
1/ op4-op5 - op6

Legend: dst1 register addr (R7-RO) op3
op6
src1
src2
src3

register addr (RO or R1)
register addr (R2 or R3)
register addr (R7-RO)

dst2. indirect addr (disp = 0, 1, IRO, IR1)
op1, op2, op4, and op5 Any two of these

operands must be specified using
register addr; the remaining two
must be specified using indirect.

indirect addr (disp = 0, 1, IRO, IR1)
register addr (R7-RO)

TMS320C3x Architecture 2-25

External Bus Operation

2.7 External Bus Operation

The TMS320C30 provides two external interfaces: the primary bus and the ex­
pansion bus. The TMS320C31 provides one external interface: the primary
bus. Both primary and expansion buses consist of a 32-bit data bus and a set
of control signals. The primary bus has a 24-bit address bus, whereas the ex­
pansion bus has a 13-bit address bus. Both buses can be used to address ex­
ternal program/data memory or I/O space. The buses also have an external
ROY Signal for wait-state generation. You can insert additional wait states un­
der software control. Refer to Chapter 7 for detailed information on external
bus operation.

2.7.1 Externallnterrupts

The TMS320C3x supports four external interrupts (i'Nf3-INTO), a number of
internal interrupts, and a nonmaskable external RESET signal. These can be
used to interrupt either the DMA or the CPU. When the CPU responds to the
interrupt, the lACK pin can be used to signal an external interrupt acknowl­
edge. Section 6.5 (beginning on page 6-18) covers RESET and interrupt pro­
cessing.

2.7.2 Interlocked-Instruction Signaling

2-26

Two external I/O flags, XFO and XF1 , can be configured as input or output pins
under software control. These pins are also used by the interlocked operations
of the TMS320C3x. The interlocked-operations instruction group supports
multiprocessor communication (see Section 6.4 on page 6-12 for examples of
the use of interlocked instructions).

2.8 Peripherals

Peripherals

All TMS320C3x peripherals are controlled through memory-mapped registers
on a dedicated peripheral bus. This peripheral bus is composed of a 32-bit data
bus and a 24-bit address bus. This peripheral bus permits straightforward
communication to the peripherals. The TMS320C3x peripherals include two
timers and two serial ports (only one serial port is available on the
TMS320C31). Figure 2-6 shows the peripherals with associated buses and
signals. Refer to Chapter 8 for detailed information on the peripherals.

Figure 2-6. Peripheral Modules

M S
E P
M A
o C
R E
Y

..... -...-FSXO

1---------- - DXO
R/X Timer Register - CLKXO

~---------
Data Transmit Register - FSRO

~-------__i - ORO

~:;:;D:;ata::;R;e:;ce:;iv;::e;:R;e:;gi::;st;::er;;~+-~ CLKRO

}L,<t:..A,hI:'+-:.4-~'+-:.;£,.€.7;£,.;,(k-....,~ FSX1

J....oIII,.......- DX1
~~~~~~~~~ 

J-4 ...... -CLKX1 

Ir;Hti£AHH~4fi'H-+- FSR1 

................... - DR1 
~~~~~~~t:..A~ 

rA-+_~ CLKR1

Timer Period Register
..... -...-TCLKO

Timer Counter Register

Global Control Register
~---------1 -+- TCLK1

Timer Period Register

Timer Counter Register

w ~ Available on TMS320C30

TMS320C3x Architecture 2-27

Peripherals

2.8.1 Timers

2.8.2 Serial Ports

2-28

The two timer modules are general-purpose 32-bit timer/event counters with
two signaling modes and internal or external clocking. Each timer has an I/O
pin that can be used as an input clock to the timer or as an output signal driven
by the timer. The pin can also be configured as a general-purpose I/O pin.

The two bidirectional serial ports are totally independent. They are identical to
a complementary set of control registers that control each port. Each serial
port can be configured to transfer 8. 16. 24. or 32 bits of data per word. The
clock for each serial port can originate either internally or externally. An inter­
nally generated divide-down clock is provided. The serial port pins are confi­
gurable as general-purpose I/O pins. The serial ports can also be configured
as timers. A special handshake mode allows TMS320C3xs to communicate
over their serial ports with guaranteed synchronization.

Direct Memory Access (DMA)

2.9 Direct Memory Access (DMA)

The on-chip DMA controller can read from or write to any location in the
memory map without interfering with the operation of the CPU. Therefore, the
TMS320C3x can interface to slow external memories and peripherals without
reducing throughput to the CPU. The DMA controller contains its own address
generators, source and destination registers, and transfer counter. Dedicated
DMA address and data buses minimize conflicts between the CPU and the
DMA controller. A DMA operation consists of a block or single-word transfer
to or from memory. Refer to Section 8.3 on page 8-43 for detailed information
on the DMA controller. Figure 2-7 shows the DMA controller with associated
buses.

Figure 2-7. DMA Controller

DMA Controller

Global Control Register

Source Address Register

Destination Address Register

Transfer Counter Register

TMS320C3x Architecture 2-29

TMS320C30 and TMS320C31 Differences

2.10 TMS320C30 and TMS320C31 Differences

This section addresses the major memory access differences between the
TMS320C31 and the TMS320C30 devices. Observance of these consider­
ations is critical for achieving design goal success.

Table 2-4 shows these differences, which are detailed in the following subsec­
tions.

Table 2-4. Feature Set Comparison

Feature

Data/program bus

Serial I/O ports

User program/data ROM

Program boot loader

TMS320C31

Primary bus: one bus composed of
a 32-bit data and a 24-bit address
bus

1 serial port (SPa)

Not available

User selectable

TMS320C30

Two buses:
• Primary bus: a 32-bit data and a

24-bit address
• Expansion bus: a 32-bit data and

a 13-bit address

2 serial ports (SPa, SP1)

4K words/16K bytes

Not available

2.10.1 Data/Program Bus Differences

The TMS320C31 uses only the primary bus and reserves the memory space
that was previously used for expansion bus operations.

2.10.2 Serial-Port Differences

Serial port 1 references in Section 8.2 are not applicable to the TMS320C31.
The memory locations identified for the associated control registers and buff­
ers are reserved.

2.10.3 Reserved Memory Locations

2-30

Table 2-5 identifies TMS320C31 reserved memory locations in addition to
those shown in Figure 3-8 on page 3-16.

TMS320C30 and TMS32OC31 Differences

Table 2-5. TMS320C31 Reserved Memory Locations

Feature TMS32OC31 TMS32OC30

OxOOOOOO-OxOOOFFF Reservedt Microcomputer program/data ROM modet

Ox800000-0x801FFF Reserved Expansion bus MSTRB space

Ox804000-0x805FFF Reserved Expansion bus IOSTRB space

Ox808050 Reserved SP1 global-control register

Ox808052-Qx808056 Reserved SP1 local-control registers

Ox808058 Reserved SP1 data-transmit buffer

Ox80805C Reserved SP1 receive-transmit buffer

Ox808060 Reserved Expansion bus control register

f Applies to the MCBL and MC modes only.

2.10.4 Effects on the IF and IE Interrupt Registers

The bits associated with serial port 1 in the IE (interrupt enable) register and
the IF (interrupt flag) register for the TMS320C30 are not applicable to the
TMS320C31. Write only logic 0 data to IE register bits 6, 7, 22, and 23 and to
IF register bits 6 and 7. Writing logic 1s to these bits produces unpredictable
results.

2.10.5 User Program/Data ROM

The user program/data ROM that is available for the TMS320C30 device does
not exist for the TMS320C31. Rather, the memory locations that were allo­
cated to support user program/data ROM operations have been reserved on
the TMS320C31 to support microcomputer/boot loader accessing. See
Chapter 3 for more information on using the microcomputer/boot loader func­
tion.

2.10.6 Development Considerations

If you are developing application code using a TMS320C3x simulator, XDS,
or ASM/LNK, TI recommends that you modify the .cfm and .cmd files by re­
moving these memory spaces from the tool's configured memory. This
ensures that your developed application performs as expected when the
TMS320C31 device is used.

TMS32OC3x Architecture 2-31

System Integration

2.11 System Integration

2-32

In summary, the TMS320C3x is a powerful DSP system that integrates an in­
novative, high-performance CPU, two external interface ports, large memo­
ries, and efficient buses to support its speed. A single chip contains this sys­
tem, along with peripherals such as a DMA controller, two serial ports, and two
timers. The TMS320C3x system is truly an affordable single-chip solution.

II!!!! III

Chapter 3

CPU Registers, Memory, and Cache

The central processing unit (CPU) register file contains 28 registers that can
be operated on by the multiplier and arithmetic logic unit (ALU).lncluded in the
register file are the auxiliary registers, extended-precision registers, and index
registers. The registers in the CPU register file support addressing, float­
ing-poinVinteger operations, stack management, processor status, block re­
peats, and interrupts.

The TMS320C3x provides a total memory space of 16M (million) 32-bit words
containing program, data, and I/O space. Two RAM blocks of 1 Kx 32 bits each
and a ROM block of 4K x 32 bits (available only on the TMS320C30) permit
two CPU accesses in a single cycle. The memory maps for the microcomputer
and microprocessor modes are similar, except that the on-chip ROM is not
used in the microprocessor mode.

A 64- x 32-bit instruction cache stores often-repeated sections of code. This
greatly reduces the number of off-chip accesses and allows code to be stored
off-chip in slower, lower-cost memories. Three bits in the CPU status register
control the clear, enable, or freeze of the cache.

This chapter describes in detail each of the CPU registers, the memory maps,
and the instruction cache. Major topics are as follows:

Topic Page

3-1

CPU Register File

3.1 CPU Register File

The TMS320C3x provides 28 registers in a multiport register file that is tightly
coupled to the CPU. The program counter (PC) is not included in the 28 regis­
ters. All of these registers can be operated on by the multiplier and the ALU
and can be used as general-purpose 32-bit registers. However, the registers
also have some special functions for which they are particularly appropriate.
For example, the eight extended-precision registers are especially suited for
maintaining extended-precision floating-point results. The eight auxiliary reg­
isters support a variety of indirect addressing modes and can be used as gen­
eral-purpose 32-bit integer and logical registers. The remaining registers pro­
vide system functions, such as addressing, stack management, processor
status, interrupts, and block repeat. Refer to Chapter 5 for detailed information
and examples of the use of CPU registers in addressing.

Table 3-1 lists the registers names and assigned functions.

Table 3-1. CPU Registers

3-2

Register

RO
R1
R2
R3
R4
R5
R6
R7

ARO
AR1
AR2
AR3
AR4
AR5
AR6
AR7

DP
IRO
IR1
BK
SP

ST
IE
IF

10F

RS
RE
RC

Assigned Function Name

Extended-precision register 0
Extended-precision register 1
Extended-precision register 2
Extended-precision register 3
Extended-precision register 4
Extended-precision register 5
Extended-precision register 6
Extended-precision register 7

Auxiliary register 0
Auxiliary register 1
Auxiliary register 2
Auxiliary register 3
Auxiliary register 4
Auxiliary register 5
Auxiliary register 6
Auxiliary register 7

Data-page pointer
Index register 0
Index register 1
Block-size register
System stack pointer

Status register
CPUlDMA interrupt enable
CPU interrupt flags
I/O flags

Repeat start address
Repeat end address
Repeat counter

CPU Register File

3.1.1 Extended-Precision Registers (R7-RO)

The eight extended-precision registers (R7-RO) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
These registers consist of two separate and distinct regions:

Obits 39-32: dedicated to storage of the exponent (e) of the floating-point
number.

Obits 31--0: store the mantissa of the floating-point number:

• bit 31 : sign bit (s)
• bits 30--0: the fraction (1)

Any instruction that assumes the operands are floating-point numbers uses
bits 39-0. Figure 3-1 illustrates the storage of 40-bit floating-point numbers
in the extended-precision registers.

Figure 3-1. Extended-Precision Register Floating-Point Format

39 32 31 30 0

I e I s I fraction (t) I
~ mantissa .1

For integer operations, bits 31--0 of the extended-precision registers contain
the integer (signed or unsigned). Any instruction that assumes the operands
are either signed or unsigned integers uses only bits 31--0. Bits 39-32 remain
unchanged. This is true for all shift operations. The storage of 32-bit integers
in the extended-precision registers is shown in Figure 3-2.

Figure 3-2. Extended-Precision Register Integer Format

39 32 31 o

I unchanged I signed or unsigned integer

3.1.2 Auxiliary Registers (AR7-ARO)

The eight 32-bit auxiliary registers (AR7-ARO) can be accessed by the CPU
and modified by the two Auxiliary Register Arithmetic Units (ARAUs). The pri­
mary function of the auxiliary registers is the generation of 24-bit addresses.
However, they can also be used as loop counters in indirect addressing or as
32-bit general-purpose registers that can be modified by the multiplier and
ALU. Refer to Chapter 5 for detailed information and examples of the use of
auxiliary registers in addressing.

CPU Registers, Memory, and Cache 3-3

CPU Register File

3.1.3 Data-Page Pointer (DP)

The data-page pointer (DP) is a 32-bit register that is loaded using the LOP
instruction. The eight LSBs of the data-page pointer are used by the direct ad­
dressing mode as a pointer to the page of data being addressed. Data pages
are 64K words long, with a total of 256 pages. Bits 31-8 are reserved; you
should always keep these set to 0 (cleared).

3.1.4 Index Registers (IRO, IR1)

The 32-bit index registers (IRO and IR1) are used by the ARAU for indexing
the address. Refer to Chapter 5 for detailed information and examples of the
use of index registers in addressing.

3.1.5 Block Size Register (BK)

The 32-bit block size register (BK) is used by the ARAU in circular addressing
to specify the data block size (see Section 5.3 on page 5-24).

3.1.6 System Stack Pointer (SP)

The system stack pOinter (SP) is a 32-bit register that contains the address of
the top of the system stack. The SP always points to the last element pushed
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the
stack perform preincrement and postdecrement, respectively, on all 32 bits of
the stack pointer. However, only the 24 LSBs are used as an address. Refer
to Section 5.5 on page 5-31 for information about system stack management.

3.1.7 Status Register (ST)

3-4

The status register (ST) contains global information relating to the state of the
CPU. Operations usually set the condition flags of the status register accord­
ing to whether the result is 0, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
register is loaded, however, the contents of the source operand replace the
current contents bit-for-bit, regardless of the state of any bits in the source op­
erand. Therefore, following a load, the contents of the status register are iden­
tically equal to the contents of the source operand. This allows the status regis­
ter to be saved easily and restored. At system reset, 0 is written to this register.

CPU Register File

Figure 3-3 shows the format of the status register. Table 3-2 defines the sta­
tus register bits, their names, and their functions.

Figure 3-3. Status Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I ~ I ~ I GIEI cc I CE I CF I ~ I RM IOVMI LUFI LV I UF I N I z I V I C I
RIWRIWRIWRIW RIWRIWRIWRIWRIWRIWRIWRIWRIW

Notu: 1) ~ = reserved bit, read as 0

2) R = read, W = write

CPU Registers, Memory, and cache 3-5

CPU Register File

Table 3-2. Status Register Bits Summary

Bit Name Reset Value Function

ot C 0 CarryfJag

1t V 0 Overflow flag

2t Z 0 Zero flag

3t N 0 Negative flag

4t UF 0 Floating-point underflow flag

5t LV 0 Latched overflow flag

6t LUF 0 Latched floating-point underflow flag

7 OVM 0 Overflow mode flag. This flag affects only the integer operations. If OVM
= 0, the overflow mode is turned off; integer results that overflow are
treated in no special way. If OVM = 1,

a) integer results overflowing in the positive direction are set to the
most positive 32-bit twos-complement number (7FFFFFFFh), and

b) integer results overflowing in the negative direction are set to the
most negative 32-bit twos-complement number (80000000h).

Note that the function of V and LV is independent of the setting of OVM.

8 RM 0 Repeat mode flag. If RM = 1, the PC is being modified in either the
repeat-block or repeat-single mode.

9 Reserved 0 Read asO

10 CF 0 Cache freeze. When CF = 1, the cache is frozen. If the cache is enabled
(CE = 1), fetches from the cache are allowed, but no modification ofthe
state of the cache is performed. This function can be used to save fre-
quently used code resident in the cache. At reset, 0 is written to this bit.
Cache clearing (CC = 1) is allowed when CF = O.

11 CE 0 Cache enable. CE = 1 enables the cache, allowing the cache to be used
according to the least recently used (LRU) cache algorithm. CE = 0 dis-
ables the cache; no update or modification of the cache can be per-
formed. No fetches are made from the cache. This function is useful for
system debugging. At system reset, 0 is written to this bit. Cache clear-
ing (CC = 1) is allowed when CE = O.

12 CC 0 Cache clear. CC = 1 invalidates all entries in the cache. This bit is always
cleared after it is written to and thus always read as O. At reset, 0 is writ-
ten to this bit.

13 GIE 0 Global interrupt enable. If GIE = 1, the CPU responds to an enabled in-
terrupt. If GIE = 0, the CPU does not respond to an enabled interrupt.

15-14 Reserved 0 Read as 0

31-16 Reserved 0-0 Value undefined

tThe seven condition flags (ST bits 6-0) are defined in Section 10.2 on page 10-10.

3-6

CPU Register File

3.1.8 CPU/DMA Interrupt Enable Register (IE)

The CPUlDMA interrupt enable register (IE) is a 32-bit register (see
Figure 3-4). The CPU interrupt enable bits are in locations 10-0. The direct
memory access (DMA) interrupt enable bits are in locations 26-16. A 1 in a
CPU/DMA IE register bit enables the corresponding interrupt. A 0 disables the
corresponding interrupt. At reset, 0 is written to this register. Table 3-3 defines
the register bits, the bit names, and the bit functions.

Figure 3-4. CPU/DMA Interrupt Enable Register (IE)

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

CPU Registers, Memory, and cache 3-7

CPU Register File

Table 3-3. IE Register Bits Summary

Bit Name Re •• Value Function

0 EINTO 0 Enable external Interrupt 0 (CPU)

1 EINT1 0 Enable external Interrupt 1 (CPU)

2 EINT2 0 Enable external interrupt 2 (CPU)

3 EINT3 0 Enable external interrupt 3 (CPU)

4 EXINTO 0 Enable serial-port 0 transmit interrupt (CPU)

5 ERINTO 0 Enable serial-port 0 receive interrupt (CPU)

6 EXINT1 0 Enable serial-port 1 transmit interrupt (CPU)

7 ERINT1 0 Enable serial-port 1 receive Interrupt (CPU)

8 ETINTO 0 Enable timer 0 Interrupt (CPU)

9 ETINT1 0 Enable timer 1 Interrupt (CPU)

10 EDINT 0 Enable DMA controller Interrupt (CPU)

15-11 Reserved 0 Value undefined

16 EINTO 0 Enable external Interrupt 0 (DMA)

17 EINT1 0 Enable external interrupt 1 (DMA)

18 EINT2 0 Enable external interrupt 2 (DMA)

19 EINT3 0 Enable external Interrupt 3 (DMA)

20 EXINTO 0 Enable serial-port 0 transmit Interrupt (OMA)

21 ERINTO 0 Enable serial-port 0 receive Interrupt (OMA)

22 EXINT1 0 Enable serial-port 1 transmit Interrupt (OMA)

23 ERINT1 0 Enable serial-port 1 receive interrupt (OMA)

24 ETINTO 0 Enable timer 0 interrupt (DMA)

25 ETINT1 0 Enable timer 1 interrupt (DMA)

26 EOINT 0 Enable OMA controller Interrupt (OMA)

31-27 Reserved 0-0 Value undefined

3-8

CPU Register File

3.1.9 CPU Interrupt Flag Register (IF)

Figure 3-5 shows the 32-bit CPU interrupt flag register (IF). A 1 in a CPU IF
register bit indicates that the corresponding interrupt is set. The IF bits are set
to 1 when an interrupt occurs. They may also be set to 1 through software to
cause an interrupt. A 0 indicates that the corresponding interrupt is not set. If
a 0 is written to an IF register bit, the corresponding interrupt is cleared. At re­
set, 0 is written to this register. Table 3-4 lists the bit fields, bit-field names, and
bit-field functions of the CPU IF register.

Figure 3-5. CPU Interrupt-Flag Register (IF)

31 29 27 26 25 24 23 22 21 20 19 18 17 16
IXXlXXlXXlXXlxxl xx I xx xx xx xx xx xx xx! xx! xx! xx!

30 28

15 13 11 10 9 8 7 6 5 4 3 2 1 0
IXXlXXlXXlXXlxx!OINTI TINT1! TINTO!RINT1!XINT1!RINTO! XINTO! INTM INTM INT1!INTO!

14 12 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Not •• : 1) xx = reserved bit, read as 0

2) R = read, W = write

Table 3-4. IF Register Bits Summary

Bit Name Reset Value

0 INTO 0

INT1 0

2 INT2 0

3 INT3 0

4 XINTO 0

5 RINTO 0

6 XINT1t 0

7 RINT1t 0

8 TINTO 0

9 TINT1 0

10 DINT 0

31-11 Reserved 0-0

t Reserved on TMS32OC31

Function

External interrupt 0 flag

External interrupt 1 flag

External interrupt 2 flag

External interrupt 3 flag

Serial-port 0 transmit interrupt flag

Serial-port 0 receive interrupt flag

Serial-port 1 transmit interrupt flag

Serial-port 1 receive interrupt flag

Timer 0 interrupt flag

Timer 1 interrupt flag

DMA channel interrupt flag

Value undefined

CPU Registers, Memory, and Cache 3-9

CPU Register File

3.1.10 I/O Flags Register (IOF)

The 1/0 flags register (IOF) is shown in Figure 3-6 and controls the function
of the dedicated external pins, XFO and XF1. These pins can be configured for
input or output. The pins can also be read from and written to. At reset, 0 is
written to this register. Table 3-5 shows the bit fields, bit-field names, and bit­
field functions.

Figure 3-6. I/O-Flag Register (IOF)

3-10

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

I xxi xxi xxi xxi XXI xxi xxi xxi xx xx xx I xxi xx xx xx I xxi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Ixxlxxlxxlxxlxxlxxlxxlxxl INXF1 IOUTXF11 I/OXF1 Ixxl INXFO IOUTXFOIIfOXFO Ixxl

R R!W R/W R R!W R/W

Note.: 1) xx = reserved bit, read as 0

2) R = read, W = write

CPU Register File

Table 3-5.IOF Register Bits Summary

Bit Name Reset Value Function

0 Reserved 0 Read as 0

I/OXFO 0 If YOXFO = 0, XFO is configured as a general-purpose input pin.
If I/OXFO = 1, XFO is configured as a general-purpose output pin.

2 OUTXFO 0 Data output on XFO

3 I NXFO 0 Data input on XFO. A write has no effect.

4 Reserved 0 Read as 0

5 ItOXF1 0 If YOXF1 = 0, XF1 is configured as a general-purpose input pin.
If I/OXF1 = 1, XF1 is configured as a general-purpose output pin.

6 OUTXF1 0 Data output on XF1

7 INXF1 0 Data input on XF1. A write has no effect.

31-8 Reserved 0-0 Read as 0

3.1.11 Repeat-Count (RC) and Block-Repeat Registers (RS, RE)

The 32-bit repeat start address register (RS) contains the starting address of
the block of program memory to be repeated when the CPU is operating in the
repeat mode.

The 32-bit repeat end address register (RE) contains the ending address of
the block of program memory to be repeated when the CPU is operating in the
repeat mode.

Note: RE < RS

If RE < RS, the block of program memory will not be repeated, and the code
will not loop backwards. However, the ST(RM) bit remains set to 1.

The repeat-count register (RC) is a 32-bit register used to specify the number
of times a block of code is to be repeated when a block repeat is performed.
If RC contains the number n, the loop is executed n + 1 times.

3.1.12 Program Counter (PC)

The PC is a 32-bit register containing the address of the next instruction to be
fetched. While the program counter register is not part of the CPU register file,
it can be modified by instructions that modify the program flow.

CPU Registers, Memory, and Cache 3-11

CPU Register File

3.1.13 Reserved Bits and Compatibility

3-12

To retain compatibility with future members of the TMS32OC3x family of micro­
processors, reserved bits that are read as 0 must be written as O. A reserved
bit that has an undefined value must not have its current value modified. In oth­
er cases, you should maintain the reserved bits as specified.

3.2 Memory

Memory

The TMS320C3x's total memory space of 16M (million) 32-bit words contains
program, data, and I/O space, allowing tables, coefficients, program code, or
data to be stored in either RAM or ROM. In this way, you can maximize memory
usage and allocate memory space as desired.

RAM blocks 0 and 1 are each 1 K x 32 bits. The ROM block is 4K x 32 bits. Each
on-chip RAM and ROM block is capable of supporting two CPU accesses in
a single cycle. The separate program buses, data buses, and DMA buses al­
low for parallel program fetches, data reads/writes, and DMA operations.
Chapter 9 covers this in detail.

3.2.1 TMS320C3x Memory Maps

The memory map depends on whether the processor is running in micropro­
cessor mode (MC/MP or MCBLJMP = 0) or microcomputer mode (MC/MP or
MCBLJMP = 1). The memory maps for these modes are similar (see
Figure 3-7). Locations 800000h through 801 FFFh are mapped to the expan­
sion bus. When this region, available only on the TMS320C30, is accessed,
MSTRB is active. Locations 802000h through 803FFFh are reserved. Loca­
tions 804000h through 805FFFh are mapped to the expansion bus. When this
region, available only on the TMS320C30, is accessed, 10STRB is active. Lo­
cations 806000h through 807FFFh are reserved. All of the memory-mapped
peripheral registers are in locations 808000h through 8097FFh. In both
modes, RAM block 0 is located at addresses 809800h through 809BFFh, and
RAM block 1 is located at addresses 809COOh through 809FFFh. Memory lo­
cations 80AOOOh through OFFFFFFh are accessed over the primary external
memory port (STRB active).

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is not mapped into the TMS320C3x memory map. As shown
in Figure 3-7, locations Oh through 03Fh consist of interrupt vector, trap vec­
tor, and reserved locations, all of which are accessed over the primary external
memory port (STRB active). Interrupt and trap vector locations are shown in
Figure 3-9. Locations 040h-7FFFFFh and 80AOOOL-FFFFFFh are also ac­
cessed over the primary external memory port.

CPU Registers, Memory, and Cache 3-13

Memory

3-14

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is mapped into locations Oh through OFFFh. There are 19210-
cations (Oh through BFh) within this block for interrupt vectors, trap vectors,
and a reserved space. Locations 1000h--7FFFFFh are accessed over the pri­
mary external memory port (STRB active).

Figure 3-7. TMS320C30 Memory Maps

Oh

03Fh
040h

7FFFFFh
8OOOO0h

S01FFFh
802000h

S03FFFh
S04000h

S05FFFh
806OO0h

S07FFFh
SOSOOOh

S097FFh
809S00h

S09BFFh
809COOh

S09FFFh
SOAOOOh

OFFFFFFh

Reset, Interrupt, Trap Vector,
and Reserved Locations (64)

External STRB Active

External
STRBActive

Expansion Bus
MSTRB Active

(8KWords)

Reserved
(SKWords)

Expansion Bus
IOSTRB Active

(SKWords)

Reserved
(SKWords)

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

RAM Block 0
(1 K Word Internal)

RAM Block 1
(1 K Word Internal)

External
STRBActive

(a) Microprocessor Mode

Oh

OBFh
OCOh

OFFFh
1000h

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

S07FFFh
SOSOOOh

S097FFh
809800h

809BFFh
809COOh

S09FFFh
SOAOOOh

OFFFFFFh

Memory

Reset, Interrupt, Trap Vector,
and Reserved Locations (192)

~-----
ROM

(Internal)

External
STRBActlve

Expansion Bus
MSTRB Active

(SKWords)

Reserved
(SKWords)

Expansion Bus
IOSTRB Active

(SKWords)

Reserved
(SKWords)

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

RAM Block 0
(1 K Word Internal)

RAM Block 1
(1 K Word Internal)

External
STRBActlve

(b) Microcomputer Mode

CPU Registers, Memory, and Cache 3-15

Memory

Figure 3-8. TMS320C31 Memory Maps

3-16

Oh

03Fh
040h

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809COOh

809FFFh
80AOOOh

FFFFFFh

Reset, Interrupt, Trap Vector,
and Reserved Locations (64)

(External STRB Active)

External
STRBActive

Reserved
(32KWords)

Peripheral Bus
Memory·Mapped

Registers
(6K Words Internal)

RAM Block 0
(1 K Word Internal)

RAM Block 1
(1 K Word Internal)

External
STRBActive

(a) Microprocessor Mode (b) Microcomputer/Boot Loader Mode

Boot 1-3 locations are used by the boot-loader function. See Section 3.4 for
a complete description. All reserved memory locations are described in
Table 2-5 on page 2-31.

Memory

3.2.2 TMS320C31 Memory Maps

Setting the TMS320C31 MCBLJMP pin determines the mode in which the
TMS320C31 can function:

o Microprocessor mode (MCBLJMP = 0), or
o Microcomputer/boot loader mode (MCBLJMP = 1)

The major difference between these two modes is their memory maps (see
Figure 3-8). The program boot load feature is enabled when the MCBLJMP pin
is driven high during reset.

Figure 3-8 shows the memory locations (internal and external) used by the
boot loader to load the source program.

3.2.3 Reset/lnterrupt/Trap Vector Map

The addresses for the reset, interrupt, and trap vectors are OOh-3Fh, as shown
in Figure 3-9. The reset vector contains the address of the reset routine.

Microprocessor and Microcomputer Modes

In the microprocessor mode of the TMS320C30 and TMS320C31 and the
microcomputer mode of the TMS320C30, the interrupt and trap vectors stored
in locations Oh-3Fh are the addresses of the starts of the respective interrupt
and trap routines. For example, at reset, the content of memory location OOh
(reset vector) is loaded into the PC, and execution begins from that address.
See Figure 3-9.

Microcomputer/Boot Loader Mode

In the microcomputer/boot loader mode of the TMS320C31, the interrupt and
trap vectors stored in locations 809FC1 h-809FFFh are branch instructions to
the start of the respective interrupt and trap routines. See Figure 3-10.

CPU Registers, Memory, and Cache 3-17

Memory

Figure 3-9. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30ffMS320C31
Microprocessor Mode

,

3-18

OOh

01h

02h

03h

04h

OSh

OSh

07h

08h

09h

OAh

OBh

OCh
1Fh

20h

3Bh

3Ch

3Dh

3Eh

3Fh

RESET

INTO

INT1

INT2

INT3

XINTO

RINTO

XINT1t

RINT1t

TINTO

TINT1

DINT

RESERVED

TRAP 0

•
•
•

TRAP 27

TRAP 28 (Reserved)

TRAP 29 (Reserved)

TRAP 30 (Reserved)

TRAP 31 (Reserved)

t Reserved on TMS320C31

Note: Traps 28-31

Traps 28-31 are reserved; do not use them.

Memory

Figure 3-10. Interrupt and Trap Branch Instructions for the TMS320C31 Microcomputer
Mode

809FC1h

809FC2h

809FC3h

809FC4h

809FC5h

809FC6h

809FC7h

809FC8h

809FC9h

809FCAh

809FCBh

809FCC-
809FDFh

809FEOh

809FE1h

809FFBh

809FFCh

809FFDh

809FFEh

809FFFh

Note: Traps 28-31

INTO

INT1

INT2

INT3

XINTO

RINTO

XINT1

RINT1

TINTO

TINT1

DINT

RESERVED

TRAPO

TRAP1

·
·
·

TRAP27

TRAP28 (Reserved)

TRAP29 (Reserved)

TRAP30 (Reserved)

TRAP31 (Reserved)

Traps 28-31 are reserved; do not use them.

CPU Registers, Memory, and Cache 3·19

Memory

3.2.4 Peripheral Bus Map

The memory-mapped peripheral registers are located starting at address
808000h. The peripheral bus memory map is shown in Figure 3-11. Each pe­
ripheral occupies a 16-word region of the memory map. Locations 808010h
through 80801 Fh and locations 808070h through 8097FFh are reserved.

Figure 3-11. Peripheral Bus Memory Map

3-20

808000h

80800Fh
808010h

80801Fh
808020h

80802Fh
808030h

80803Fh
808040h

80804Fh
808050h

80805Fh
808060h

80806Fh
808070h

8097FFh

DMA Controller Registers

(16)

Reserved

(16)

Timer 0 Registers

(16)

Timer 1 Registers

(16)

Serial-Port 0 Registers

(16)

Serial-Port 1 Registers t
(16)

Primary and Expansion Port
Registers (16)

Reserved

t Reserved on TMS320C31

Instruction Cache

3.3 Instruction Cache

A 64 x 32-bit instruction cache facilitates maximum system performance by
storing sections of code that can be fetched when the device repeatedly ac­
cesses time-critical code. This reduces the number of off-chip accesses nec­
essary and allows code to be stored off-Chip in slower, lower-cost memories.
The cache also frees external buses from program fetches so that they can be
used by the DMA or other system elements.

The cache can operate automatically, with no user intervention. Subsection
3.3.2 describes a form of the least recently used (LRU) cache update algo­
rithm.

3.3.1 Cache Architecture

The instruction cache (see Figure 3-12) contains 64 32-bit words of RAM; it
is divided into two 32-word segments. Associated with each segment is a
19-bit segment start address (SSA) register. For each word in the cache, there
is a corresponding single bit: present (P) flag.

CPU Registers, Memory, and Cache 3-21

Instruction Cache

Figure 3-12. Instruction Cache Architecture

Segment Start
Address Registers

I
I\, ,

I SSA Register 0 I
~ 19 ~

SSA Register 1

P
Flags Segment Words

,,-__ ..JI\,I...-______ ,

EH
Segment Word 0

I'

Segment Word 1

· · ·

~ 31

Segment Word 30

Segment Word 31
I

... ~--32--~

tE Segment Word 0 I'

Segment Word 1

· · ·
~ 31

Segment Word 30

Segment Word 31
I

Segment 0

> Segment 1

LRU
Stack

Most Recently Used
Segment Number

Least Recently Used
Segment Number

When the CPU requests an instruction word from external memory. the cache
algorithm checks to determine whether the word is already contained in the
instruction cache; Figure 3-13 shows the partitioning of an instruction address
as used by the cache control algorithm. The algorithm uses the19 most signifi­
cant bits (MSBs) of the instruction address to select the segment; the five least
significant bits (LSBs) define the address of the instruction word within the per­
tinent segment. The algorithm compares the 19 MSBs of the instruction ad­
dress with the two SSA registers. Ifthere is a match, the algorithm checks the
relevant P flag. The P flag indicates whether a word within a particular segment
is already present in cache memory.

Figure 3-13. Address Partitioning for Cache Control Algorithm

3-22

23

segment start address
(SSA)

54

instruction word
address within segment

If there is no match, one of the segments must be replaced by the new data.
The segment replaced in this circumstance is determined by the LRU algo­
rithm. The LRU stack (see Figure 3-12) is maintained for this purpose.

Instruction Cache

The LRU stack determines which of the two segments qualifies as the least
recently used after each access to the cache; therefore, the stack contains ei­
ther 0,1 or 1,0. Each time a segment is accessed, its segment number is re­
moved from the LRU stack and pushed onto the top of the LRU stack. There­
fore, the number at the top of the stack is the most recently used segment num­
ber, and the number at the bottom of the stack is the least recently used seg­
ment number.

At system reset, the LRU stack is initialized with ° at the top and 1 at the bot­
tom. All P flags in the instruction cache are cleared.

When a replacement is necessary, the least recently used segment is selected
for replacement. Also, the 32 P flags for the segment to be replaced are set
to 0, and the segment's SSA register is replaced with the 19 MSBs of the in­
struction address.

3.3.2 Cache Algorithm

When the TMS320C3x requests an instruction word from external memory,
one of two possible actions occurs: a cache hit or a cache miss.

o Cache Hit. The cache contains the requested instruction, and the follow­
ing actions occur:

1) The instruction word is read from the cache.

2) The number of the segment containing the word is removed from the
LRU stack and pushed to the top of the LRU stack, thus moving the
other segment number to the bottom of the stack.

o Cache Miss. The cache does not contain the instruction. Following are
the types of cache miss:

• Word miss. The segment address register matches the instruction ad­
dress, but the relevant P flag is not set. The following actions occur in
parallel:

• The instruction word is read from memory and copied into the
cache.

• The number of the segment containing the word is removed from
the LRU stack and pushed to the top of the LRU stack, thus mov­
ing the other segment number to the bottom of the stack.

• The relevant P flag is set.

CPU Registers, Memory, and Cache 3-23

Instruction Cache

• Segment miss. Neither of the segment addresses matches the in­
struction address. The following actions occur in parallel:

• The least recently used segment is selected for replacement. The
P flags for all 32 words are cleared.

• The SSA register for the selected segment is loaded with the 19
MSBs of the address of the requested instruction word.

• The instruction word is fetched and copied into the cache. It goes
into the appropriate word of the least recently used segment. The
P flag for that word is set to 1.

• The number of the segment containing the instruction word is re­
moved from the LRU stack and pushed to the top of the LRU
stack, thus moving the other segment number to the bottom of the
stack.

Only instructions may be fetched from the program cache. All reads and writes
of data in memory bypass the cache. Program fetches from internal memory
do not modify the cache and do not generate cache hits or misses. The pro­
gram cache is a single-access memory block. Dummy program fetches (Le.,
following a branch) are treated by the cache as valid program fetches and can
generate cache misses and cache updates.

Take care when using self-modifying code. If an instruction resides in cache
and the corresponding location in primary memory is modified, the copy of the
instruction in cache is not modified.

You can use the cache more efficiently by aligning program code on 32-word
address boundaries. Do this with the ALIGN directive when coding assembly
language.

3.3.3 Cache Control Bits

3-24

Three cache control bits are located in the CPU status register:

o Cache Clear Bit (CC). Writing a 1 to the cache clear bit (CC) invalidates
all entries in the cache. All P flags in the cache are cleared. The CC bit is
always cleared after the cache is cleared. It is therefore always read as a
O. At reset, the cache is cleared and 0 is written to this bit.

o Cache Enable Bit (CE). Writing a 1 to this bit enables the cache. When
enabled, the cache is used according to the previously described cache
algorithm. Writing a 0 to the cache enable bit disables the cache; no up­
dates or modification of the cache can be performed. Specifically, no SSA
register updates are performed, no P flags are modified (unless CC = 1),
and the LRU stack is not modified. Writing .a 1 to CC when the cache is
disabled clears the cache, and, thus, the P flags. No fetches are made
from the cache when the cache is disabled. At reset, 0 is written to this bit.

Instruction Cache

o Cache Freeze Bit (CF). When CF = 1, the cache is frozen. If, in addition,
the cache is enabled, fetches from the cache are allowed, but no modifica­
tion of the state of the cache is performed. Specifically, no SSA register
updates are performed, no P flags are modified (unless CC = 1), and the
LRU stack is not modified. You can use this function to keep frequently
used code resident in the cache. Writing a 1 to CC when the cache is fro­
zen clears the cache, and, thus, the P flags. At reset, 0 is written to this bit.

Table 3-6 defines the effect of the CE and CF bits used in combination.

Table ~. Combined Effect of the CE and CF Bits

CE CF Effect

o 0 Cache not enabled

o
o

Cache not enabled

Cache enabled and not frozen

Cache enabled and frozen

CPU Registers, Memory, and Cache 3-25

Using the TMS320C31 Boot Loader

3.4 Using the TMS320C31 Boot Loader

This section describes how to use the TMS320C31 microcomputer/boot load­
er (MCBLlMP}function. This feature is unique to the TMS320C31 and is not
available on the TMS320C30 devices. The source code for the boot loader is
supplied in Appendix G.

3.4.1 Boot-Loader Operations

The boot loader lets you load and execute programs that are received from a
host processor, inexpensive EPROMs, or other standard memory devices.
The programs to be loaded either reside in one of three memory mapped areas
identified as Boot 1, Boot 2, and Boot 3 (see the shaded areas of Figure ~),
or they are received by means of the serial port.

User-definable byte, half-word, and word-data formats, as well as 32-bit fixed
burst loads from the TMS320C31 serial port, are supported. See Section 8.2
on page 8-13 for a detailed description of the serial-port operation.

3.4.2 Invoking the Boot Loader

3-26

The boot-loader function is selected by resetting the processor while driving
the MCBLlMP pin high. Use interrupt pins INT3 -INTO to set the mode of the
boot load operation. Figure 3--14 shows the flow of this operation, which de­
pends on the mode selected (external memory or serial boot). Figure 3--15
shows memory load operations; Figure 3-16 shows serial port load opera­
tions.

Using the TMS320C31 Boot Loader

Figure 3-14. Boot-Loader-Mode Selection Flowchart

CPU Registers, Memory, and Cache 3-27

Using the TMS320C31 Boot Loader

Figure 3-15. Boot-Loader Memory-Load Flowchart

3-28

Branch to Address
Boot 1,

600t2, or
Boot 3

Determine Mode
8,16,or32?

Set Memory
Configuration
Control Word

Load Block Size Transfer Data From
Source to
Destination

Branch to Destination
Address of First
Block Loaded

Begin Program Execution

Using the TMS320C31 Boot Loader

Figure 3-16. Boot-Loader Serial-Port Load-Mode Flowchart

3.4.3 Mode Selection

Branch to Destination
Address of First
Block Loaded

Begin Program Execution

After reset, the loader mode is determined by polling the status of the
INT3-INTO bits of the IF register. The bits are polled in the order described in
the flowchart in Figure 3-14 on page 3-27. Table 3-7 lists the mode options
and the interrupt that you can use to set the particular mode. The interrupt can
be driven any time after the RESET pin has been deasserted. Unless only one
interrupt flag bit is set (INTO, INT1, INT2, or INT3) , the boot mode cannot be
guaranteed.

CPU Registers, Memory, and Cache 3-29

Using the TMS320C31 Boot Loader

Table 3-7. Loader Mode Selection

Active Interrupt Loader Mode Memory Addre .. es

INTO External memory Boot 1 address OXOO1OOO

INT1 External memory Boot 2 address Ox400000

INT2 External memory Boot 3 address OxFFFOOO

INT3 32-bit serial Serial port 0

3.4.4 External Memory Loading

Table 3-8 shows and describes the information that you must specify to define
boot memory organization (8, 16, or 32 bits), the code block size, the load des­
tination address, and memory access timing control for the boot memory. You
must specify this information before a source program can be externally
loaded.

This information must be specified in the first four locations of the Boot 1 , Boot
2, or Boot 3 areas. The header is followed by the data or program code that
is the block size in length.

Table 3-8. External Memory Loader Header

Location

o

2

3

4

Description

Boot memory type (8, 16, or 32)

Boot memory configuration
(defined # of wait states, etc.)

Program block size (blk)

Destination address

Program code starts here

Valid Data Entries

Ox8, Ox10, or Ox20 specified as a 32-bit number

See Chapter 7 for valid bus-control register entries.

Any value 0 < blk < 224

Any valid TMS320C31 24-bit address

Any 32-bit data value or valid TMS32OC3x instruction

The loader fetches 32 bits of data for each specified location, regardless of
what memory configuration width is specified. The data values must reside
within or be written to memory, beginning with the value of least significance
for each 32 bits of information.

3.4.5 Examples of External Memory Loads

3-30

Example 3-1, Example 3-2, and Example 3-3 show memory images for
byte-wide, 16-bit-wide, and 32-bit-wide configured memory.

Using the TMS320C31 Boot Loader

These examples assume the following:

o An I NTO signal was detected after reset was deasserted (signifying an ex­
ternal memory load from Boot 1).

o The loader header resides at memory location Ox1 000 and defines the fol­
lowing:

• Boot memory type EPROMs that require two wait states and SWW = 11 ,

• A loader destination address at the beginning of the TMS320C31 's in­
ternal RAM Block 1 , and

• A single block of memory that is Ox1 FF in length.

Example 3-1. Byte-Wide Configured Memory

Address Value Comments

Ox1000 Ox08 Memory width = 8 bits

Ox1001 Oxoo

Ox1002 OxOO

Ox1003 OxOO

Ox1004 Ox58 Memory type = SWW = 11, WCNT = 2

Ox1005 Ox10

Ox1006 OxOO

Ox1007 OxOO

Ox1008 OxFF Program code size = Ox1 FF

Ox1009 Ox01

Ox100A OxOO

Ox100B OxOO

Ox100C OxOO Program load starting address = Ox809COO

Ox100D Ox9C

Ox100E Ox80

Ox100F OxOO

CPU Registers, Memory, and Cache 3-31

Using the TMS320C31 Boot Loader

Example 3-2. 16-Bit-Wide Configured Memory

Addre •• Value Comments

Ox1000 Ox10 Memory width = 16

Ox1001 OXOOOO

Ox1002 Ox1058 Memory type = SWW = 11, WCNT = 2

Ox1003 OXOOOO

Ox1004 Ox1FF Program code size = Ox1 FF

Ox1005 OXOOOO

Ox1006 OX9COO Program load starting address = OX809COO

Ox1007 Oxooao

Example 3-3.32-Bit-Wide Configured Memory

3-32

Addre ..

Ox1000

Ox1001

Ox1002

Ox1003

Value

OxOOOOOO20

OXOOOO1058

OxOOOOO1FF

Ox00809COO

Comments

Memory width = 32

Memory type = SWW = 11, WCNT = 2

Program code size = Ox1 FF

Program load starting address = Ox809COO

After reading the header, the loader transfers blk, 32-bit words beginning at a
specified destination address. Code blocks require the same byte and half­
word ordering conventions. The loader can also load multiple code blocks at
different address destinations.

After loading all code blocks, the boot loader branches to the destination ad­
dress of the first block loaded and begins program execution. Consequently,
the first code block loaded should be a start-up routine to access the other
loaded programs.

Each code block has the following header:

BLK size 1st location
Destination address 2nd location

End the loader function and begin execution of the first code block byappend­
ing the value of OxOOOOOOOO to the last block.

Using the TMS320C31 Boot Loader

3.4.6 Serial-Port Loading

Boot loads, by way of the TMS320C31 serial port, are selected by driving the
INT3 pin active (low) following reset. The loader automatically configures the
serial port for 32-bit fixed-burst-mode reads. It is interrupt-driven by the frame
synchronization receive (FSR) signal. You cannot change this mode for boot
loads. Your hardware must externally generate the serial-port clock and FSR.

As in parallel loading, a header must precede the actual program to be loaded.
However, you need only apply the block size and destination address because
the loader and your hardware have predefined serial-port speed and data for­
mat (i.e., skip data words 0 and 1 from Table 3-8).

The transferred data-bit order must begin with the MSB and end with the LSB.

3.4.7 Interrupt and Trap-Vector Mapping

Unlike the microprocessor mode, the microcomputer/boot-Ioader (MCBL)
mode uses a dual-vectoring scheme to service interrupt and trap requests.
Dual vectoring was implemented to ensure code compatibility with future ver­
sions of TMS320C3x devices.

In a dual-vectoring scheme, branch instructions to an address, rather than di­
rect-interrupt vectoring, are used. The normal interrupt and trap vectors are
defined to vector to the last 63 locations in the on-chip RAM, starting at address
809FC1 h. When the loader is invoked, the last 63 locations in RAM Block 1 of
the TMS320C31 are assumed to contain branch instructions to the interrupt
source routines.

CPU Registers, Memory, and Cache 3-33

Using the TMS320C31 Boot Loader

Table 3-9 shows the MCBUMP mode interrupt and trap instruction memory
maps.

Table 3-9. TMS320C31 Interrupt and Trap Memory Maps

Address Description

809FC1 INTO

809FC2 INT1

809FC3 INT2

809FC4 INT3

809FC5 XINTO

809FC6 RINTO

809FC7 Reserved

809FC8 Reserved

809FC9 TINTO

809FCA TINT1

809FCB DINTO

809FCC-809FDF Reserved

809FEO TRAPO

809FE1 TRAP 1

• •

• •

• •

809FFB TRAP27

809FFC-809FFF Reserved

3-34

3.4.8 Precautions

Using the TMS320C31 Boot Loader

The boot loader builds a one-word-deep stack, starting at location 809801 h.

The interrupt flags are not reset by the boot-loader function. If pending inter­
rupts are to be avoided when interrupts are enabled, clear the IF register be­
fore enabling interrupts.

The MCBLJMP pin should remain high during the entire boot-loader execution,
but it can be changed subsequently at any time. The TMS320C31 does not
need to be reset after the MCBLJMP pin is changed. During the change, the
TMS320C31 should not access addresses Oh-FFFh.

CPU Registers, Memory, and cache 3-35

3-36

Chapter 4

Data Formats and Floating-Point Operation
I II . j . m if ! IIIltlllmllllH \~!illIIIl~ IltllW"I®l!IIl!!!lIIlIallll I n leu: ill ! i liliiii

:: I!!

In the TMS320C3x architecture, data is organized into three fundamental
types: integer, unsigned-integer, and floating-point. The terms integer and
signed-integer are considered to be equivalent. The TMS320C3x supports
short and single-precision formats for signed and unsigned integers. It also
supports short, single-precision, and extended-precision formats for float­
ing-point data.

Floating-point operations make fast, trouble-free, accurate, and precise com­
putations. Specifically, the TMS320C3x implementation of floating-point arith­
metic facilitates floating-point operations at integer speeds while preventing
problems with overflow, operand alignment, and other burdensome tasks
common in integer operations.

This chapter discusses in detail the data formats and floating-point operations
supported in the TMS320C3x. Major topics in this section are as follows:

Topic Page

4-1

Integer Formats

4.1 Integer Formats

The TMS320C3x supports two integer formats: a 16-bit short integer format
and a 32-bit single-precision integer format. When extended-precision regis­
ters are used as integer operands, only bits 31-0 are used; bits 39-32 remain
unchanged and unused.

4.1.1 Short-Integer Format

The short integer format is a 16-bit two's complement integer format for imme­
diate integer operands. For those instructions that assume integer operands,
this format is sign-extended to 32 bits (see Figure 4-1). The range of an
integer si, represented in the short integer format, is -215 s si :s; 215 - 1. In
Figure 4-1, s = signed bit.

Figure 4--1. Short Integer Format and Sign Extension of Short Integers

15 o

(a) Short Integer Format

31 16 15 o
Is s s s s s s s s s s s s s s sl

(b) Sign Extension of a Short Integer

4.1.2 Single-Precision Integer Format

In the single-precision integer format, the integer is represented in two's com­
plement notation. The range of an integer sp, represented in the single-preci­
sion integer format, is -231 ssp s 231 -1. Figure 4-2 shows the single-preci­
sion integer format.

Figure 4--2. Single-Precision Integer Format

31 o

4·2

Unsigned-Integer Formats

4.2 Unsigned-Integer Formats

The TMS320C3x supports two unsigned-integer formats: a 16-bit short format
and a 32-bit single-precision format. In extended-precision registers, the un­
signed-integer operands use only bits 31-0; bits 39-32 remain unchanged.

4.2.1 Short Unsigned-Integer Format

Figure 4-3 shows the16-bit, short, unsigned-integer format for immediate un­
signed-integer operands. For those instructions that assume
unsigned-integer operands, this format Is zero-filled to 32 bits. In Figure 4-3,
x = most significant bit (MSB) (1 or 0).

Figure 4.3. Short Unsigned-Integer Format and Zero Fill

15 o

(a) Short Unsigned-Integer Format

31 16 15 o
,0000000 0 0 0 0 0 0 0 0 ~ x

(b) Zero Fill of a Short Unsigned Integer

4.2.2 Single-Precision Unsigned-Integer Format

In the single-precision unsigned-Integer format, the number is represented as
a 32-bit value, as shown in Figure 4-4.

Figure 4-4. Single-Precision Unsigned-Integer Format

~ 0

I I

Data Formats and Floating-Point Operation 4-3

Floating-Point Formats

4.3 Floating-Point Formats

All TMS320C3x floating-point formats consist of three fields: an exponent field
(e), a single-bit sign field (s), and a fraction field (f). These are stored as shown
in Figure 4-5. The exponent field is a two's complement number. The sign field
and fraction field may be considered one unit and referred to as the mantissa
field (man). The two's complement fraction is combined with the sign bit and
the implied most significant bit to create the mantissa. The mantissa repre­
sents a normalized two's complement number. A normalized representation
implies a most significant nonsign bit, thus providing additional precision. The
value of a floating-point number x as a function of the fields e, s, and f is given as

x = 01.f x 2e if s = 0, or if the leading 0 is the sign bit and the
1 is the implied most significant nonsign bit

10.fx2e

o

if s = 1, or if the leading 1 is the sign bit and the
o is the implied most significant nonsign bit

if e = most negative two's complement
value of the specified exponent field width

Figure 4-5. Generic Floating-Point Format

If-~ ---man (mantissa) ----IJI~

Note: e = exponent field
s = single-bit sign field
f = fraction field

Three floating-point formats are supported on the TMS320C3x. The first is a
short floating-point format for immediate floating-point operands, consisting of
a 4-bit exponent, a sign bit, and an 11-bit fraction. The second is a single-preci­
sion format consisting of an 8-bit exponent, a sign bit, and a 23-bit fraction. The
third is an extended-precision format consisting of an 8-bit exponent, a sign
bit, and a 31-bit fraction.

4.3.1 Short Floating-Point Format

4-4

In the short floating-point format, floating-point numbers are represented by
a two's complement 4-bit exponent field (e) and a two's complement 12-bit
mantissa field (man) with an implied most significant nonsign bit. See
Figure 4-6.

Floating-Point Formats

Figure 4-6. Short Floating-Point Format

15 12111 110 o

141.--- mantiasa ---... ~

Operations are performed with an implied binary point between bits 11 and 10.
When the implied most significant nonsign bit is made explicit. it is located to
the immediate left of the binary point. The floating-point two's complement
number x in the short floating-point format is given by the following:

x = 01.f x 28 ifs = 0
10.fx28 ifs=1
o ife =-8

You must use the following reserved values to represent 0 in the short float­
ing-point format:

e=-8

8=0

f=O

The following examples illustrate the range and precision of the short float­
ing-point format:

Most Positive:

Least Positive:

Least Negative:
Most Negative:

x = (2 - 2-11) x 27 = 2.5594 x 1()2

x = 1 x 2-7 = 7.8125)(10-3

x = (-1-2-11))(2-7 = -7.8163)(10-3
x = -2 x 27 = -2.5600 x 1()2

Data Formats and Floating-Point Operation 4-5

Floating-Point Formats

4.3.2 Single-Precision Floating-Point Format

In the single-precision format, the floating-point number is represented by an
8-bit exponent field (e) and a two's complement 24-bit mantissa field (man)
with an implied most significant nonsign bit. See Figure 4-7.

Figure 4-7. Single-Precision Floating-Point Format

31 24123122 0

e I s I
~ mantissa ~

Operations are performed with an implied binary pOint between bits 23 and 22.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by
the following:

x = 01.f x 2e
10.fx2e
o if e =-8

ifs = 0
if s = 1

You must use the following reserved values to represent 0 in the single-preci­
sion floating-point format:

e = -128

s=O

f = 0

The following examples illustrate the range and precision of the single-preci­
sion floating-point format.

Most Positive:

Least Positive:

Least Negative:

Most Negative:

x = (2 - 2-23) x 2127 = 3.4028234 x 1038

x = 1 x 2-127 = 5.8774717 x 10-39

x = (-1-2-23) x 2-127 = -5.8774724 x 10-39

x = -2 x 2127 = -3.4028236 x 1038

4.3.3 Extended-Precision Floating-Point Format

4-6

In the extended-precision format, the floating-point number is represented by
an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an implied
most significant nonsign bit. See Figure 4-8.

Floating-Point Formats

Figure 4-8. Extended-Precision Floating-Point Format

39 32131130 o

e I s

~ mantissa

Operations are performed with an implied binary point between bits 31 and 30.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by
the following:

x = 01.f x 29

10.f)(29

o

ifs=O

ifs = 1

ife=-128

You must use the following reserved values to represent 0 in the extended-pre­
cision floating-point format:

e =-128

s=O

f= 0

The following examples illustrate the range and precision of the extended-pre­
cision floating-point format:

Most Positive: x = (2 - 2-23))(2127 = 3.4028234 x 1038

Least Positive:

Least Negative:

Most Negative:

x = 1)(2-127 = 5.8774717541 x 1038

x = (-1-2-31) x 2-127 =-5.8774717569 x 10-39

x = -2)(2127 = -3.4028236691 x 1038

Data Formats and Floating-Point Operation 4-7

Floating-Point Formats

4.3.4 Conversion Between Floating-Point Formats

Floating-paint operations assume several different formats for inputs and out­
puts. These formats often require conversion from one floating-point format to
another (e.g., short floating-point format to extended-precision floating-paint
format). Format conversions occur automatically in hardware, with no over­
head, as a part of the floating-point operations. Examples of the four conver­
sions are shown in Figure 4-9, Figure 4-10, Figure 4-11. and Figure 4-12.
When a floating-paint format 0 is converted to a greater-precision format, it is
always converted to a valid representation of 0 in that format. In Figure 4-9,
Figure 4-10, Figure 4-11 , and Figure 4-12, s = sign bit of the exponent.

Figure 4-9. Converting From Short Floating-Point Format to Single-Precision
Floating-Point Format

15 12 11 10 o

I s x x

(a) Short Floating-Point Format

31 27 24 23 22 12 11 o

Issssxxxx I yly

(b) Single-Precision Floating-Point Format

In this format, the exponent field is sign-extended, and the fraction field is filled
with Os.

Figure 4-10. Converting From Short Floating-Point Format to Extended-Precision
Floating-Point Format

4-8

15 12 11 10 o

(a) Short Floating-Point Format

39 35 32 31 30 20 19 o

(b) Extended-Precision Floating-Point Format

The exponent field in this format is sign-extended. and the fraction field is filled
with Os.

Floating-Point Formats

Figure 4-11. Converting From Single-Precision Floating-Point Format to
Extended-Precision Floating-Point Format

31 24 23 22

I x x I y I y

(a) Single-Precision Floating-Point Format

39 32 31 30 8 7

I x x I y I y ylO

(b) Extended-Precision Floating-Point Format

The fraction field is filled with Os.

Figure 4-12. Converting From Extended-Precision Floating-Point Format to
Single-Precision Floating-Point Format

32 31 30 8 7

(a) Extended-Precision Floating-Point Format

31 24 23 22

(b) Single-Precision Floating-Point Format

The fraction field is truncated.

0

y 1

0

01

o

o

Data Formats and Floating-Point Operation 4-9

Floating-Point Multiplication

4.4 Floating-Point Multiplication

4-10

A floating-point number a can be written in floating-point format as in the fol­
lowing formula:

a = a(man) x 2a(exp)

where:
a(man) is the mantissa and a(exp) is the exponent.

The product of a and b is c, defined as:

c = a x b = a(man) x b(man) x 2(a(exp) + b (exp»

where:
c(man) = a(man) x b(man), and
c(exp) = a(exp) + b(exp)

During floating-point multiplication, source operands are always assumed to
be in the single-precision floating-point format. If the source of the operands
is in short floating-point format, it is extended to the single-precision float­
ing-point format. If the source of the operands is in extended-precision float­
ing-point format, it is truncated to single-precision format. These conversions
occur automatically in hardware with no overhead. All results of floating-pOint
multiplications are in the extended-precision format. These multiplications oc­
cur in a single cycle.

A flowchart for floating-point multiplication is shown in Figure 4-13. In step 1 ,
the 24-bit source operand mantissas are multiplied, producing a SO-bit result
c(man). (Note that input and output data are always represented as normal­
ized numbers.) In step 2, the exponents are added, yielding c(exp). Steps 3
through 6 check for special cases. Step 3 checks for whether c(man) in exten­
ded-precision format is equal to O. If c(man) is 0, step 7 sets c(exp) to -128,
thus yielding the representation for O.

Steps 4 and 5 normalize the result. If a right shift of 1 is necessary, then in step
8, c(man) is right-shifted 1 bit, thus adding 1 to c(exp).lf a right shift of 2 is nec­
essary, then in step 9, c(man) is right-shifted 2 bits, thus adding 2 to c(exp).
Step 6 occurs when the result is normalized.

In step 10, c(man) is set in the extended-precision floating-point format. Steps
11 through 16checkforspeciaicasesofc(exp).lfc(exp) has overflowed (step
11) in the positive direction, then step 14 sets c(exp) to the most positive exten­
ded-precision format value. If c(exp) has overflowed in the negative direction,
then step 14 sets c(exp) to the most negative extended-precision format value.
If c(exp) has underflowed (step 12), then step 15 sets c to 0; that is, c(man)
= 0 and c(exp) = -128.

Floating-Point Multiplication

Figure 4-13. Flowchart for Floating-Point Multiplication

a(man) beman) a(exp) b(exp)
.~ 1 11 1 I ~2

Multiply mantissas Add exponents

c(man) .. a(man) x beman) c(exp) .. a(exp) + b(exp)
(50-bit result)

! 1
Test for special cases of c(man)

(3) (4) (5) (8)
c(man) .0 Rlght-shift 1 Right-shift 2 No shift

to normalize to normalize to normalize

! (7] ! (8 ! (9

c(exp) .. c(man) > > c(man) > >
1 2 -128

and c(exp) = and c(exp) =
c(exp) + 1 c(exp) + 2

I • --*-
Dispose of extra bits (10)

Put c(man) in extended
precision floating-point
format

!
Test for special cases of c(exp)

(11) (12) (13)
c(exp) overflow c(exp) underflow c(exp) in range

~ (14 !
If c(man) > 0, c(exp) =-128 (15)
set c(exp) to most c(man) =0
positive value

If c(man) < 0,
set c(exp) to most
negative value

• "- -""-
Set c to final result 1(18)

+ c .. axb

Data Formats and Floating-Point Operation 4-11

Floating-Point Multiplication

Example 4-1, Example 4-2, Example 4-3, Example 4-4, and Example 4-5
illustrate how floating-point multiplication is performed on the TMS320C3x.
For these examples, the implied most significant nonsign bit is made explicit.

Example 4-1. Floating-Point Multiply (Both Mantissas = -2.0)

Let:

(l = -2.0 x 2a(exp) = 10 .00000000000000000000000 x 2U(exp)

b = -2.0 x 2b(exp) = 10.00000000000000000000000 x 2b(exp)

where:

(l and b are both represented in binary form according to the normalized sing­
le-precision floating-point format.

Then:

10.00000000000000000000000 x 2a(exp)
x 10.00000000000000000000000 x 2b(exp)

0100.00 x 2 (a(exp) + b(exp))

To place this number in the proper normalized format, it is necessary to shift
the mantissa two places to the right and add 2 to the exponent. This yields:

1 0 .00000000000000000000000 x 2a(exp)
x 10.00000000000000000000000 x 2b(exp)

01 .00 x 2 (a(exp) + b(exp) + 2)

In floating-point multiplication, the exponent of the result may overflow. This
can occur when the exponents are initially added or when the exponent is mo­
dified during normalization.

Example 4-2. Floating-Point Multiply (Both Mantissas = 1.5)

Let:

4-12

a = 1.5 x 2a(exp) = 01.10000000000000000000000 x 2a(exp)
b = 1.5 x 2b(exp) = 01.10000000000000000000000 x 2b(exp)

where a and b are both represented in binary form according to the single-pre­
cision floating-point format. Then:

01 .10000000000000000000000 x 2a(exp)
x 01 .10000000000000000000000 x 2b(exp)

0010.0100 x 2 (a(exp) + b(exp))

Floating-Point Multiplication

To place this number in the proper normalized format, it is necessary to shift
the mantissa one place to the right and add 1 to the exponent. This yields:

01 .10000000000000000000000)(2U(exp)
)(01 .10000000000000000000000)(2b(exp)

01.00100)(2 (a(exp) + b(exp) + 1)

Example 4-3. Floating-Point Multiply (Both Mantissas = 1.0)

Let:

a = 1.0)(2a(exp) = 01 .00000000000000000000000)(2a(exp)

b = 1.0)(2b(exp) = 01 .00000000000000000000000)(2b(exp)

where a and b are both represented in binary form according to the single-pre­
cision floating-point format. Then:

01.00000000000000000000000)(2a(exp)
)(01.00000000000000000000000)(2b(exp)

0001.00)(2 (a(exp) + b(exp»

This number is in the proper normalized format. Therefore, no shift of the man­
tissa or modification of the exponent is necessary.

These examples have shown cases where the product of two normalized num­
bers can be normalized with a shift of 0, 1, or 2. For all normalized inputs with
the floating-point format used by the TMS320C3x, a normalized result can be
produced by a shift of 0, 1, or 2.

Example 4-4. Floating-Point Multiply Between Positive and Negative Numbers

Let:

a = 1.0 x 2a(exp) = 01 .00000000000000000000000 x 2U(exp)

b = -2.0 X 2b(exp) = 10 .00000000000000000000000 X 2b(exp)

Then:

01.00000000000000000000000)(2a(exp)
)(10.00000000000000000000000 x 2b(exp)

1110.00 x 2 (a(exp) + b(exp»

The result is c = -2.0 x 2(a(exp) + b(exp»

Example 4-5. Floating-Point Multiply by 0

All multiplications by a floating-point 0 yield a result of 0 (f = 0, s = 0, and exp
= -128).

Data Formats and Floating-Point Operation 4-13

Floating-Point Addition and Subtraction

4.5 Floating-Point Addition and Subtraction

4-14

In floating-point addition and subtraction, two floating-point numbers a and b
can be defined as:

a = a(man) x 2 a(exp)
b = b(man) x 2 b(exp)

The sum (or difference) of a and b can be defined as:

c=a±b
= (a (man) ± (b(man) x 2 -(a(exp)-b(exp)))) x 2 a(exp),

if a(exp) ~ b(exp)
= ((a(man) x 2 -(b(exp)-a(exp))) ± b(man)) x 2 b(exp),

if a(exp) < b(exp)

The flowchart for floating-point addition is shown in Figure 4-14. Since this
flowchart assumes signed data, it is also appropriate for floating-point subtrac­
tion.ln this figure, it is assumed that a(exp) s; b(exp).ln step 1, the source ex­
ponents are compared, and c(exp) is set equal to the largest of the two source
exponents. In step 2, d is set to the difference of the two exponents. In step 3,
the mantissa with the smallest exponent, in this case a(man), is right-shifted
d bits to align the mantissas. After the mantissas have been aligned, they are
added (step 4).

Steps 5 through 7 check for a special case of c(man). If c(man) is 0 (step 5),
then c(exp) is set to its most negative value (step 8) to yield the correct repre­
sentation of O. If c(man) has overflowed c (step 6), then c(man) is right-shifted
one bit, and 1 is added to c(exp). Otherwise, step 10 normalizes c by left-shift­
ing c(man) and subtracting c(exp) by the number of leading non-significant
sign bits (step 7). Steps 11 through 13 check for special cases of c(exp). If
c(exp) has overflowed (step 11) in the positive direction, then step 14 sets
c(exp) to the most positive extended-precision format value. If c(exp) has over­
flowed (step 11) in the negative direction, then step 14 sets c(exp) to the most
negative extended-precision format value. If c(exp) has underflowed (step 12),
then step 15 sets c to 0; that is, c(man) = 0 and c(exp) = -128.

Floating-Point Addition and Subtraction

Figure 4-14. Flowchart for Floating-Point Addition

a(man) beman) a(exp) b(exp)

~ + (1)

Compare exponents
If a(exp) < = b(exp)

, ,. (3)
c(exp) = b(exp)

else
Align mantissas c(exp) .. a(exp)

a(man) ... a(man) > > d (Aaaume for simplicity
that a(exp) < = b(exp»

Discard LSBs to keep J, + a(man) in extended-
precision floating- (2) Subtract exponents I
point format ~ a = D(exp) - a(exp) I

•
(4)1 Add mantissas I

I c (man) '" a(man) + beman) I .-
Test for special cases of c(man)

(5) (6)
k ... II of~ading

c(man) .. 0 Overflow of c(man) non-significant
sign bits ., (9)

c(man) .. c(man) > > 1
c(exp) .. c(exp) + 1
Discard LSBs to keep in
extended-precision
floating-point format (10)

,. (8) I c(man) < < k
L c(exp) --128 c(expf .. c(exp) -k

J, J,
Test for special cases of c(exp)

(11) (12) (13)
c(exp) overflow c(exp) underflow c(exp) in range

J, J, ,
(14) If c(man} > 0, salctoO (15)

setcto most c(exp) = -128 positive value c(man) .. 0
If c(man) < 0,
setcto most
negative value

1(16) • ,
I Set c to final result I

+
c=a+b

Data Formats and Floating-Point Operation 4-15

Floating-Point Addition and Subtraction

Example 4-6, Example 4-7, Example 4-8, and Example 4-9 describe the
floating-point addition and subtraction operations. It is assumed that the data
is In the extended-precision floating-point format.

Example 4-6. Floating-Point Addition

In the case of two normalized numbers to be summed, let

a = 1.5 = 01.1000000000000000000000000000000 x 20
b = 0.5 = 01.0000000000000000000000000000000 x 2-1

It is necessary to shift b to the right by 1 so that a and b have the same expo­
nent. This yields:

b = 0.5 = 00.1000000000000000000000000000000 x 20

Then:

01.10000000000000000000000000000000 x 20
+ 00.10000000000000000000000000000000 x 20

010.00000000000000000000000000000000 x 20

As in the case of multiplication, it is necessary to shift the binary point one place
to the left and add 1 to the exponent. This yields:

01.1000000000000000000000000000000 x 20
± 00.1000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 21

Example 4-7. Floating-Point Subtraction

4-16

A subtraction is performed in this example. Let

a = 01.0000000000000000000000000000001 x 20
b = 01.0000000000000000000000000000000 x 20

The operation to be performed is a-b. The mantissas are already aligned be­
cause the two numbers have the same exponent. The result is a large cancel­
lation of the upper bits, as shown below.

01.0000000000000000000000000000001 x 20
- 01 .0000000000000000000000000000000 x 20

00.0000000000000000000000000000001 x 20

Floating-Point Addition and Subtraction

The result must be normalized. In this case, a left-shift of 31 is required. The
exponent of the result is modified accordingly. The result is:

01.0000000000000000000000000000001 x 20
- 01 .0000000000000000000000000000000 x 20

01 .0000000000000000000000000000000 x 2-31

Example 4-8. Floating-Point Addition With a 32-Bit Shift

This example illustrates a situation where a full 32-bit shift is necessary to nor­
malize the result. Let

a = 01 .1111111111111111111111111111111 x 2127

b = 10.0000000000000000000000000000000 x 2127

The operation to be performed is a + b.

01.1111111111111111111111111111111 x 2127

+10DOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO x 2127

11.1111111111111111111111111111111 x 2127

Normalizing the result requires a left-shift of 32 and a subtraction of 32 from
the exponent. The result is:

01j111111111111111111111111111111 x 2127

+10DOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO x 2127

10DOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO x 295

Example 4-9. Floating-Point Addition/Subtraction With Floating-Point 0

When floating-point addition and subtraction are performed with a float­
ing-point 0, the following identities are satisfied:

a :t 0 = a (a pO 0)

0::1:0=0

o -a = -a (a pO 0)

Data Formats and Floating-Point Operation 4-17

Normalization Using the NORM Instruction

4.6 Normalization Using the NORM Instruction

The NORM instruction normalizes an extended-precision floating-point num­
ber that is assumed to be unnormalized. See Example 4-10. Since the num­
ber is assumed to be unnormalized, no implied most significant nonsign bit is
assumed. The NORM instruction:

1) Locates the most significant nonsign bit of the floating-point number,
2) Left-shifts to normalize the number, and
3) Adjusts the exponent.

Example 4-10. NORM Instruction

4-18

Assume that an extended-precision register contains the value

man = 00000000000000000001000000000001 , exp = 0

When the normalization is performed on a number assumed to be unnormal­
ized, the binary point is assumed to be:

man = 0.0000000000000000001000000000001, exp = 0

This number is then sign-extended one bit so that the mantissa contains 33
bits.

man = 00.0000000000000000001000000000001, exp = 0

The intermediate result after the most significant nonsign bit is located and the
shift performed is:

man = 01 .0000000000010000000000000000000, exp = - i 9

The final 32-bit value output after removing the redundant bit is:

man = 00000000000010000000000000000000, exp = -19

The NORM instruction is useful for counting the number of leading Os or lead­
ing 1 s in a 32-bit field. If the exponent is initially 0, the absolute value of the final
value of the exponent is the number of leading 1 s or Os. This instruction is also
useful for manipulating unnormalized floating-point numbers.

Given the extended-precision floating-point value a to be normalized, the nor­
malization, norm (), is performed as shown in Figure 4-15.

Normalization Using the NORM Instruction

Figure 4-15. Flowchart for NORM Instruction Operation

a

~
Test for special cases of c (man)

(1) (2)
a (man) = 0 Leading nonsignificant

sign bits

k = #I of leading
nonsignificant
sign bits

(3) c(exp) = -128 J
Sign-extended a(man) 1 bit

(4)

c (man) = a(man) < < k
c (exp) = a(exp) -k

~
Remove most significant nonsign bit (5)

~
Test for special cases of c (exp)

(6) (7)
c(exp) c(exp) in

underflow ra~e

J, ,
(8) c(exp) =-128

No change to c (man)

:--l 1
(9) I Set c to final result J

+ c = norm(a)

Data Formats and Floating-Point Operation 4-19

Rounding: The RND Instruction

4.7 Rounding: The RND Instruction

4-20

The RND instruction rounds a number from the extended-precision float­
ing-point format to the single-precision floating-point format. Rounding is simi­
lar to floating-point addition. Given the number a to be rounded, the following
operation is performed first.

c = a(man) x 2<l(exp) + (1 x 2a (exp)-24)

Next, a conversion from extended-precision floating-point to single-precision
floating-point format is performed. Given the extended-precision floating-point
value, the rounding, rnd(), is performed as shown in Figure 4-16.

Rounding: The RND Instruction

Figure 4-16. Flowchart for Floating-Point Rounding by the RND Instruction

a
1 x 2 a(exp) -24

~ ~
Add a(man) and 1/2 of LSB

c(man) ... a (man) + ~24

• Test for special cases of c(man)

c(man) = 0 Overflow of c (man) No special case

• • c(exp) =-128 I c (man) = c (man) < < 1
c (exp) = a (exp) + 1

J,
Test for special cases of c (exp)

c (exp) overflow c (exp) in range

~
If c (man) > 0,
set c to most positive
single-precision value

If c (man) < 0,
set c to most negative
single-precision value

~ 1

I Set 8 LSBs of c(man) to 0 I

.-
c = rnd(a)

Data Formats and Floating-Point Operation 4-21

Floating-Point-to-Integer Conversion

4.8 Floatlng-Point-to-Integer Conversion

4-22

Floating-point to integer conversion, using the FIX instructions, allows exten­
ded-precision floating-point numbers to be converted to single-precision inte­
gers in a single cycle. The floating-point to integer conversion of the value x
is referred to here as fix(x). The conversion does not overflow if a, the number
to be converted, is in the range

-231 $ a $ 231 - 1

First, you must be certain that

a(exp) :s:30

If these bounds are not met, an overflow occurs. If an overflow occurs in the
positive direction, the output is the most positive integer. If an overflow occurs
in the negative direction, the output is the most negative integer. If a(exp) is
within the valid range, then a(man), with implied bit included, is Sign-extended
and right-shifted (rs) by the amount

rs = 31 - a(exp)

This right-shift (rs) shifts out those bits corresponding to the fractional part of
the mantissa. For example:

If 0 :s: x < 1, then fix (x) = O.
If -1 :s: x < 0, then fix(x) = -1.

The flowchart for the floating-point-to-integer conversion is shown in
Figure 4-17.

Floating-Point-to-Integer Conversion

Figure 4-17. Flowchart for Floating-Point-to-Integer Conversion by FIX Instructions

a

1
Test for special cases of a(exp)

a(exp) > 30 a(exp) in range
rs = 31 - a(exp)

1
Overflow Shift

If a(man) > 0, c = a(man) > > rs
c = most positive integer

If a(man) < 0,
c = most negative integer

I
~ ~

I Set c to final result I
,

c = fix (a)

Data Formats and Floating-Point Operation 4-23

Integer-to-Floating-Point Conversion

4.9 Integer-to-Floating-Point Conversion

Integer to floating-point conversion, using the FLOAT instruction, allows sing­
le-precision integers to be converted to extended-precision floating-point
numbers. The flowchart for this conversion is shown in Figure 4-18.

Figure 4-18. Flowchart for Integer-to-Floating-Point Conversion by FLOAT Instructions

a

~
c{man) = a
c{exp) = 30

~
Test for special cases of c (man)

Leading nonsignificant
c{man) = 0 sign bits

k = # leading
nonsignificant

~~
sign bits

c{exp) =-128 J c (man) = c (man) < < k
c (exp) = 30-k

~
I Remove most significant nonsign bit

~
I Set c to final result I

+
c = float (a)

4-24

Chapter 5

Addressing
I n

The TMS320C3x supports five groups of powerful addressing modes. Six
types of addressing may be used within the groups, which allow access of data
from memory, registers, and the instruction word. This chapter details the op­
eration, encoding, and implementation of the addressing modes. It also dis­
cusses the management of system stacks, queues, and dequeues in memory.

These are the major topics in this chapter:

Topic Page

5-1

Types of Addressing

5.1 TYpes of Addressing

5-2

Six types of addressing allow access of data from memory, registers, and the
instruction word:

o Register
o Direct
o Indirect
o Short-immediate
o Long-immediate
o PC-relative

Some types of addressing are appropriate for some instructions but not others.
For this reason, the types of addressing are used in the five groups of address­
ing modes as follows:

o General addressing modes (G):

• Register
• Direct
• Indirect
• Short-immediate

o Three-operand addressing modes (T):

• Register
• Indirect

o Parallel addressing modes (P):

• Register
• Indirect

o Conditional-branch addressing modes (8):

• Register
• PC-relative

The six types of addressing are discussed first, followed by the five groups of
addressing modes.

Types of Addressing

5.1.1 Register Addressing

In register addressing, a CPU register contains the operand, as shown in this
example:

ABSF Rl ; Rl - IRll

The syntax for the CPU registers, the assembler syntax, and the assigned
function for those registers are listed in Table 5-1.

Table 5-1. CPU Register Address/Assembler Syntax and Function

Assembler Assigned
CPU Register Address Syntax Function

DOh RO Extended-precision register
01h R1 Extended-precision register
02h R2 Extended-precision register
03h R3 Extended-precision register
04h R4 Extended-precision register
05h R5 Extended-precision register
06h R6 Extended-precision register
07h R7 Extended-precision register

08h ARO Auxiliary register
09h AR1 Auxiliary register
OAh AR2 Auxiliary register
OBh AR3 Auxiliary register
OCh AR4 Auxiliary register
ODh AR5 Auxiliary register
OEh AR6 Auxiliary register
OFH AR7 Auxiliary register

10h DP Data-page pointer
11 h IRO Index register 0
12h IR1 Index register 1
13h BK Block-size register
14h SP Active stack pointer

15h ST Status register
16h IE CPU/DMA interrupt enable
17h IF CPU interrupt flags
18h 10F I/O flags

19h RS Repeat start address
1Ah RE Repeat end address
1Bh RC Repeat counter

Addressing 5-3

Types of Addressing

5.1.2 Direct Addressing

In direct addressing, the data address is formed by the concatenation of the
eight least significant bits of the data page pointer (DP) with the 16 least signifi­
cant bits ofthe instruction word (expr). This results in 256 pages (64Kwords per
page), giving the programmer a large address space without requiring a change
of the page pointer. The syntax and operation for direct addressing are:

Syntax: @expr

Operation: address = DP concatenated with expr

Figure 5-1 shows the formation of the data address. Example 5-1 is an
instruction example with data before and after instruction execution.

Figure 5-1. Direct Addressing

Instruction __ •
Word

31

31

DP~ x x ... x

16 15

expr

x
(Data -----------....... ----r---...I
Page Pointer)

Example 5-1. Direct Addressing

ADD! @OBCDEh,R7

Before Instruction:

DP = 8Ah

R7=Oh

31 24

o 0 ... 0 0

31

Data at 8ABCDEh = 12345678h

5-4

operand

After Instruction:

DP = 8Ah

R7 = 12345678h

Data at 8ABCDEh = 12345678h

Types of Addressing

5.1.3 Indirect Addressing

Indirect addressing is used to specify the address of an operand in memory
through the contents of an auxiliary register, optional displacements, and in­
dex registers. Only the 24 least significant bits of the auxiliary registers and in­
dex registers are used in indirect addressing. This arithmetic is performed by
the auxiliary register arithmetic units (ARAUs) on these lower 24 bits and Is un­
signed. The upper eight bits are unmodified.

The flexibility of indirect addressing is possible because the ARAUs on the
TMS320C3x modify auxiliary registers in parallel with operations within the
main CPU. Indirect addressing is specified by a five-bit field in the instruction
word, referred to as the mod field. A displacement is either an explicit unsigned
eight-bit integer contained in the instruction word or an implicit displacement
of one. Two index registers, IRO and IR1 , can also be used in indirect address­
ing. In some cases, an optional addressing scheme using circular or bit-rev­
ersed addressing can be used. The mechanism for generating addresses in
circular addressing is discussed in Section 5.3 on page 5-24; bit-reversed is
discussed in Section 5.4 on page 5-29.

Note: Auxiliary Register

The auxiliary register (ARn) to be used is encoded in the instruction word ac­
cording to its binary representation n (for example, AR3 is encoded as 11 ~,
not its register machine address (shown in Table 5-1).

Example 5-2.Auxiliary Register Indirect

An auxiliary register (ARn) contains the address of the operand to be fetched.

Operation: operand address = ARn
Assembler Syntax: *ARn
Modification Field: 11000

31 24 23 0

ARn x x address

31

operand

Table 5-2 lists the various kinds of indirect addressing, along with the value
of the modification (mod) field, assembler syntax, operation, and function for
each. The succeeding 17 examples show the operation for each kind of indi­
rect addressing. Figure 5-2 shows the format in the instruction encoding.

Addressing 5-5

Types of Addressing

Table 5-2. Indirect Addressing

Mod Field Syntax Operation Description

Indirect Addressing with Displacement

00000

00001

00010

00011

00100

00101

00110

00111

*+ARn(disp) addr = ARn + disp With predisplacement add

*-ARn(disp) addr = ARn - disp

*++ARn(disp) addr = ARn + disp
ARn = ARn + disp

*--ARn(disp) addr = ARn - disp
ARn = ARn - disp

*ARn++(disp) addr = ARn
ARn = ARn + disp

*ARn--(disp) addr = ARn
ARn = ARn - disp

*ARn++(disp)% addr = ARn
ARn = circ(ARn + disp)

*ARn--(disp)% addr = ARn
ARn = circ(ARn - disp)

With predisplacement subtract

With predisplacement add and modify

With predisplacement subtract and modify

With postdisplacement add and modify

With postdisplacement subtract and modify

With postdisplacement add and circular modify

With postdisplacement subtract and circular
modify

Indirect Addressing with Index Register IRO

01000 *+ARn(IRO) addr = ARn + IRO With preindex (IRO) add

01001

01010

01011

01100

01101

01110

01111

Legend: addr

5-6

ARn
circO
disp

*-ARn(IRO) addr = ARn - IRO

*++ARn(I RO) addr = ARn + IRO
ARn = ARn + IRO

*--ARn(IRO) addr = ARn - IRO
ARn = ARn - IRO

*ARn++(IRO) addr = ARn
ARn = ARn + IRO

*ARn--(IRO) addr= ARn
ARn = ARn - IRO

*ARn++(IRO)% addr = ARn
ARn = circ(ARn + IRO)

*ARn--(IRO)% addr = ARn
ARn = circ(ARn)-IRO

memory address
auxiliary register ARO-AR7
address in circular addressing
displacement

With preindex (IRO) subtract

With preindex (IRO) add and modify

With preindex (IRO) subtract and modify

With postlndex (IRO) add and modify

With postindex (IRO) subtract and modify

With postindex (IRO) add and circular
modify

With postindex (IRO) subtract and circular
modify

++ add and modify
subtract and modify
where circular addressing is performed

Types of Addressing

Table 5-2. Indirect Addressing (Continued)

Mod Field

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

Syntax

*+ARn(IR1)

*-ARn(IR1)

*++ARn(IR1)

*--ARn(IR1)

*ARn++ (IR1)

*ARn--(IR1)

*ARn++(IR1)%

*ARn--(IR1)%

*ARn

*ARn++(IRO)B

Operation Description

Indirect Addressing with Index Register IR1

addr = ARn + IR1 With preindex (IR1) add

addr = ARn - IR1 With preindex (IR1) subtract

addr = ARn + IR1 With preindex (IR1) add
ARn = ARn + IR1 and modify

addr = ARn -IR1 With preindex (IR1) subtract
ARn = ARn -IR1 and modify

addr = ARn With postindex (IR1) add
ARn = ARn + IR1 and modify

addr = ARn With postindex (IR1) subtract
ARn = ARn - IR1 and modify

addr = ARn With postindex (IR1) add
ARn = circ(ARn + IR1) and circular modify

addr = ARn With postindex (IR1) subtract
ARn = circ(ARn -IR1) and circular modify

Indirect Addressing (Special Cases)

addr = ARn

addr = ARn
ARn = B(ARn + IRO)

Indirect

With postindex (IRO) add
and bit-reversed modify

Legend: addr memory address circO address in circular addressing
add and modify ARn

B
auxiliary register ARO-AR7 ++
where bit-reversed addressing is performed % where circular addressing is performed

Example 5-3, Example 5-4, Example 5-5, Example 5-6, Example 5-7,
Example 5-8, Example 5-9, Example 5-10, Example 5-11, Example 5-12,
Example 5-13, Example 5-14, Example 5-15, Example 5-16,
Example 5-17, Example 5-18, and Example 5-19 exemplify indirect addres­
sing in Table 5-2.

Figure 5-2. Instruction Encoding Format

Most Significant Bit Least Significant Bit

I ~""-M-OD---A-R-n---d-is-pt~--'~ I
5 Bits 3 Bits 0, 5, or 8 Bits

t disp field may not exist in some instructions

Addressing 5-7

Types of Addressing
:1:101

Example 5-3. Indirect With Predisplacement Add

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and the displacement (disp). The displacement is either an eight-bit un­
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn + disp

Assembler Syntax: *+ ARn(disp)

Modification Field: 00000

31 2423 0

ARn--tj x xl address I
31 8 7 0

displ 0 0 ... 0 01 integer ~ (+) ,
~ 31 0

I operand

Example 5-4. Indirect With Predisplacement Subtract

5-8

The address ofthe operand to be fetched is the contents of an auxiliary register
(ARn) minus the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn - disp

Assembler Syntax: *- ARn(disp)

Modification Field: 00001

31 2423 0

ARn --tj x xl address I
31 8 7 0

displ 0 0 ... 0 01 I---. (-) integer

31 ~ 0

I operand I

Types of Addressing

Example 5-5. Indirect With Predisplacement Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.
After the data is fetched, the auxiliary register is updated with the address gen­
erated.

Operation:

Assembler Syntax:
Modification Field:

31

ARn x

31

0 ... 0

31

operand address = ARn + disp
ARn = ARn + disp
*++ ARn (disp)
00010

address

8 7 0

o I integer ~ (.. +}_....J

operand

Example 5-6. Indirect With Predisplacement Subtract and Modify

The address ofthe operand to be fetched is the contents of an auxiliary register
(ARn) minus the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1. Af­
ter the data is fetched, the auxiliary register is updated with the address gener­
ated.

Operation:

Assembler Syntax:
Modification Field:

31

ARn x

31

0 ... 0

31

operand address = ARn - disp
ARn = ARn - disp
*-- ARn(disp)
00011

address

870

o I integer ~ (-..)_~

operand

Addressing 5-9

Types of Addressing

Example 5-7. Indirect With Postdisplacement Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
auxiliary register. The displacement is either an eight-bit unsigned integer con­
tained in the instruction word or an implied value of 1 .

Operation: operand address = ARn
ARn = ARn + disp

Assembler Syntax: *ARn ++ (disp)

Modification Field: 00100

31

ARn x x address

31 8 7 0

diSpl 0 0 ... 0 o I integer f-. (+)

31

operand

Example 5-8. Indirect With Postdisplacement Subtract and Modify

5-10

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the auxiliary register. The displacement is either an eight-bit unsigned integer
contained in the instruction word or an implied value of 1 .

Operation: operand address = ARn
ARn = ARn - disp

Assembler Syntax: *ARn -- (disp)

Modification Field: 00101

31 2423

ARn x x address

31 8 7 0

diSpl 0 0 ... 0 01 integerf-.

31

operand

H

Types of Addressing

Example 5-9. Indirect With Postdisplacement Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
contents of the auxiliary register using circular addressing. This result is used
to update the auxiliary register. The displacement is either an eight-bit un­
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn + disp)

Assembler Syntax: *ARn ++ (disp)%
Modification Field: 00110

31 0

ARn x x address

31 8 7 0 (%)

disp I 0 0 ... 0 o I integer ~ (1)

31

operand

Example 5-10. Indirect With Postdisplacement Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the contents of the auxiliary register using circular addressing. This result is
used to update the auxiliary register. The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn

Assembler Syntax:
Modification Field:

ARn = circ(ARn - disp)
*ARn -- (disp)%
00111

31 24 23

31

dlSpl 0

ARn

0 ... 0

x

31

x address

8 7 0 (%)

o I Integer ~ (~)

operand

o

Addressing 5-11

Types of Addressing

Example 5-11. Indirect With Preindex Add

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and an index register (IRO or IR1).

Operation:
Assembler Syntax:

Modification Field:

31

ARn ---I x

31 24 23

IRm----l x x I
31

operand address = ARn + IRm
*+ ARn(IRm)

01000
10000

2423

x I

Index

ifm = 0
if m = 1

address

0

operand

to (+)

~

0

0

I
Example 5-12. Indirect With Preindex Subtract

5-12

The address of the operand to be fetched is the difference of an auxiliary regis­
ter (ARn) and an index register (IRO or IR1).

Operation:

Assembler Syntax:

Modification Field:

31

AAn~x
31 24 23

IRm-tf x x I
31

I

operand address = ARn - IRm

*- ARn(IRm)

01001
10001

2423

x I

index

ifm = 0
if m = 1

address

0

~
operand

I
(-)

~

0

0

Types of Addressing

Example 5-13. Indirect With Preindex Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and an index register (lRO or IR1). After the data is fetched, the auxiliary
register is updated with the address generated.

Operation: operand address = ARn + IRm
ARn = ARn + IRm

Assembler Syntax: *++ ARn(IRm)
Modification Field: 01010 if m = 0

10010 ifm = 1

31

ARn x x address

31 2423 0

IRm~x xl Index ~ (+)

31

operand

Example 5-14. Indirect With Preindex Subtract and Modify

The address of the operand to be fetched is the difference between an auxiliary
register (ARn) and an index register (IRO or IR1). The resulting address be­
comes the new contents of the auxiliary register.

Operation: operand address = ARn - IRm
ARn = ARn - IRm

Assembler Syntax: *--ARn(IRm)
Modification Field: 01011 if m = 0

10011 if m = 1

31

ARn x x address

31 24 23 0

IRm--l x xl
index ~ (-)

31

operand

Addressing 5-13

Types of Addressing

Example 5-15. Indirect With Postindex Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO or IR1) is added
to the auxiliary register.

Operation: operand address = ARn
ARn = ARn + IRm

Assembler Syntax: *ARn ++ (IRm)

Modification Field: 01100 ifm = 0
10100 if m = 1

31 24 23

ARn x x address

31 24 23 0

IRm --'1 X xl index r-+
31

operand

(+)

0

Example 5-16. Indirect With Postindex Subtract and Modify

5·14

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO or IR1) is sub­
tracted from the auxiliary register.

Operation: operand address = ARn
ARn = ARn - IRm

Assembler Syntax: *ARn -- (IRm)

Modification Field: 01101 ifm = 0
10101 if m = 1

31 24 23

ARn x x address

31 24 23 0

IRm---l x xl index ~
31

operand

(-)

Types of Addressing

Example 5-17. Indirect With Postindex Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO or IR1) is added
to the auxiliary register. This value is evaluated using circular addressing and
replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn + IRm)

Assembler Syntax: *ARn ++ (IRm)%

Modification Field: 01110 if m = 0
10110 if m = 1

31 2423
ARn x x address

31 24 23 0

IRm -+i x xl Index ~
31

operand

Example 5-18. Indirect With Postindex Subtract and Circular Modify

(%)
I

(+)

0

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO or IR1) is sub­
tracted from the auxiliary register. This result is evaluated using circular ad­
dressing and replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn - IRm)

Assembler Syntax: *ARn -- (IRm)%

Modification Field: 01111 if m = 0
10111 if m = 1

31 2423

ARn x x address

31 24 23 0 (%)

IRm ----I x x I index J--. (!)

31 o
operand

Addressing 5-15

Types of Addressing

Example 5-19. Indirect With Postindex Add and Bit-Reversed Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IRO) is added to the
auxiliary register. This addition is performed with a reverse-carry propagation
and can be used to yield a bit-reversed (B) address. This value replaces the
contents of the auxiliary register.

Operation:

Assembler Syntax:

Modification Field:

ARn

31

x

operand address = ARn

ARn = B(ARn + IRO)

*ARn ++ (IRO)B

11001

address

31 24 23 0 (8)

IRm ---I ... x ____ x I ______ in_de_x ____ ~~ (~)
31

operand

5.1.4 Short-Immediate Addressing

5-16

In short-immediate addressing, the operand is a 16-bit immediate value con­
tained in the 16 least significant bits of the instruction word (expr). Depending
on the data types assumed for the instruction, the short-immediate operand
can be a two's complement integer, an unsigned integer, or a floating-point
number. This is the syntax for this mode:

Syntax: expr

Types of Addressing

Example ~20 illustrates before- and after-instruction data.

Example 5-20. Short-Immediate Addressing
SUBI l,RO

Bafora Instruction: Aftar Instruction:

RO=Oh RO = OFFFFFFFFh

5.1.5 Long-Immediate Addressing

In long-immediate addressing, the operand is a 24-bit immediate value con­
tained in the 24 least significant bits of the instruction word (expr). This is the
syntax for this mode:

Syntax: axpr

Example ~21 illustrates before- and after-instruction data.

Example 5-21. Long-Immediate Addressing

BR 8000h

Bafora Instruction: Aftar Instruction:

PC=Oh PC = 8000h

5.1.6 PC-Relative Addressing

Program counter (PC)-relative addressing is used for branching. It adds the
contents of the 16 or 24 least significant bits of the instruction word to the PC
register. The assembler takes the src (a label or address) specified by the user
and generates a displacement. If the branch is a standard branch, this dis­
placement is equal to [label - (instruction address +1)]. If the branch is a
delayed branch, this displacement is equal to [label - (instruction ad­
dress + 3)].

The displacement is stored as a 16-bit or 24-bit signed integer in the least sig­
nificant bits of the instruction word. The displacement is added to the PC during
the pipeline decode phase. Notice that because the PC is incremented by 1
in the fetch phase, the displacement is added to this incremented PC value.

Syntax: axpr (src)

Example ~22 illustrates before- and after-instruction data.

Addressing 5-17

Types of Addressing

Example 5-22. PC-Relative Addressing

BU NEWPC; pc"'lOOlh, NEWPC label'" 100Sh, displacement - 3

Before Instruction
decode phase:

PC = 1002h

After Instruction
execution phase:

PC = 1005h

The 24-bit addressing mode encodes the program control instructions (for ex­
ample, BR, BRD, CALL, RPTB, and RPTBD). Depending on the instruction,
the new PC value is derived by adding a 24-bit signed value in the instruction
word with the present PC value. Bit 24 determines the type of branch (0 = 0
for a standard branch or 0 = 1 for a delayed branch). Some of the instructions
are encoded in Figure 5-3.

Figure 5-3. Encoding for 24-8it PC-Relative Addressing Mode

(a) BR, BRD: unconditional branches (standard and delayed)

31 252423 o

10 1 1 0 0 0 0101 displacement

(b) CALL: unconditional subroutine call

31 2423 o
10 1 1 0 0 0 1 ,0 I displacement

(c) RPTB: repeat block

31 25 2423 o
10 1 1 0 0 1 0101 displacement

5-18

Groups of Addressing Modes

5.2 Groups of Addressing Modes

Six types of addressing (covered in Section 5.1, beginning on page 5-2) form
these four groups of addressing modes:

o General addressing modes (G)
o Three-operand addressing modes (T)
o Parallel addressing modes (P)
o Conditional-branch addressing modes (B)

5.2.1 General Addressing Modes

Instructions that use the general addressing modes are general-purpose in­
structions, such as ADDI, MPYF, and LSH. Such instructions usually have this
form:

dst operation src - dst

where the destination operand is signified by dst and the source operand by
src; operation defines an operation to be performed on the operands using the
general addressing modes. Bits 31-29 are 0, indicating general addressing
mode instructions. Bits 22 and 21 specify the general addressing mode (G)
field, which defines how bits 15-0 are to be interpreted for addressing the src
operand.

Options for bits 22 and 21 (G field) are as follows:

o 0 register (all CPU registers unless specified otherwise)
01 direct
1 0 indirect
1 1 immediate

If the src and dstfields contain register specifications, the value in these fields
contains the CPU register addresses as defined by Table 5-1 on page 5-3.
For the general addressing modes, the following values of ARn are valid:

ARn, 0 :s; n:s; 7

Figure 5-4 shows the encoding for the general addressing modes. The nota­
tion mod indicates the modification field that goes with the ARn field. Refer to
Table 5-2 on page 5-6 for further information.

Addressing 5·19

Groups of Addressing Modes

Figure 5-4. Encoding for General Addressing Modes

31 2928 2322 2120 1815 1110 87 54 o

000 operation 0 0 dst 00000000000 I src

000 operation 0 1 dst direct

000 operation 1 0 dst modn ARn di8p

000 operation 1 1 dst Immediate

G Destination Source Operands

5.2.2 Three-Operand Addressing Modes

5-20

Instructions that use the three-operand addressing modes, such as
ADDI3, LSH3, CMPF3. or XOR3, usually have this form:

SRC1 operation SRC2 - dst

where the destination operand is signified by dst and the source operands by
SRC1 and SRC2; operation defines an operation to be performed. Note that
the 3 can be omitted from three-operand instructions.

Bits 31-29 are set to the value of 001, indicating three-operand addressing
mode instructions. Bits 22 and 21 specify the three-operand addressing mode
(T) field, which defines how bits 15-0 are to be interpreted for addressing the
SRC operands. Bits 15--8 define the SRC1 address; bits 7-0 define the SRC2
address. Options for bits 22 and 21 (T) are as follows:

T SRC1 SRC2

o 0 register register
o 1 indirect register
1 0 register indirect
1 1 indirect indirect

Figure 5-5 shows the encoding for three-operand addressing. If the SRC1
and SRC2 fields use the same auxiliary register, both addresses are correctly
generated. However, only the value created by the SRC1 field is saved in the
auxiliary register specified. The assembler issues a warning if you specify this
condition.

The following values of ARn and ARm are valid:

ARn,O:iS n:iS 7
ARm,O:iSm~7

Groups of Addressing Modes

The notation modm or modn indicates that the modification field goes with the
ARm or ARn field, respectively. Refer to Table 5-2 on page 5-6 for further
information.

In indirect addressing of the three-operand addressing mode, displacements
(if used) are allowed to be 0 or 1, and the index registers (IRO and IR1) can be
used. The displacement of 1 is implied and is not explicitly coded in the instruc­
tion word.

Figure 5-5. Encoding for Three-Operand Addressing Modes

31 2928 2322 2120 1615 13121110 87 54 3 2

0 0 1 operation 0 0 dst o 0 0 I src1 000 src2

0 0 1 operation 0 1 dst modn I ARn 000 src2

0 0 1 operation 1 0 dst o 0 0 I src1 modn ARn

0 0 1 operation 1 1 dst modn I ARn modm ARm

T SRC1 SRC2

5.2.3 Parallel Addressing Modes

Instructions that use parallel addressing, indicated by II (two vertical bars), al­
low the most parallelism possible. The destination operands are indicated as
d1 and d2, signifying dst1 and dst2, respectively (see Figure 5-6). The source
operands, signified by src1 and src2, use the extended-precision registers.
Operation refers to the parallel operation to be performed.

Figure ~. Encoding for Parallel Addressing Modes

31 3029 26 25 2423 22 21 1918 1615 1011 87 32

src3 sr04

Addressing 5-21

o

o

Groups of Addressing Modes

5-22

The parallel addressing mode (P) field specifies how the operands are to be
used, that is, whether they are source or destination. The specific relationship
between the P field and the operands is detailed in the description of the indi­
vidual parallel instructions (see Chapter 10). However, the operands are al­
ways encoded in the same way. Bits 31 and 30 are set to the value of 10, indi­
cating parallel addreSSing mode instructions. Bits 25 and 24 specify the paral­
lel addressing mode (P) field, which defines how bits 21-0 are to be interpreted
for addressing the src operands. Bits 21-19 define the src1 address, bits
18-16 define the src2 address, bits 15-8 the src3 address, and bits 7-0 the
src4 address. The notations modn and modm indicate which modification field
goes with which ARn or ARm (auxiliary register) field, respectively. Following
is a list of the parallel addressing operands:

o src1
o src2
o d1
o d2
o P
o src3
o sr04

Os src1 s 7 (extended-precision registers RO-R7)
o s src2 s 7 (extended-precision registers RQ-R7)
If 0, dst1 is RO. If 1, dst1 is R1.
If 0, dst2 is R2. If 1, dst2 is R3.
Os Ps3
indirect (disp = 0, 1, IRO, IR1)
indirect (disp = 0, 1, IRO, IR1)

As in the three-operand addressing mode, indirect addressing in the parallel
addressing mode allows for displacements of 0 or 1 and the use of the index
registers (IRO and IR1). The displacement of 1 is implied and is not explicitly
coded in the instruction word.

In the encoding shown for this mode in Figure 5-6 on page 5-21, if the src3
and sr04 fields use the same auxiliary register, both addresses are correctly
generated, but only the value created by the src3 field is saved in the auxiliary
register specified. The assembler issues a warning if you specify this condi­
tion.

Groups of Addressing Modes

5.2.4 Conditional-Branch Addressing Modes

Instructions using the conditional-branch addressing modes (Bcond, BconoD,
CALLcond, DBcond, and DBconoO) can perform a variety of conditional oper­
ations. Bits 31-27 are set to the value of 011 01 , indicating conditional-branch
addressing mode instructions. Bit 26 is set to 0 or 1; 0 selects DBcond, 1 se­
lects Bcond. Selection of bit 25 determines the conditional-branch addressing
mode (B). If B = 0, register addressing is used; if B = 1, PC-relative addressing
is used. Selection of bit 21 sets the type of branch: D = 0 for a standard branch
or D = 1 for a delayed branch. The condition field (cono) specifies the condition
checked to determine what action to take, that is, whether to branch (see
Chapter 10 for a list of condition codes). Figure 5-7 shows the encoding for
conditional-branch addressing.

Figure 5-7. Encoding for Conditional-Branch Addressing Modes

DBcond(D):

31 27 26 25 24 22 21 20 16 15 5 4 o
0 1 1 0 1 1 B ARn D cond o 00 000000001 srcreg

0 1 1 0 1 1 B ARn D cond immediate (PC relative)

Bcond(D):

31 27 26 25 24 22 21 20 16 15 5 4 o
0 1 1 0 1 0 B 000 D cond 000 000000001 srcreg

0 1 1 0 1 0 B 000 D cond Immediate (PC relative)

CALLcond:

31 27 26 25 24 22 21 20 16 15 5 4 o
0 1 1 1 0 0 B 000 0 cond o 00 000000001 srcreg

0 1 1 1 0 0 B 000 0 cond immediate (PC relative)

Addressing 5-23

Circular Addressing

5.3 Circular Addressing

5-24

Many algorithms, such as convolution and correlation, require the implemen­
tation of a circular buffer in memory. In convolution and correlation, the circular
buffer is used to implement a sliding window that contains the most recent data
to be processed. As new data is brought in, the new data overwrites the oldest
data. Key to the implementation of a circular buffer is the implementation of a
circular addressing mode. This section describes the circular addressing
mode of the TMS320C3x.

The block size register (BK) specifies the size of the circular buffer. By labeling
the most significant 1 of the BK register as bit N, with N :s 15, you can find the
address immediately following the bottom of the circular buffer by concatenat­
ing bits 31 through N + 1 of a user-selected register (ARn) with bits N through
o of the BK register. The address of the top of the buffer is referred to as the
effective base (EB) and can be found by concatenating bits 31 through N + 1
of ARn, with bits N through 0 of EB being O.

Figure!HJ illustrates the relationships between the block size register (BK),
the auxiliary registers (ARn) , the bottom of the circular buffer, the top of the cir­
cular buffer, and the index into the circular buffer.

A circular buffer of size R must start on a K-bit boundary (that is, the K LSBs
of the starting address of the circular buffer must be 0), where K is an integer
that satisfies 2K> R. Since the value R must be loaded into the BK register,
K ~ N + 1. For example, a 31-word circular buffer must start at an address
whose five LSBs are 0 (that is, ~,
and the value 31 must be loaded into the BK register.

Figure 5-8. Flowchart for Circular Addressing

New
ARn

Legend: ARn
EB
L
LSB

A Rn

31

I

31 N + 1 N o
H ... H I L •.• L

1 I
31 r N + 1 N

EB I H ... H I 0 ... 0

Top of Buffer + 1

31

Index I

New I Index

N+1 N 1
H ... H I L' ... L'

auxiliary register n
effective base
low-order bits
least significant bit

N+1

H ... H

0 ... 0

0

I

I

I

Circular Addressing

Most significant 1 at location N, where N:s; 15

BK

0

I

N

L ... L

Circular
Addressing
Algorithm

Logic

L' ... L'

BK
H
L'
N

31 N + 1 J, N 0

1 (N LSBs
0 ... 0 ofBI<)

31 1 N + 1 N

H ... H
1 (N LSBs

ofBI<)

Bottom of Buffer + 1

0

blocksize register
high-order bits
new low-order bits
bit value

0

Addressing 5-25

Circular Addressing

In circular addressing, index refers to the N LSBs of the auxiliary register se­
lected, and step is the quantity being added to or subtracted from the auxiliary
register. Follow these two rules when you use circular addressing:

o The step used must be less than or equal to the block size. The step size
is treated as an unsigned integer.

o The first time the circular queue is addressed, the auxiliary register must
be pointing to an element in the circular queue.

The algorithm for circular addressing is as follows:

If 0 :s; index + step < BK:
index = index + step.

Else if index + step :it BK:
index = index + step - BK.

Else if index + step < 0:
index = index + step + BK.

Figure 5-9 shows how the circular buffer is implemented and illustrates the re­
lationship of the quantities generated and the elements in the circular buffer.

Figure 5-9. Circular Buffer Implementation

5-26

Addre ..

31 N + 1 N

Effective Base (EB) I H ... H I 0 ... 0

MSBsofARn

o

31 N + 1 N 0

-

Auxiliary Reglater (ARn) I H ..• H L ... L -

MSBs of ARn LSBs of ARn

31 N + 1 N 0

I H ... H LSBsBK -

MSBsofARn

Data

Top of Circular Buffer

Element 0

Element 1

Element (N LSBs of ARn)

Last Element

Last Element + 1

Circular Addressing

Example 5-23 shows circular addressing operation. Assuming that all ARs
are four bits, let ARO = 0000, and BK = 0110 (block size of 6). Example 5-23
shows a sequence of modifications and the resulting value of ARO.
Example 5-23 also shows how the pointer steps through the circular queue
with a variety of step sizes (both incrementing and decrementing).

Example 5-23. Circular Addressing

Value

Oth -

2nd -

5th -

4th,3rd -

1st -

*ARO++(5)% ARO =
*ARO++(2)% ARO =
*ARO--(3)% ARO =
*ARO++(6)% ARO =
*ARO--% ARO =
*ARO ARO =

Data

Element 0

Element 1

Element 2

Element 3

Element 4

Element 5 (Last Element)

Last Element + 1

0
5
1
4
4
3

(Oth value)
(1st value)
(2nd value)
(3rd value)
(4th value)
(5th value)

Add,...

o

2

3

4

5

6

Addressing 5-27

Circular Addressing

Circular addressing is especially useful for the implementation of FIR filters.
Figure 5-10 shows one possible data structure for FI R filters. Note that the ini­
tial value of ARO points to h(N-1), and the initial value of AR1 points to x(O).
Circular addressing is used in the TMS32OC3x code for the FIR filter shown
in Example 5-24.

Figure 5-10. Data Structure for FIR Filters

Impulse Response Input Samples

ARO - h(N-1) x(N-1)

h(N-2) x(N-2)

h(2) x(2)

h(1) x(1)
h(O) x(O) - AR1

Example 5-24. FIR Filter Code Using Circular Addressing

5-28

* Initialization

*

*
*

LOI
LOI
LOI

TOP LOF
STF

*

LOF
LDF

* Filter

*

N,BK
H,ARO
X,ARl

IN, R3
R3,*AR1++'

O,RO
O,R2

RPTS N-l
MPYF3 *ARO++',*AR1++',RO

; Load block size.
; Load pointer to impulse response.
;Load pointer to bottom of input
;sample buffer.

;Read input sample.
;Store with other samples,
land point to top of buffer.
;Initialize RO.
;Initialize R2.

iRepeat next instruction.

II ADDF3 RO,R2,R2 iMultiply and accumulate.

*
ADOF RO,R2 iLast product accumulated.

STF
B

R2,Y
TOP

;Save result.
;Repeat.

Bit-Reversed Addressing

5.4 Bit-Reversed Addressing

Bit-reversed addressing on the TMS320C3x enhances execution speed and
program memory for FFT algorithms that use a variety of radices. The base
address of bit-reversed addressing must be located on a boundary of the size
of the table. For example, if IRO = 2n-1, the n LSBs of the base address must
be O. The base address of the data in memory must be on a 2n boundary. One
auxiliary register pOints to the physical location of a data value. IRO specifies
one-half the size of the FFT; that is, the value contained in IRO must be equal
to 2n-1 , where n is an integer and the FFT size is 2n. When you add IRO to the
auxiliary register by using bit-reversed addressing, addresses are generated
in a bit-reversed fashion.

To illustrate this kind of addressing, assume eight-bit auxiliary registers. Let
AR2 contain the value 0110 0000 (96). This is the base address of the data in
memory. Let IRO contain the value 0000 1000 (8). Example 5-25 shows a se­
quence of modifications of AR2 and the resulting values of AR2.

Example 5-25. Bit-Reversed Addressing

*AR2++(IRO)B AR2 - 0110 0000 (Oth value)
*AR2++(IRO)B AR2 - 0110 1000 (1st value)
*AR2++(IRO)B AR2 - 0110 0100 (2nd value)
*AR2++(IRO)B AR2 - 0110 1100 (3rd value)
*AR2++(IRO)B AR2 = 0110 0010 (4th value)
*AR2++(IRO)B AR2 - 0110 1010 (5th value)
*AR2++(IRO)B AR2 - 0110 0110 (6th value)
*AR2 AR2 - 0110 1110 (7th value)

Table 5-3 shows the relationship of the index steps and the four LSBs of AR2.
You can find the four LSBs by reversing the bit pattern of the steps.

Addressing 5-29

Bit-Reversed Addressing

Table 5-3. Index Steps and Bit-Reversed Addressing

Step Bit Pattern Blt·Reversed Pattern Blt·Reversed Step

0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12

4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14

8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
11 1011 1101 13

12 1100 0011 3
13 1101 1011 11
14 1110 0111 7
15 1111 1111 15

5-30

System and User Stack Management

5.5 System and User Stack Management

The TMS320C3x provides a dedicated system stack pointer (SP) for building
stacks in memory. The auxiliary registers can also be used to build a variety
of more general linear lists. This section discusses the implementation of the
following types of linear lists:

o Stack

The stack is a linear list for which all insertions and deletions are made at
one end of the list.

o Queue

The queue is a linear list for which all insertions are made at one end of the
list and all deletions are made at the other end.

o Dequeue

The dequeue is a double-ended queue linear list for which insertions and
deletions are made at either end of the list.

5.5.1 System Stack Pointer

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The system stack fills from low-memory address
to high-memory address (see Figure 5-11). The SP always points to the last
element pushed onto the stack. A push performs a preincrement, and a pop
performs a postdecrement of the system stack pointer.

The program counter is pushed onto the system stack on subroutine calls,
traps, and interrupts. It is popped from the system stack on returns. The sys­
tem stack can be pushed and popped using the PUSH, POP, PUSHF, and
POPF instructions.

Figure 5-11. System Stack Configuration

Low Memory

Bottom of Stack

Sp - Top of Stack

(Free)

High Memory

Addressing 5-31

System and User Stack Management

5.5.2 Stacks

Stacks can be built from low to high memory or high to low memory. Two cases
for each type of stack are shown. Stacks can be built using the preincrement/
decrement and postincrement/decrement modes of modifying the auxiliary
registers (AR). Stack growth from high-to-Iow memory can be implemented in
two ways:

CASE 1: Stores to memory using *--ARn to push data onto the stack and
reads from memory using *ARn++ to pop data off the stack.

CASE 2: Stores to memory using *ARn--to push data onto the stack and
reads from memory using * ++ ARn to pop data off the stack.

Figure 5-12 illustrates these two cases. The only difference is that in case 1,
the AR always points to the top ofthe stack, and in case 2, the AR always points
to the next free location on the stack.

Figure 5-12. Implementations of High-to-Low Memory Stacks

5-32

ARn -

Case 1
Low Memory

(Free)

Top of Stack

Bottom of Stack

High Memory

ARn -

Case 2
Low Memory

(Free)

Top of Stack

Bottom of Stack

High Memory

Stack growth from low-to-high memory can be implemented in two ways:

CASE 3: Stores to memory using *++ARn to push data onto the stack and
reads from memory using *ARn--to pop data off the stack.

CASE 4: Stores to memory using *ARn++ to push data onto the stack and
reads from memory using *--ARn to pop data off the stack.

Figure 5-13 shows these two cases. In case 3, the AR always points to the top
of the stack. In case 4, the AR always points to the next free location on the
stack.

System and User Stack Management

Figure 5-13. Implementations of Low-to-High Memory Stacks

5.5.3 Queues

ARn -

Case 3
Low Memory

Bottom of Stack

Top of Stack

(Free)

High Memory

ARn -

Case 4
Low Memory

Bottom of Stack

Top of Stack
(Free)

High Memory

A queue is like a FIFO. The implementation of queues is based on the manipu­
lation of auxiliary registers. Two auxiliary registers are used: one to mark the
front of the queue from which data is popped (or dequeued) and the other to
mark the rear of the queue where data is pushed. With proper management
of the auxiliary registers. the queue can also be circular. (A queue is circular
when the rear pointer is allowed to point to the beginning of the queue memory
after it has pointed to the end of the queue memory.)

Addressing 5-33

5-34

~:: jim j Giijj

Chapter 6

Program Flow Control
~ uw ~ml ···wwr!··;~m i·_.!'!inn::H!WII¥W!i!i!!ln!ilillmt!i!i!iml!MlI!i _~

E' W"t"i::i:'ii

The TMS320C3x provides a complete set of constructs that facilitate software
and hardware control of the program flow. Software control includes repeats,
branches, calls, traps, and returns. Hardware control includes operations,
reset, and interrupts. Because programming includes a variety of constructs,
you can select the one suited for your particular application.

Several interlocked operations instructions provide flexible multiprocessor
support and, through the use of external signals, a powerful means of
synchronization. They also guarantee the integrity of the communication and
result in a high-speed operation.

The TMS320C3x supports a nonmaskable external reset signal and a number
of internal and external interrupts. These functions can be programmed for a
particular application.

This chapter discusses the following major topics:

Topic Page

6-1

Repeat Modes

6.1 Repeat Modes

The repeat modes of the TMS320C3x can implement zero-overhead looping.
For many algorithms, most execution time is spent in an inner kernel of code.
Using the repeat modes allows these time-critical sections of code to be ex­
ecuted in the shortest possible time.

The TMS320C3x provides two instructions to support zero-overhead looping:

o RPTB (repeat a block of code). RPTB repeats execution of a block of code
a specified number of times.

o RPTS (repeat a single instruction). RPTS fetches a single instruction once
and then repeats its execution a number of times. Since the instruction is
fetched only once, bus traffic is minimized.

RPTB and RPTS are four-cycle instructions. These four cycles of overhead
occur during the initial execution of the loop. All subsequent executions of the
loop have no overhead (zero cycle).

Three registers (RS, RE, and RC) are associated with the updating ofthe pro­
gram counter (PC) when it is updated in a repeat mode. Table 6-1 describes
these registers.

Table 6-1. Repeat-Mode Registers

6-2

--Register Function

RS Repeat Start Address Register. Holds the address of the first instruc­
tion of the block of code to be repeated.

RE Repeat End Address Register. Holds the address of the last instruc­
tion of the block of code to be repeated.

RC Repeat Count Register. Contains one less than the number of times
the block remains to be repeated. For example, to execute a block
N times, load N-1 into RC.

For correct operation of the repeat modes, you must correctly initialize all of
the above-mentioned registers.

Repeat Modes

6.1.1 Repeat-Mode Control Bits

Two bits are important to the operation of RPTB and RPTS:

o RM bit. The repeat-mode flag (RM) bit in the status register specifies
whether the processor is running in the repeat mode.

• RM = 0 indicates standard instruction fetching mode.
• RM = 1 indicates repeat-mode instruction fetches.

o S bit. The S bit is internal to the processor and cannot be programmed,
but this bit is necessary to fully describe the operation of RPTB and RPTS.

• S = 0 indicates standard instruction fetches.
• S = 1 and RM = 1 indicates repeat-single instruction fetches.

6.1.2 Repeat-Mode Operation

Information in the repeat-mode registers and associated control bits controls
the modification of the PC during repeat-mode fetches. The repeat modes
compare the contents of the RE register (repeat end address register) with the
PC after the execution of each instruction. If they match and the repeat counter
(RC) is nonnegative, the RC is decremented, the PC is loaded with the repeat
start address, and the processing continues. The fetches and appropriate sta­
tus bits are modified as necessary. Note that the RC is never modified when
the RM flag is O.

The repeat counter should be loaded with a value one less than the number
of times to execute the block; for example, an RC value of 4 would execute the
block five times. The detailed algorithm for the update of the PC is shown in
Example 6-1.

Note: Maximum Number of Repeats

The maximum number of repeats occurs when RC = 8000 OOOOh. This re­
sults in 8000 0001 h repetitions. The minimum number of repeats occurs
when RC = O. This results in one repetition.

RE should be greater than or equal to RS (RE Ot RS). Otherwise, the code
will not repeat even though the RM bit remains set to 1.

By writing a 0 into the repeat counter or writing 0 into the RM bit of the status
register, you can stop the repeating of the loop before completion.

Program Flow Control 6-3

Repeat Modes

Example 6-1. Repeat-Mode Control Algorithm

if RM == 1
if S == 1
if first time through

fetch instruction from memory
else

fetch instruction from IR
RC - 1 - RC
if RC < 0

o - ST(RM)

o - S
PC + 1 - PC

else if S == 0
fetch instruction from memory

if PC == RE
RC - 1 - RC

if RC ~ 0
RS - PC

else if RC < 0
o - ST(RM)

o - S
PC + 1 - PC

6.1.3 RPTB Instruction

If in repeat mode (RPTB or RPTS)
If RPTS
If this is the first fetch
Fetch instruction from memory
If not the first fetch
Fetch instruction from IR
Decrement RC
If RC is negative
Repeat single mode completed
Turn off repeat-mode bit
Clear S
Increment PC
If RPTB
Fetch instruction from memory
If this is the end of the block
Decrement RC
If RC is not negative
Set PC to start of block
If RC is negative
Turn off repeat mode bits
Clear S
Increment PC

The RPTB instruction repeats a block of code a specified number of times.

The number of times to repeat the block is the RC (repeat count) register value
plus one. Because the execution of RPTB does not load the RC, you must load
this register yourself. The RC register must be loaded before the RPTB instruc­
tion is executed. A typical setup of the block repeat operation is shown in
Example 6-2.

Example 6-2. RPTB Operation

STLOOP

ENDLOOP

6-4

LDI lS,RC
RPTB ENDLOOP

Load repeat counter with 15
Execute the block of code
from STLOOP to ENDLOOP 16 times

Repeat Modes

Using the repeat-block mode of modifying the PC facilitates analysis of what
would happen in the case of branches within the block. Assume that the next
value of the PC will be either PC + 1 or the contents of the RS register. It is thus
apparent that this method of block repeat allows much branching within the
repeated block. Execution can go anywhere within the user's code via inter­
rupts, subroutine calls, etc. For proper modification of the loop counter, the last
instruction of the loop must be fetched. You can stop the repeating of the loop
prior to completion by writing a 0 to the repeat counter or writing a 0 to the RM
bit of the status register.

6.1.4 RPTS Instruction

An RPTS src instruction repeats the instruction following the RPTS src + 1
times. Repeats of a single instruction initiated by RPTS are not interruptible,
because the RPTS fetches the instruction word only once and then keeps it
in the instruction register for reuse. An interrupt would cause the instruction
word to be lost. Refetching the instruction word from the instruction register
reduces memory accesses and, in effect, acts as a one-word program cache.
If you need a single instruction that is repeatable and interruptible, you can use
the RPTB instruction.

When RPTS src is executed, the following sequence of operations occurs:

1) PC + 1 - RS
2) PC + 1 - RE
3) 1 - RM status register bit
4} 1 - S bit
5) src - RC (repeat count register)

The RPTS instruction loads all registers and mode bits necessary for the oper­
ation of the single-instruction repeat mode. Step 1 loads the start address of
the block into RS. Step 2 loads the end address into the RE (end address of
the block). Since this is a repeat of a single instruction, the start address and
the end address are the same. Step 3 sets the status register to indicate the
repeat mode of operation. Step 4 indicates that this is the repeat Single-instruc­
tion mode of operation. Step 5 loads src into RC.

Program Flow Control 6-5

Repeat Modes

6.1.5 Repeat-Mode Restrictions

Since the block repeat modes modify the program counter, other instructions
cannot modify the program counter at the same time. There are two restric­
tions:

o The last instruction in the block (or the only instruction in a block of
size 1) cannot be a Bcond, BR, DBcond, CALL, CALLcond, TRAPcond,
RETlcond, RETScond, IDLE, RPTB, or RPTS. Example 6-3 shows an in­
correctly placed standard branch.

o None of the last four instructions from the bottom of the block (or the only
instruction in a block of size 1) can be a BconaD, BRD, or o BconaD.
Example 6-4 shows an incorrectly placed delayed branch.

Note: Rule Violation

If either of these rules is violated, the PC will be undefined.

Example 6-3. Incorrectly Placed Standard Branch

LOI 15,RC
RPTB ENOLOOP

STLOOP

ENOLOOP BR ooPS

Load repeat counter with 15
Execute the block of code
from STLOOP to ENDLOOP 16 times

This branch violates rule 1

Example 6-4. Incorrectly Placed Delayed Branch

LOI 15,RC
RPTB ENOLOOP

STLOOP

BRO oOPS
AOOF
MPYF

ENOLOOP SUBF

Load repeat counter with 15
Execute block of code
from STLOOP to ENOLOOP 16 times

This branch violates rule 2

6.1.6 RC Register Value After Repeat Mode Completes

6-6

For the RPTB instruction, the RC register normally decrements to 0000 OOooh
unless the block size is 1 ; in that case, it decrements to FFFF FFFFh. However,
if the RPTB instruction using a block size of 1 has a pipeline conflict in the
instruction being executed, the RC register decrements to 0000 OOOOh.
Example 6-5 illustrates a pipeline conflict. Refer to Chapter 9 for pipeline in­
formation.

Repeat Modes

RPTS normally decrements the RC register to FFFF FFFFh. However, if the
RPTS has a pipeline conflict on the last cycle, the RC register decrements to
OOOOOOOOh.

Note: Number of Repetitions

In any case, the number of repetitions is always RC + 1.

Example 6-5. Pipeline Conflict in an RPTB Instruction

EOC .word40000000h;
LOP EOC
LOI @EOC,ARO
LOI 1S,RC
RPTB ENOLOOP

ENOLOOPLOI *ARO,RO

6.1.7 Nested Block Repeats

The program is located in 4000000Fh

Load repeat counter with 15
Execute block of code
The *ARO read conflicts with
the instruction fetching
Then RC decrements to 0
If cache is enabled, RC decrements
to FFFF FFFFh

Block repeats (RPTB) can be nested. Since the registers RS, RE, RC, and ST
control the repeat-mode status, these registers must be saved and restored
in order to nest block repeats. For example, if you write an interrupt service
routine that requires the use of RPTB, it is possible that the interrupt asso­
ciated with the routine may occur during repeated execution of a block. The
interrupt service routine can check the RM bit to determine whether the block
repeat mode is active. If this RM is set, the interrupt routine should save ST,
RS, RE, and RC, in that order. The interrupt routine can then perform a block
repeat. Before returning to the interrupted routine, the interrupt routine should
restore RC, RE, RS, and ST, in that order. If the RM bit is not set, you don't need
to save and restore these registers.

The order in which the registers are saved/restored is important to guarantee
correct operation. The ST register should be restored last, after the RC, RE,
and RS registers. ST should be restored after restoring RC, because the RM
bit cannot be set to 1 if the RC registerisOor-1. Forthis reason, if you execute
a POP ST instruction (with ST (RM bit) = 1) while RC = 0, the POP instruction
recovers all the ST register bits but not the RM bit that stays at 0 (repeat mode
disabled). Also, RS and RE should be correctly set before you activate the re­
peat mode.

The RPTS instruction can be used in a block repeat loop if the proper registers
are saved.

Program Flow Control 6-7

Delayed Branches

6.2 Delayed Branches

6-8

The TMS320C3x offers three main types of branching: standard, delayed, and
conditional delayed.

Standard branches empty the pipeline before performing the branch; this
guarantees correct management of the program counter and results in a
TMS320C3x branch taking four cycles. Included in this class are repeats,
calls, returns, and traps.

Delayed branches on the TMS320C3x do not empty the pipeline, but rather
guarantee that the next three instructions will execute before the program
counter is modified by the branch. The result is a branch that requires only a
single cycle, thus making the speed of the delayed branch very close to that
of the optimal block repeat modes of the TMS320C3x. However, unlike block
repeat modes, delayed branches may be used in situations other than looping.
Every delayed branch has a standard branch counterpart that is used when
a delayed branch cannot be used. The delayed branches of the TMS320C3x
are BcondD, BRD, and DBcondD.

Conditional delayed branches use the conditions that exist at the end of the
instruction immediately preceding the delayed branch. They do not depend on
the instructions following the delayed branch. The condition flags are set by
a previous instruction only when the destination register is one of the exten­
ded-precision registers (RQ-R7) or when one of the compare instructions
(CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. Delayed
branches guarantee that the next three instructions will execute, regardless
of other pipeline conflicts.

When a delayed branch is fetched, it remains pending until the three subse­
quent instructions are executed. None of the three instructions that follow a
delayed branch can be any of the following (see Example 6-6):

Bcond DBcondD

BcondD IDLE

BR RETlcond

BRD RETScond

CALL RPTB

CALLcond RPTS

DBcond TRAPcond

Delayed branches disable interrupts until the three instructions following the
delayed branch are completed. This is independent of whether the branch is
taken.

Delayed Branches

Note: Incorrect Use of Delayed Branches

If delayed branches are used incorrectly, the PC will be undefined.

Example 6-6. Incorrectly Placed Delayed Branches

B1:

B2:

BD
HOP
HOP
B
HOP
HOP
HOP

L1

L2 This branch is incorrectly placed.

Program Flow Control 6·9

Calls, Traps, and Returns

6.3 Calls, Traps, and Returns

6-10

Calls and traps provide a means of executing a subroutine or function while
providing a return to the calling routine.

The CALL, CALLcond, and TRAPcond instructions store the value of the PC
on the stack before changing the PC's contents. The stack thus provides a re­
turn using either the RETScond or RETlcond instruction.

o The CALL instruction places the next PC value on the stack and places
the src (source) operand into the PC. The src is a 24-bit immediate value.
Figure 6-1 shows CALL response timing.

o The CALLcond instruction is similar to the CALL instruction (above) ex­
cept for the following:

• It executes only if a specific condition is true (the 20 conditions-in­
cluding unconditional-are listed in Table 10-9 on page 10-13).

• The src is either a PC-relative displacement or is in register-addres-
sing mode.

The condition flags are set by a previous instruction only when the destina­
tion register is one of the extended-precision registers (RO-R7) or when
one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or
TSTB3) is executed.

o The TRAPcondinstruction also executes only if a specific condition is true
(same conditions as for the CALLcond instruction). When executing, the
following actions occur:

1) Interrupts are disabled with 0 written to bit GIE of the ST.

2} The next PC value is stored on the stack.

3) A vector is retrieved from one of the addresses 20h to 3Fh and is
loaded into the PC.

The particular address is identified by a trap number in the instruction.
Using the RETlcondto return re-enables interrupts.

o RETScond returns execution from any of the above three instructions by
popping the top of the stack to the PC. To execute, the specified condition
must be true. Conditions are the same as for the CALLcond instruction.

o RETlcond returns from traps or calls like the RETScond (above) with the
addition that RETlcond also sets the GIE bit of the status register, which
enables all interrupts whose enabling bit is set to 1. Conditions are the
same as for the CALLcond instruction.

Calls, Traps, and Retums

Calls and traps accomplish the same functional task (that is, a subfunction is
called and executed, and control is then returned to the calling function). Traps
offer several advantages. Among them are the following:

o Interrupts are automatically disabled when a trap is executed. This allows
critical code to execute without risk of being interrupted. Thus, traps are
generally terminated with a RETlcond instruction to re-enable interrupts.

o You can use traps to indirectly call functions. This is particularly beneficial
when a kernel of code contains the basic subfunctions to be used byappli­
cations. In this case, the functions in the kernel can be modified and relo­
cated without the need to recompile each application.

Figure 6-1. CALL Response Timing

Fetch CALL

H3

H1

Decode CALL Read CALL Execute CALL
(Store PC
on Stack)

Fetch First
Subroutine
Instruction

ADDR -----------------« Vector Address X FirstJ::;tion)>-__ _

Data -----------------c(PC >-8----

Program Flow Control 6-11

Interlocked Operations

6.4 Interlocked Operations

Among the most common multiprocessing configurations is the sharing of
global memory by multiple processors. In order for multiple processors to ac­
cess this global memory and share data in a coherent manner, some sort of
arbitration or handshaking is necessary. This requirement for arbitration is the
purpose of the TMS320C3x interlocked operations.

The TMS320C3x provides a flexible means of multiprocessor support with five
instructions, referred to as interlocked operations. Through the use of external
signals, these instructions provide powerful synchronization mechanisms.
They also guarantee the integrity of the communication and result in a high­
speed operation. The interlocked-operation instruction group is listed in
Table 6-2.

Table 6-2. Interlocked Operations

6-12

Mnemonic Description

LDFI Load floating-point value into a register,
interlocked

LDII Load integer into a register, interlocked

SIGI Signal, interlocked

STFI Store floating-point value to memory,
interlocked

STII Store integer to memory, interlocked

Operation

Signal interlocked
src- dst

Signal interlocked
src- dst

Signal interlocked
Clear interlock

src- dst
Clear interlock

src- dst
Clear interlock

The interlocked operations use the two external flag pins, XFO and XF1. XFO
must be configured as an output pin; XF1 is an input pin. When configured in
this manner, XFO signals an interlock operation request, and XF1 acts as an
acknowledge signal for the requested interlocked operation. In this mode, XFO
and XF1 are treated as active-low signals.

The external timing for the interlocked loads and stores is the same as for stan­
dard loads and stores. The interlocked loads and stores may be extended like
standard accesses by using the appropriate ready signal (RDYint or XRDYinu,
(RDYint and XRDYint are a combination of external ready input and software
wait states. Refer to Chapter 7, External Bus Operation, for more information
on ready generation.)

Interlocked Operations

The LOFI and LOll instructions perform the following actions:

1) Simultaneously set XFO to 0 and begin a read cycle. The timing of XFO is
similar to that of the address bus during a read cycle.

2) Execute an LOF or LOI instruction and extend the read cycle until XF1 is
set to 0 and a ready (ROYint or XROYinU is Signaled.

3) Leave XFO set to 0 and end the read cycle.

The read/write operation is identical to any other read/write cycle except for
the special use of XFO and XF1. The src operand for LOFI and LOll is always
a direct or indirect memory address. XFO is set to 0 only if the src is located
off-chip; that is, STRB, MSTRB, or IOSTRB is active, or the src is one of the
on-chip peripherals. If on-chip memory is accessed, then XFO is not asserted,
and the operation is as an LOF or LOI from internal memory.

The STFI and STII instructions perform the following operations:

1) Simultaneously set XFO to 1 and begin a write cycle. The timing ofXFO is
similar to that of the address bus during a write cycle.

2) Execute an STF or STI instruction and extend the write cycle until a ready
(ROYint or XROYinU is signaled.

As in the case for LOFI and LOll, the dstof STFI and STII affects XFO. If dst
is located off-chip (STRB, MSTRB, or IOSTRB is active) or the dst is one of
the on-chip peripherals, XFO is set to 1. If on-chip memory is accessed, then
XFO is not asserted and the operations are as an STF or STI to internal
memory.

The SIGI instruction functions as follows:

1) Sets XFO to O.
2) Idles until XF1 is set to O.
3) Sets XFO to 1 and ends the operation.

While the LOFI, LOll, and SIGI instructions are waiting for XF1 to be set to 0,
you can interrupt them. LOFI and LOll require a ready signal (ROYint or'
XROYinU in order to be interrupted. Because interrupts are taken on bus cycle
boundaries (see Section 6.6), an interrupt may be taken any time after a valid
ready. This allows you to implement protection mechanisms against deadlock
conditions by interrupting an interlocked load that has taken too long. Upon re­
turn from the interrupt, the next instruction is executed. The STFI and STII
instructions are not interruptible. Since the STFI and STII instructions com­
plete when ready is signaled, the delay until an interrupt can occur is the same
as for any other instruction.

Program Flow Control 6-13

Interlocked Operations

Interlocked operations can be used to implement a busy-waiting loop, to
manipulate a multiprocessor counter, to implement a simple semaphore
mechanism, or to perform synchronization between two TMS320C3xs. The
following examples illustrate the usefulness of the interlocked operations in­
structions.

Example 6-7 shows the implementation of a busy-waiting loop. If location
LOCK is the interlock for a critical section of code, and a nonzero means the
lock is busy, the algorithm for a busy-waiting loop can be used as shown.

Example 6-7. Busy-Waiting Loop

LDI 1,RO
L1: LDII @LOCK,Rl

STII RO, @LOCK

BNZ Ll

Put 1 into RO
Interlocked operation begun
Contents of LOCK -+ Rl
Put RO (= 1) into LOCK, XFO - 1
Interlocked operation ended
Keep trying until LOCK - 0

Example 6-8 shows how a location COUNT may contain a count of the num­
ber of times a particular operation needs to be performed. This operation may
be performed by any processor in the system. If the count is 0, the processor
waits until it is nonzero before beginning processing. The example also shows
the algorithm for modifying COUNT correctly.

Example 6-8. Multiprocessor Counter Manipulation

6-14

CT: OR 4,IOF XFO - 1
Interlocked operation ended

LDII @COUNT,Rl Interlocked operation begun
Contents of COUNT -+ R1

BZ CT If COUNT - 0, keep trying
SUBI 1,Rl Decrement Rl (= COUNT)
STII al,@COUNT Update COUttT, XFO ~ 1

Interlocked operation ended

Figure 6-2 illustrates multiple TMS320C3xs sharing global memory and using
the interlocked instructions as in Example 6-9, Example 6-10, and
Example 6-11.

Interlocked Operations

Figure 6-2. Multiple TMS320C3xs Sharing Global Memory

Global Memory

a: ~ ...J
0

~ ~ 2§
1

Arbitration logic

Lock, Count, or S

XFO XF1 (X)A (X)A XFO XF1

TMS320C3x #1
(X) 0 (X) 0

TMS320C3x #2
CTRL CTRL

I I
Local Local

Memory Memory

It might sometimes be necessary for several processors to access some
shared data or other common resources. The portion of code that must access
the shared data is called a critical section ..

To ease the programming of critical sections, semaphores may be used.
Semaphores are variables that can take only non-negative integer values.
Two primitive, indivisible operations are defined on semaphores (with S being
a semaphore):

V(S): S + 1 -+ S

p (S) : P : if (S == 0), go to P

else S - 1 -+ S

Indivisibility of V(S} and P(S} means that when these processes access and
modify the semaphore S, they are the only processes accessing and modify­
ing S.

To enter a critical section, a P operation is performed on a common sema­
phore, say S (S is initialized to 1). The first processor performing P(S} will be
able to enter its critical section. All other processors are blocked because S
has become o. After leaving its critical section, the processor performs a V(S} ,
thus allowing another processor to execute P(S) successfully.

Program Flow Control 6-15

Interlocked Operations

The TMS320C3x code for V(S} is shown in Example 6-9; code for P{S} is
shown in Example 6-10. Compare the code in Example 6-10 to the code in
Example 6-8.

Example 6-9. Implementation of V(S)

V: LDII @S,RO

ADDI 1,RO
STII RO,@S

; Interlocked read of S begins (XFO 0)
; Contents of S - RO
; Increment RO (= S)
; Update S, end interlock (XFO 0)

Example 6-10. Implementation of P(S)

P: OR
NOP

LDII

BZ
SUBI
STII

4,IOF

@S,RO

P
1,RO
RO,@S

i End interlock (XFO = 1)
; Avoid potential pipeline conflicts when
; executing out of cache, on-chip memory
; or zero wait-state memory
; Interlocked read of S begins
; Contents of S - RO
; If S = 0, go to P and try again
; Decrement RO (= S)
; Update S, end interlock (XFO = 1)

The SIGI operation can synchronize, at an instruction level, multiple
TMS320C3xs. Consider two processors connected as shown in Figure 6-3.
The code for the two processors is shown in Example 6-11 .

Figure 6-3. Zero-Logic Interconnect of TMS320C3xs

6-16

TMS320C3x #1 TMS320C3x #2

XFO I ·1 ~F1
~ ______ X_F_1Jr-~--IL:~X~FO~ ____ ~

Processor #1 runs until it executes the SIGI. It then waits until processor #2
executes a SIGI. Atthis point, the two processors have synchronized and con­
tinue execution.

Interlocked Operations

Example 6-11. Code to Synchronize Two TMS320C3xs at the Software Level

Time Code for TMS320C3x #1 Code for TMS320C3x #2

0 • •
• •
• •

SIGI •

1
•
•
•

(WAIT) •

1
•
•
• ... Synchronization Occurs .. SIGI

• •
~ • •

• •
N • •

Program Flow Control 6-17

Reset Operation

6.5 Reset Operation

6-18

The TMS320C3x supports a nonmaskable external reset signal (RESET),
which is used to perform system reset. This section discusses the reset opera­
tion.

At powerup, the state of the TMS320C3x processor is undefined. You can use
the RESET signal to place the processor in a known state. This signal must
be asserted low for ten or more H1 clock cycles to guarantee a system reset.
H1 is an output clock signal generated by the TMS320C3x (see Chapter 13
for more information).

Reset affects the other pins on the device in either a synchronous or asynchro­
nous manner. The synchronous reset is gated by the TMS320C3x's internal
clocks. The asynchronous reset directly affects the pins and is faster than the
synchronous reset. Table 6-3 shows the state of the TMS320C3x's pins after
RESET = O. Each pin is described according to whether the pin is reset syn­
chronously or asynchronously.

Reset Operation

Table 6-3. Pin Operation at Reset

Signal 1# Pins Operation at Reset

Primary Interface (61 Pins)

D31-DO 32 Synchronous reset; placed in high-impedance state

A23-AO 24 Synchronous reset; placed in high-impedance state

R(W Synchronous reset; deasserted by going to a high level

STRB Synchronous reset; deasserted by going to a high level

RDY Reset has no effect.

HOLD Reset has no effect.

HOLDA Reset has no effect.

Expansion Interface (49 Plns)t

XD31-XDO 32 Synchronous reset; placed in high-impedance state

XA12-XAO 13 Synchronous reset; placed in high-impedance state

XR(W Synchronous reset; placed in high-impedance state

MSTRB Synchronous reset; deasserted by going to a high level

IOSTRB Synchronous reset; deasserted by going to a high level

XRDY Reset has no effect.

Control Signals (9 Pins)

RESET Reset input pin

INT3-INTO 4 Reset has no effect.

lACK Synchronous reset; deasserted by going to a high level

MC/MP or Reset has no effect.
MCBLJMP

XF1-XFO 2 Asynchronous reset; placed in high-impedance state

f Present only on TMS320C30

Program Flow Control 6-19

Reset Operation

Table 6-3. Pin Operation at Reset (Continued)

Signal

ClKXO

DXO

FSXO

ClKRO

DRO

FSRO

ClKX1

DX1

FSX1

ClKR1

DR1

FSR1

TClKO

TClK1

Voo (3-0)

IODVoO (1,0)

ADVoo (1,0)

PDVoo

DDVoo (1,0)

MDVoo

VSS (3-0)

'Pins

4

2

2

2

4

t Present only on TMS320C30

6-20

Operation at Reset

Serial Port 0 Signals (6 Pins)

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Serial Port 1 Signals (6 Pins) t

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Asynchronous reset; placed in high-impedance state

Timer 0 Signal (1 Pin)

Asynchronous reset; placed in high-impedance state

Timer 1 Signal (1 Pin)

Asynchronous reset; placed in high-impedance state

Supply and Oscillator Signals (29 Pins)

Reset has no effect.

Reset has no effect.

Reset has no effect.

Reset has no effect.

Reset has no effect.

Reset has no effect.

Reset has no effect.

Reset Operation

Table 6-3. Pin Operation at Reset (Continued)

Signal

DVss (3-0)

CVSS (1,0)

IVss

Veep

SUBS

X1

X2/CLKIN

H1

H3

EMUO

EMU1

EMU2

EMU3

EMU4/SHZ

EMust

EMUst

RSVOt

RSV1t

RSV2t

RSV3t

RSV4t

RSVst

RSV6t

RSV7t

Rsvat

RSV9t

RSV10t

1# Pins

2

2

1

t Present only on TMS320C30

Operation at Reset

Reset has no effect.

Reset has no effect.

Reset has no effect.

Reset has no effect.

Reset has no effect.

Reset has no effect.

Reset has no effect.

Synchronous reset. Will go to its initial state when RESET makes a 1 to 0
transition. See Chapter 13.

Synchronous reset. Will go to its initial state when RESET makes a 1 to 0
transition. See Chapter 13.

Emulation, Test, and Reserved (18 Pins)

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Program Flow Control 6-21

Reset Operation

6-22

At system reset, the following additional operations are performed:

o The peripherals are reset. This is a synchronous operation. The peripheral
reset is described in Chapter 8.

o The external bus control registers are reset. The reset values of the control
registers are described in Chapter 7.

o The following CPU registers are loaded with 0:

• ST (CPU status register)
• IE (CPU/DMA interrupt enable flags)
• IF (CPU interrupt flags)
• 10F (I/O flags)

o The reset vector is read from memory location Oh and loaded into the PC.
This vector contains the start address of the system reset routine.

o Execution begins. Refer to Example 11-1 on page 11-3 for an illustration
of a processor initialization routine.

Multiple TMS320C3xs driven by the same system clock may be reset and syn­
chronized. When the 1 to 0 transition of RESET occurs, the processor is placed
on a well-defined internal phase, and all of the TMS320C3xs will come up on
the same internal phase.

Unless otherwise specified, all registers are undefined atter reset.

6.6 Interrupts

Interrupts

The TMS320C3x supports multiple internal and external interrupts, which can
be used for a variety of applications. This section discusses the operation of
these interrupts.

A functional diagram of the logic used to implement the external interrupt
inputs is shown in Figure 6-4; the logic for internal interrupts is similar. Addi­
tional information regarding internal interrupts can be found in Chapter 8.

Figure 6-4. Interrupt Logic Functional Diagram

H1 H3 H1

Internal Interrupt
Set Signal

Internal Interrupt
Clear/Acknowledge GIE(DMA)

Signal
EINTn(DMA)

Internal
Interrupt

Processor

To
Control
Section

External interrupts are synchronized internally, as illustrated by the three flip­
flops clocked by H 1 and H3. Once synchronized, the interrupt input will set the
corresponding interrupt flag register (IF) bit if the interrupt is active.

External interrupts are latched internally on the falling edge of H 1 (see Chapter
13 for timing information). An external interrupt must be held low for at least
one H1/H3 cycle to be recognized by the TMS320C3x. Interrupts should be
held low for only one or two H 1 falling edges. If the interrupt is held low for three
or more H1 falling edges, multiple interrupts may be recognized.

6.6.1 Interrupt Vector Table

Table 6-4 and Table 6-5 contain the interrupt vectors. In the microprocessor
mode of the TMS320C30 and the TMS320C31 (Table 6-4) and the microcom­
puter mode of the TMS320C31 (Table 6-5), the interrupt vectors contain the
addresses of interrupt service routines that should start executing when an in­
terrupt occurs. On the other hand, in the microcomputer/boot loader mode of
the TMS320C31, the interrupt vector contains a branch instruction to the start
of the interrupt service routine.

Program Flow Control 6-23

Interrupts

Table 6-4. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30rrMS320C31
Microprocessor Mode

Address Routine

OOh RESET

01h INTO

02h INT1

03h INT2

04h INT3

05h XINTO

06h RINTO

07h XINT1t

08h RINT1t

09h TINTO

OAh TINT1

OSh DINT

OCh

1Fh
Reserved

20h TRAP 0

•

•

•

3Sh TRAP 27

3Ch TRAP 28 (Reserved)

3Dh TRAP 29 (Reserved)

3Eh TRAP 30 (Reserved)

3Fh TRAP 31 (Reserved)

f Reserved on TMS320C31

6-24

Interrupts

Table 6-5. Reset, Interrupt, and Trap Vector Locations for the TMS320C31 Microcomputer
Boot Mode

Address Description

809FC1 INTO

809FC2 INT1

809FC3 INT2

809FC4 INT3

809FC5 XINTO

809FC6 RINTO

809FC7 Reserved

809FC8 Reserved

809FC9 TINTO

809FCA TINT1

809FCB DINTO

809FCC-809FDF Reserved

809FEO TRAPO

809FE1 TRAP 1

• •

• •

•
809FFB TRAP27

809FFC-809FFF Reserved

6.6.2 Interrupt Prioritization

When two interrupts occur in the same clock cycle or when two previously
received interrupts are waiting to be serviced, one interrupt will be serviced be­
fore the other. The CPU handles this prioritization by servicing the interrupt
with the least priority. Table 6-6 shows the priorities assigned to the reset and
interrupt vectors.

The CPU controls all prioritization of interrupts (see Table 6-6 for reset and in­
terrupt vector locations and priorities).

Program Flow Control 6-25

Interrupts

Table 6-6. Reset and Interrupt Vector Priorities

Re.etor Vector
Interrupt location

RESET Oh

INTO 1h

INT1 2h

INT2 3h

INT3 4h

XINTO 5h

RINTO 6h

XINT1t 7h

RINT1t 8h

TINTO 9h

TINT1 OAh

DINT OBh

t Reserved on TMS320C31

Priority

0

1

2

3

4

5

6

7

8

9

10

11

Function

External reset signal input on the RESET pin

External interrupt on the INTO pin

External interrupt on the INT1 pin

External interrupt on the INT2 pin

External interrupt on the INT3 pin

Internal interrupt generated when serial-port 0 transmit buffer is empty

Internal interrupt generated when serial-port 0 receive buffer is full

Internal interrupt generated when serial-port 1 transmit buffer is empty

Internal interrupt generated when serial-port 1 receive buffer is full

Internal interrupt generated by timer 0

Internal interrupt generated by timer 1

Internal interrupt generated by DMA controller 0

6.6.3 Interrupt Control Bits

6-26

Fou~ CPU registers contain bits used to control interrupt operation:

o Status Register (S1)

The CPU global interrupt enable bit (GIE) located in the CPU status regis­
ter (51) controls all maskable CPU interrupts. When this bit is set to 1, the
CPU responds to an enabled interrupt. When this bit is cleared to 0, all
CPU interrupts are disabled. Refer to subsection 3.1.7 on page 3-4 for
more information.

o CPU/DMA Interrupt Enable Register (IE)

This register individually enables/disables CPU and DMA (external, serial
port, and timer) interrupts. Refer to subsection 3.1.8 on page 3-7 for more
information.

o CPU Interrupt Flag Register (IF)

This register contains interrupt flag bits that indicate the corresponding in­
terrupt is set. Refer to subsection 3.1.9 on page 3-9 for more information.

Interrupts

o DMA Global Control Register

Interrupts to the DMA are controlled by the synchronization bits of the
DMA global control register. DMA interrupts are independent of the ST
(GIE) bit.

Interrupt Flag Register Behavior

When an external interrupt occurs, the corresponding bit of the IF register is
set to 1. When the CPU or DMA controller processes this interrupt, the corre­
sponding interrupt flag bit is cleared by the internal interrupt acknowledge sig­
nal. It should be noted, however, that if INTn is still low when the interrupt ac­
knowledge signal occurs, the interrupt flag bit will be cleared for only one cycle
and then set again because INTn is still low. Accordingly, it is theoretically pos­
sible that, depending on when the IF register is read, this bit may be 0 even
though INTn is O. When the TMS320C3x is reset, 0 is written to the interrupt
flag register, thereby clearing all pending interrupts.

The interrupt flag register bits may be read and written under software control.
Writing a 1 to an IF register bit sets the associated interrupt flag to 1. Similarly,
writing a 0 resets the corresponding interrupt flag to o. In this way, all interrupts
may be triggered and/or cleared through software. Since the interrupt flags
may be read, the interrupt pins may be polled in software when an interrupt-dri­
ven interface is not required.

Internal interrupts operate in a similar manner. In the IF register, the bit corre­
sponding to an internal interrupt may be read and written through software.
Writing a 1 sets the interrupt latch; writing a 0 clears it. All internal interrupts
are one H1/H3 cycle in length.

The CPU global interrupt enable bit (GIE), located in the CPU status register
(ST), controls all CPU interrupts. All DMA interrupts are controlled by the DMA
global interrupt enable bit, which is not dependent on ST(GIE) and is local to
the DMA. The DMA global interrupt enable bit is dependent, in part, on the
state of the DMA SYNC bits. It is not directly accessible through software (see
Chapter 8). The AND of the interrupt flag bit and the interrupt enables is then
connected to the interrupt processor.

6.6.4 Interrupt Processing

The 'C3x allows the CPU and DMA coprocessor to respond to and process in­
terrupts in parallel. Figure 6-5 on page 6-28 shows interrupt processing flow;
for exact sequence, refer to Table 6-7 on page 6-29.

Program Flow Control 6-27

Interrupts

Figure 6-5. Interrupt Processing

6-28

If Enabled,
Interrupt Is

a CPU Interrupt

Clear Interrupt Flag

PC-*(++SP)

No

Complete All Fetched Instructions

PC - Interrupt Vector

CPU Starts Executing ISR Routine

Note: CPU and DMA Interrupts

If Enabled,
Interrupt Is

a DMA Interrupt

Clear Interrupt Flag

DMA Proceeds According
to SYNC Bits

DMA Continues

CPU and DMA interrupts are acknowledged (responded to by the CPU) on
instruction fetch boundaries only. If instruction fetches are halted because
of pipeline conflicts or execution of RPTS loops, CPU and DMA interrupts are
not acknowledg~d until instruction fetching continues.

Interrupts

Table 6-7. Interrupt Latency

Cycle Description Fetch Decode Read Execute

2

3

Recognize interrupt in single-cycle fetched prog
(prog a + 1) instruction. a + 1

Temporarily disable interrupt until GIE is cleared.

Read the interrupt vector table.

proga prog a-1 prog a-2

interrupt prog a prog a-1

interrupt prog a

4 Clear Interrupt flag; clear GI E bit; store return address interrupt
to stack.

5 Pipeline begins to fill with ISR instruction. isr1

6

7

8

Pipeline continues to fill with ISR instruction.

Pipeline continues to fill with ISR instruction.

isr2

isr3

Execute first instruction of interrupt service routine. isr4

isr1

isr2

isr3

isr1

isr2 isr1

In the CPU interrupt processing cycle (left side of Figure 6-5), the correspond­
ing interrupt flag in the IF register is cleared, and interrupts are globally dis­
abled (GIE = 0). The CPU completes all fetched instructions. The current PC
is pushed to the top of the stack. The interrupt vector is fetched and loaded into
the PC, and the CPU starts executing the first instruction in the interrupt ser­
vice routine (ISR).

If you wish to make the interrupt service routine interruptible, you can set the
GIE bit to 1 after entering the ISA.

The DMA interrupt processing cycle (right side of Figure 6-5) is similar to that
of the CPU. After the pertinent interrupt flag is cleared, the DMA coprocessor
proceeds according to the status of the SYNC bits in the DMA coprocessor
global control register.

The interrupt acknowledge (lACK) instruction can be used to signal externally
that an interrupt has been serviced. If external memory is specified in the oper­
and, lACK drives the lACK pin and performs a dummy read. The read is per­
formed from the address specified by the lACK instruction operand. lACK is
typically placed in the early portion of an interrupt service routine. However,
it may be better suited at the end of the interrupt service routine or be totally
unnecessary.

Note the following:

o Interrupts are disabled during an RPTS and during a delayed branch (until
the three instructions following a delayed branch are completed). Inter­
rupts are held until after the branch.

Program Flow Control 6-29

Interrupts

o When an interrupt occurs, instructions currently in the decode and read
phases continue regular execution. This is not the case for an instruction
in the fetch phase:

• If the interrupt occurs in the first cycle of the fetch of an instruction, the
fetched instruction is discarded (not executed), and the address of
that instruction is pushed to the top of the system stack.

• If the interrupt occurs after first cycle of the fetch (in the case of a multi­
cycle fetch due to wait states), that instruction is executed, and the ad­
dress of the next instruction to be fetched is pushed to the top of the
system stack.

6.6.5 CPU Interrupt Latency

CPU interrupt latency, defined as the time from the acknowledgement of the
interrupt to the execution of the first interrupt service routine (ISR) instruction,
is at least eight cycles. This is explained in Table 6-7 on page 6-29, where the
interrupt is treated as an instruction. It assumed that all of the instructions are
single-cycle instructions.

6.6.6 CPU/DMA Interaction

6-30

If the DMA is not using interrupts for synchronization of transfers, it will not be
affected by the processing of the CPU interrupts. Detected interrupts are re­
sponded to by the CPU and DMA on instruction fetch boundaries only. Since
instruction fetches are halted due to pipeline conflicts or when executing
instructions in an RPTS loop, interrupts will not be responded to until instruc­
tion fetching continues. It is therefore possible to interrupt the CPU and DMA
simultaneously with the same or different interrupts and, in effect, synchronize
their activities. For example, it may be necessary to cause a high-priority DMA
transfer that avoids bus conflicts with the CPU (that is, that makes the DMA
higher priority than the CPU). This may be accomplished by using an interrupt
that causes the CPU to trap to an interrupt routine that contains an IDLE
instruction. Then if the same interrupt is used to synchronize DMA transfers,
the DMA transfer counter can be used to generate an interrupt and thus return
control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA may
clear an interrupt flag before the CPU can respond to it. For example, if the
CPU interrupts are disabled, the DMA can respond to interrupts and thus clear
the associated interrupt flags.

Interrupts

6.6.7 TMS320C3x Interrupt Considerations

Give careful consideration to TMS320C3x interrupts, especially if you make
modifications to the status register when the global interrupt enable (GIE) bit
is set. This can result in the GIE bit being erroneously set or reset as described
in the following paragraphs.

The GIE bit is set to 0 by an interrupt. This can cause a processing error if any
code following within two cycles of the interrupt recognition attempts to read
or modify the status register. For example, if the status register is being pushed
onto the stack, it will be stored incorrectly if an interrupt was acknowledged two
cycles before the store instruction.

When an interrupt signal is recognized, the TMS320C3x continues executing
the instructions already in the read and decode phases in the pipeline. Howev­
er, because the interrupt is acknowledged, the GIE bit is reset to 0, and the
store instruction already in the pipeline will store the wrong status register
value.

For example, if the program is like this:

NOP
interrupt recognized -->LDI @V_ADDR, ARl

MPYI *AR1, RO
PUSH ST

POP ST

the PUSH ST instruction will save the ST contents in memory, which includes
GIE = o. Since the device is expected to have GIE = 1, the POP ST instruction
will put the wrong status register value into the ST.

A similar situation may occur if the GI E bit = 1 and an instruction executes that
is intended to modify the other status bits and leave the GIE bit set. In the
above example, this erroneous setting would occur if the interrupt were recog­
nized two cycles before the POP ST instruction. In that case, the interrupt
would clear the GIE bit, but the execution of the POP instruction would set the
GIE bit. Since the interrupt has been recognized, the interrupt service routine
will be entered with interrupts enabled, rather than disabled as expected.

One solution is to use traps. For example, you can use TRAP 0 to reset GIE
and use TRAP 1 to set GIE. This is accomplished by making TRAP 0 and
TRAP 1 be the instructions RETS and RETI, respectively.

Program Flow Control 6-31

Interrupts

PUSH
LOI
NOP
NOP
ANO
POP

Another alternative incorporates the following code fragment, which protects
against modifying or saving of the status register by disabling interrupts
through the interrupt enable register:

IE
0, IE

OOFFFh, ST
IE

Save IE register
Clear IE register

Set GIE = 0

• Added instructions to
avoid pipeline problems

• 2 NOPs or useful instructions

• Instruction that reads or
writes to ST register.
Added instruction
to avoid pipeline
problems.

6.6.8 TMS320C30 Interrupt Considerations

6-32

The TMS320C30 has two unique exceptions to the interrupt operation.

o The status register global interrupt enable (GIE) bit may be erroneously
reset to 0 (disabled setting) if all of the following conditions are true:

• A conditional trap instruction (TRAPcona) has been fetched,
• The condition for the trap is false, and
• A pipeline conflict has occurred, resulting in a delay in the decode or

read phases of the instruction.

During the decode phase of a conditional trap. interrupts are temporarily
disabled to ensure that the trap will execute before a subsequent interrupt.
If a pipeline conflict occurs and causes a delay in execution of the condi­
tional trap. the interrupt disabled condition may become the last known
condition of the GIE bit. In the case that the trap condition is false, inter­
rupts will be permanently disabled until the GIE bit is intentionally set. The
condition does not present itself when the trap condition is true, because
normal operation of the instruction causes the GIE to be reset, and stan­
dard coding practice will set the GIE to 1 before the trap routine is exited.
Several instruction sequences that can cause pipeline conflicts have been
found:

• LOI mem,SP

TRAPcond n

• LDI mem,SP

NOP
TRAPcond n

Interrupts

• STl SP,mem
TRAPcond n

• STl Rx,*ARy
LOl *ARx,Ry
IILOl *ARz,Rw
TRAPcond n

Other similar conditions may also cause a delay in the execution. There­
fore, the following solution is recommended to avoid or rectify the problem.

Insert two NOP instructions immediately prior to the TRAPcond instruc­
tion. One NOP is insufficient in some cases, as illustrated in the second
bulleted item, above. This eliminates the opportunity for any pipeline con­
flicts in the immediately preceding instructions and enables the conditional
trap instruction to execute without delays.

o Asynchronous accesses to the interrupt flag register (IF) can cause the
TMS320C3x to fail to recognize and service an interrupt. This may occur
when an interrupt is generated and is ready to be latched into the IF regis­
ter on the same cycle that the IF is being written to by the CPU. Note that
logic operations (AND, OR, XOR) may write to the IF register.

The logic currently gives the CPU write priority; consequently, the as­
serted interrupt might be lost. This Is particularly true if the asserted inter­
rupt has been generated internally (for example, a direct memory access
(DMA) interrupt). This situation can arise as a result of a decision to poll
certain interrupts or a desire to clear pending interrupts due to a long pulse
width. In the case of a long pulse width, the interrupt may be generated
after the CPU responds to the interrupt and attempts to automatically clear
it by the interrupt vector process.

The recommended solution is not to use the interrupt polling technique but
to design the external interrupt inputs to have pulse widths of between 1
and 2 instruction cycles. The alternative to strict polling is to periodically
enable and disable the interrupts that would be polled, thereby allowing
the normal interrupt vectoring to take place; that automatically clears the
interrupt flag without affecting other interrupts. If you need to clear a pend­
ing interrupt, it is recommended that you use a memory location to indicate
that the interrupt is invalid. Then the interrupt service routine can read that
location, clear it (ifthe pending interrupt is invalid), and return immediately.
The following code fragments show how a dummy interrupt due to a long
interrupt pulse might be handled:

PUSH ST
PUSH OP
PUSH RO
LOl 0, OP

Save registers

Clear Data Page Pointer

Program Flow Control 6-33

Interrupts

LDI @DUMMY_INT, RO
BNN ISR n START
STI DP,-@DUMMY_INT
POP RO
POP DP
POP ST
RETI

LDI INT_Fn, RO
AND IF, RO
BZ ISR_n_END
LDI 0, DP
LDI OFFFFh, RO
STI RO, @DUMMY_INT

POP RO
POP DP
POP ST
RETI

If DUMMY_I NT is 0 or positive,
go to ISR_n_START
Set DUMMY_INT - 0

Housekeeping, return fram interrupt

Normal interrupt service routine
Code goes here

If ones in IF reg match
INT Fn, exit ISR
Otherwise clear
DP and set
DUMMY_I NT negative & exit

Exit ISR

6.6.9 Prioritization and Control

6-34

The CPU controls all prioritization of interrupts (see Table 6-8 for reset and in­
terrupt vector locations and priorities). If the DMA is not using interrupts for
synchronization of transfers, it will· not be affected by the processing of the
CPU interrupts. Detected interrupts are responded to by the CPU and DMA
on instruction fetch boundaries only. If instruction fetches are halted due to
pipeline conflicts or when executing instructions in an RPTS loop, interrupts
will not be responded to until instruction fetching continues. It is therefore pos­
sible to interrupt the CPU and DMA simultaneously with the same or different
interrupts and, in effect, synchronize their activities. For example, it may be
necessary to cause a high-priority DMA transfer that avoids bus conflicts with
the CPU, that is, make the DMA higher priority than the CPU. This may be ac­
complished by using an interrupt that causes the CPU to trap to an interrupt
routine that contains an IDLE instruction. Then if the same interrupt is used to
synchronize DMA transfers, the DMA transfer counter can be used to generate
an interrupt, thereby returning control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA can
clear an interrupt flag before the CPU can respond to it. For example, if the
CPU interrupts are disabled, the DMA can respond to interrupts and thus clear
the associated interrupt flags.

Interrupts

Table 6-8. Reset and Interrupt Vector Locations

Reset or Vector
Interrupt Location Priority Function

RESET Oh 0 External reset signal input on the RESET pin

INTO 1h 1 External interrupt input on the INTO pin

INT1 2h 2 External interrupt input on the INT1 pin

INT2 3h 3 External interrupt input on the INT2 pin

INT3 4h 4 External interrupt Input on the INT3 pin

XINTO 5h 5 Internal interrupt generated when serial-port 0 transmit
buffer is empty

RINTO 6h 6 Internal Interrupt generated when serial-port 0 receive
buffer is full

XINT1 t 7h 7 Internal interrupt generated when serial-port 1 transmit
buffer is empty

RINT1 t 8h 8 Internal interrupt generated when serial-port 1 receive
buffer is full

TINTO 9h 9 Internal interrupt generated by timer 0

TINT1 OAh 10 Internal interrupt generated by timer 1

DINT OBh 11 Internal interrupt generated by DMA controiler 0

f Reserved on TMS320C31

Program Flow Control 6-35

TMS320LC31 Power Management Modes

6.7 TMS320LC31 Power Management Modes

6.7.1 IDLE2

6-36

The TMS320LC31 CPU has been enhanced by the addition of two power man­
agement modes:

o IOLE2, and
o LOPOWER.

The H 1 instruction clock is held high until one of the four external interrupts is
asserted. In IOLE2 mode, the TMS320C31 behaves as follows:

o No instructions are executed.

o The CPU, peripherals, and internal memory retain their previous states.

o The primary bus output pins are idle:

• The address lines remain in their previous states,
• The data lines are in the high-impedance state, and
• The output control signals are inactive.

o When the device is in the functional (non-emulation) mode, the clocks stop
with H1 high and H310w (see Figure 6-6).

o The 'C31 will remain in IDLE2 until one of the four external interrupts
(INT3-INTO) is asserted for at least one H1 cycle. When one of the four
interrupts is asserted, the clocks start after a delay of one H 1 cycle. When
the clocks restart, they may be in the opposite phase (that is, H1 may be
high if H3 was high before the clocks were stopped; H3 may be high if H1
was previously high). The H1 and H3 clocks will remain 1800 out of phase
with each other (see Figure 6-7).

o For one of the four external interrupts to be recognized and serviced by
the CPU during the IOLE2 operation, the interrupt must be asserted for
less than three cycles but more than two cycles.

o The instruction following the IOLE2 instruction will not be executed until
after the return from interrupt instruction (RETI) is executed.

o When the device is in emulation mode, the H1 and H3 clocks will continue
to run normally and the CPU will operate as if an I OLE instruction had been
executed. The clocks continue to run for correct operation of the emulator.

TMS320C31 Power Management Modes

Figure 6-6. IDLE2 Timing

ClKIN

Idle 2 Execution

H3 ----.I _----.;11 \ __ ...JI \ _____ _

H1 \ __ ...JI \ __ --'1 \ __ ...JI
ADDR

Data ___________________ ..J)1--------

Figure 6-7. Interrupt Response Timing After IDLE2 Operation

ClKIN

H3

H1

INT3to
INTO

INT~to
INTO lag

ADDR

Data

I Interrupt Vector
Clocks Driven , Read

,'----'

Fetch 1st
Instr of
Service
Routing

~ ___ ~ __ --____ ~l---J/r----+:---~I-----\
I I ,
,r---------TI------~\ -------;------, , ,~--

___________ -+-_____ -+'1 X'---Ve-ct-o-r-A-dd-re-s-s+1 ---------;-".: X 1st Addr

-----------r--------~I------~<:::>~----~I-----
Program Flow Control 6-37

TMS320C31 Power Management Modes

6.7.2 LOPOWER

In the LOPOWER (low power) mode, the CPU continues to execute instruc­
tions, and the DMA can continue to perform transfers, but at a reduced clock

rate of eLKIN frequency
16

A TMS320C31 with a CLKIN frequency of 32 MHz will perform identically to
a 2 MHz TMS320C31 with an instruction cycle time of 1,000 ns.

During the read phase of the .•. The TMS320C31 •••

LOPOWER instruction (Figure 6-8) slows to 1/16 of full-speed operation.

MAXSPEED instruction (Figure 6-9) resumes full-speed operation.

Figure 6-8. LOPOWER Timing

eLKIN
LOPOWER Read

H3 ../"'\ __ 1\ ___ / ,-______ 1

H1 '---.J ' ____ I ,'-______ 1 \.
11+-4 ------- 32 eLKIN ------+-

Figure 6-9. MAXSPEED Timing

eLKIN

MAXSPEED Read

H3 \ I \ I \ I
H1 I \ I \ I \

III 32 eLKIN J

6-38

Chapter 7

External Bus Operation

Memories and external peripheral devices are accessible through two external
interfaces on the TMS320C30:

o the primary bus, and
o the expansion bus.

On the TMS320C31 , one bus, the primary bus, is available to access external
memories and peripheral devices. You can control wait-state generation, per­
mitting access to slower memories and peripherals, by manipulating
memory-mapped control registers associated with the interfaces and by using
an external input signal.

Major topics discussed in this chapter are listed below.

Topic Page

7-1

External Interface Control Registers

7.1 External Interface Control Registers

The TMS320C30 provides two external interfaces: the primary bus and the ex­
pansion bus. The TMS320C31 provides one external interface: the primary
bus. The primary bus consists of a 32-bit data bus, a 24-bit address bus, and
a set of control signals. The expansion bus consists of a 32-bit data bus, a
13-bit address bus, and a set of control signals. Both buses support soft­
ware-controlled wait states and an external ready input signal, and both buses
are useful for data, program, and I/O accesses.

Access is determined by an active strobe signal (STRB, MSTRB, or 10STRB).
When a primary bus access is performed, STRB is low. The expansion bus of
the TMS320C30 supports two types of accesses:

o Memory access signalled by MSTRB low. The timing for an MSTRB ac-
cess is the same as that of the STRB access on the primary bus.

o External peripheral device access is signaled by 10STRB low.

Each of the buses (primary and expansion) has an associated control register.
These registers are memory-mapped as shown in Figure 7-1.

Figure 7-1. Memory-Mapped External Interface Control Registers
Register

Expansion-Bus Control (see subsection 7.1.2) t

Reserved

Reserved

Reserved

Primary-Bus Control (see subsection 7.1.1)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

t Reserved on the TMS320C31

7-2

Peripheral
Address

808060h

808061h

808062h

808063h

808064h

808065h

808066h

808067h

808068h

808069h

80806Ah

80806Bh

80806Ch

80806Ch

80806Eh

80806Fh

External Interface Control Registers

7.1.1 Primary-Bus Control Register

The primary bus control register is a 32-bit register that contains the control
bits for the primary bus (see Figure 7-2). Table 7-1 lists the register bits with
the bit names and functions.

Figure 7-2. Primary-Bus Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

'~'~I~I~I~I~I~I~I~I~I~I~I~I~I ~ ~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I ~ I ~ I ~ I BNKCMP I WTCNT I SWN IHIZINOHOL~ HOLDS~
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R

NOTE: ~ = reserved bit, read as O.
R = read, W = write.

External Bus Operation 7-3

External Interface Control Registers

Table 7-1. Primary-Bus Control Register Bits Summary

Bit Name Reset Value Function

0 HOLDST xt Hold status bit. This bit signals whether the port is being held
(HOLDST = 1) or is not being held (HOLDST = 0). This status bit is valid
whether the port has been held via hardware or software.

NOHOLD 0 Port hold signal. NOH OLD allows or disallows the port to be held by an
external HOLD signal. When NOHOLD = 1, the TMS320C3x takes over
the external bus and controls it, regardless of serviced or pending re-
quests by external devices. No hold acknowledge (HOLDA) is asserted
when a HOLD is received. However, it is asserted if an internal hold is
generated (HIZ = 1). NOHOLD is set to 0 at reset.

2 HIZ 0 Internal hold. When set (HIZ = 1), the port is put in hold mode. This is
equivalent to the external HOLD signal. By forcing a high-impedance
condition, the TMS320C3x can relinquish the external memory port
through software. HOLDA goes low when the port is placed in the
high-impedance state. HIZ is set to 0 at reset.

4-3 SWW 11 Software wait mode. In conjunction with WTCNT, this two-bit field de-
fines the mode of wait-state generation. It is set to 1 1 at reset.

7-5 WTCNT 111 Software wait mode. This three-bit field specifies the number of cycles
to use when in software wait mode for the generation of internal wait
states. The range is 0 (WTCNT = 000) to 7 (WTCNT=111) H1/H3
cycles. It is set to 1 1 1 at reset.

12-8 10000 Bank compare. This five-bit field specifies the number of MSBs of the
BNKCMP address to be used to define the bank size. It is set to 1 0 0 0 0 at reset.

31-13 Reserved 0-0 Read as O.

tx = 0 or 1

7-4

Extemal Interface Control Registers

7.1.2 expansion-Bus Control Register

The expansion-bus control register is a 32-bit register that contains control bits
for the expansion bus (see Figure 7-3 and Table 7-2).

Figure 7-3. Expansion-Bus Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ixxlxxl xxi xxi xxi xxi xxi xxi WTCNT I sww Ixxlxxlxxl
FWI FWI FWI FWI FWI

NOTE: xx = reserved bit, read as O.
R • read, W • write.

Table 7-2. Expansion-Bus Control Register Bits Summary

Re.et
Bit Name Value Function

2-0 Reserved 000 Read asO.

4-3 SWW 11 Software wait-state generation. In conjunction with the WTCNT, this
two-bit field defines the mode of wait-state generation. It is set to 1 1
at reset.

7-5 WTCNT 111 Software wait mode. This three-bit field specifies the number of cycles
to use when in software wait mode for the generation of internal wait
states. The range is 0 (WTCNT = 000) to 7 (WTCNT = 11 1) H1/H3
clock cycles. It is set to 1 1 1 at reset.

31-8 Reserved 0-0 Read as O.

Extemal Bus Operation 7-5

iExtemallnterface Timing

7.2 External Interface Timing

This section discusses functional timing of operations on the primary bus and
the expansion bus, the TMS320C3x's two independent parallel buses.
Detailed timing specifications for all TMS320C3x signals are contained in Sec­
tion 13.6 on page 13-31.

The parallel buses Implement three mutually exclusive address spaces distin­
guished through the use ofthree separate control signals: STRB, MSTRB, and
IOSTRB. The S'fRB signal controls accesses on the primary bus, and the
MSTRB and IOSTRB control accesses on the expansion bus. Since the two
buses are independent, you can make two accesses in parallel.

With the exception of bank switching and the external HOLD function (dis­
cussed later in this section), timing of primary bus cycles and MSTRB expan­
sion bus cycles are identical and are discussed collectively. The acronym
(M)STRB is used in references that pertain equally to STRB and MSTRB. Sim­
ilarly, (X)R.tW, (X)A, (X)D, and (X)RDY are used to symbolize the equivalent
primary and expansion bus signals. The IOSTRB expansion bus cycles are
timed differently and are discussed independently.

7.2.1 Primary-Bus Cycles

7-6

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is
defined to be from one falling edge of H 1 to the next falling edge of H 1. For
full-speed (zero wait-state) accesses, writes require two H1 cycles and reads
one cycle; however, if the read follows a write, the read requires two
cycles.This applies to both the primary bus and the MSTRB expansion bus ac­
cess. Recall that, internally (from the perspective of the CPU and DMA) , writes
require only one cycle if no accesses to that interface are in progress. The fol­
lowing discussions pertain to zero wait-state accesses unless otherwise spe­
cified.

The (M)STRB signal is low for the active portion of both reads and writes. The
active portion lasts one H1 cycle. Additionally, before and after the active por­
tion ((M)STRB low) of writes only, there is a transition cycle of H1. Thistransi­
tion cycle consists of the following sequence:

1) (M)STRB is high.

2) If required, (X)R/W changes state on H1 rising.

3) If required, address changes on H 1 riSing if the previous H 1 cycle was the
active portion of a write. If the previous H1 cycle was a read, address
changes on H1 falling.

External Interface Timing

Figure 7-4 illustrates a read-read-write sequence for (M)STRB active and no
wait states. The data is read as late in the cycle as possible to allow maximum
access time from address valid. Note that although external writes require two
cycles, internally (from the perspective of the CPU and DMA) they require only
one cycle if no accesses to that interface are in progress. In the typical timing
for all external interfaces, the (X)R!W strobe does not change until (M)STRB
or IOSTRB goes inactive.

Figure 7--4. Read-Read-Write for (M)STRB = 0

H3

H1
,

(M)STRB \. 1. \ 1
(X)RJW \ r , ,

(X)A:::X X X : >C , , , , ,

'e--+®
,

~ , >-(X)Dm (: Read : Read ~rite Data , , " , , ,

:
, , ,

: : : (X)RDY ~:I \:L ~:L

Note: Back-to-Back Read Operations

(M)STRB will remain low during back-to-back read operations.

External Bus Operation 7-7

Extemallnterface Timing

Figure 7-5 illustrates a write-write-read sequence for (M)STRB active and no
wait states. The address and data written are held valid approximately
one-half cycle after (M)STRB changes.

Figure 7-5. Write-Writs-Read for (M)STRB = 0

7-8

H3

H1

(M)STRB

~~~-~----------------~--I I I 

~A--~:--~--~-----X::::::~::::::x.~----~-->.e:: 
I 

I I I 

(X)RDY ___ -\~:"""/-__ -_....;\ .... :.J./-_-__ -\~; /~ ___ 
I I 



External Interface Timing 

Figure 7-6 illustrates a read cycle with one wait state. Since (X)RDY = 1, the 
read cycle is extended. (M)STRB, (X)RIW, and (X)A are also extended one 
cycle. The next time (X)RDY is sampled, it is O. 

Figure 7-6. Use of Wait States for Read for (M)STRB = 0 

H3 

\ 1 

I' I 

~----~',~~----: ----;--~}-" ,.... ~ ~rite D.8ta . 
I I 

External Bus Operation 7-9 



Extemallnterface Timing 

Figure 7-7 illustrates a write cycle with one wait state. Since initially (X) ROY = 
1, the write cycle is extended. (M)STRB, (X)RIW. and (X)A are extended one 
cycle. The next time (X)ROY is sampled, it is O. 

Figure 7-7. Use of Wait States for Write for (M)STRB = 0 

H3 

H1 

(M)STRB 
, 

~~----~------~--~~~----~~~~'--
~A : '-----'--""'-->e', ______ --__ --~ __ --~. -JX~ __ --~--~-. , , 

(X)O --i---I~:::::::w::r:ite:o:a:t~:::::: :::»)-: ---1:< ~rite oa~a >.-
~ROY ::::::'-7";"'~ ,-'--........... :~\:.-:.L../_-............. : ~:~~_:-=-\~:-"""/~:~~_:-_-

i.- E,dra --.i 
Cycle 

7-10 



External Interface Timing 

7.2.2 Expansion-Bus I/O Cycles 

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are 
both two cycles in duration (with no wait states) and exhibit the same timing. 
During these cycles, address always changes on the falling edge of H1, and 
IOSTRB is low from the rising edge of the first H1 cycle to the rising edge of 
the second H1 cycle. The IOSTRB signal always goes inactive (high) between 
cycles, and XRNJ is high for reads and low for writes. 

Figure 7-8 illustrates read and write cycles when IOSTRB is active and there 
are no wait states. For IOSTRB accesses, reads and writes require a minimum 
of two cycles. Some off-chip peripherals might change their status bits when 
read or written to. Therefore, it is important to maintain valid addresses when 
communicating with these peripherals. For reads and writes when IOSTRB is 
active, IOSTRB is completely framed by the address. 

Figure 7-8. Read and Write for IOSTRB = 0 

H3 

H1 

\ I IOSTRB , I 
\ I 

, '------' I 

XRIW~ 
I 

\ 
, 

C 
XA=>K 

I 

X I '------~---------------------~ , I 0 

I < Re~d > XD ~~----~'~~------:---------:------).~"---,- ~ ~rite Dat~ . r-

I 

XRDY \:/ 

External Bus Operation 7-11 



External Interface Timing 

Figure 7-9 illustrates a read with one wait state when IOSTRB is active, and 
Figure 7-10 illustrates a write with one wait state when IOSTRB is active. For 
each wait state added, IOSTRB, XR/W, and XA are extended one clock cycle. 
Writes hold the data on the bus one additional cycle. The sampling of XRDY 
is repeated each cycle. 

Figure 7-9. Read With One Wait State for IOSTRB = 0 

H3 

H1 

~~------r---------')I '\ ,'--_ ...... _-, , 

XRtNJ. '\ : , ,'---_.------
o , ' 

AA=x~~~--~~~X~~:----
, , 

xo---a----------:-« Rea~ )>--"""'-------

XROy __ ~--__ ~~7 \~ ___ \~;~/~~--__ --__ -
, . , 
I Extra I 
14-- Cycle ~ 

7-12 



External Interface Timing 

Figure 7-10. Write With One Wait State for IOSTRB = 0 

H3 

H1 

~~ ______________________ --J~ \~-----, 

XRm3 l : 
, ' 

AA==X==:==:==:=:==:==X~~: -----
XD--~~--~<~ ________ ~:w_r_ite_D_am_: ____ ~ __ -J)~:----.~,----~---

I I 

I Extra I 
14-- Cycle --tI 

External Bus Operation 7-13 



Extemal Interface Timing 

Figure 7-11, Figure 7-12, Figure 7-13, Figure 7-14, Figure 7-15, 
Figure 7-16, Figure 7-17, Figure 7-18, Figure 7-19, Figure 7-20, and 
Figure 7-21 illustrate the various transitions between memory reads and 
writes, and I/O writes over the expansion bus. 

Figure 7-11. Memory Read and I/O Write for Expansion Bus 

H31 \ 1 \ I \ I , , , , '\ ;-, , , 
, , , , 

H1~ /. \ I \ I \ I \.. , , 

MSTRB ~ I 
IOSTRB \ '--______ ....JI 

XR!W , '\ L , , 
, , , , , 

: Memory ~dress 
' , 

I/O~dreSs 
, 

XA ~ ~ , , 
, ' 

( R~) 
, 

XD K : I/OWrite >+-
XRDY ~:L ~'L 

7·14 



Externallnterfac8 Timing 

Figure 7-12. Memory Read and I/O Read for Expansion Bus 

H3 J. \ ! \ ! \ ! 
I I I I 

H1 \ I \ I \ I \ 
MSTRB 3 I '\ 
IOSTRB \ I 

XR/N 

XA ~ MerOry Ad~ress X I/OAd~ress ~ 
I 

XD :< Read ) :< Rea~ ) 

XRDY ~:L V 

External Bus Operation 7-15 



External Interface Timing 

Figure 7-13. Memory Write and I/O Write for Expansion Bus 

H3 

H1 

MSTRB~ I 
, '-------~-------' , 

\ ! 
, 

/\ r , 
XA/W 

, 

I/O A~dress >@2X ~ , 
XA Mem~ry Address : 

, 

XC < ~emory Writ~ > < I/O Write > , 

XRCY '\:L : '\' L 

7-16 



External Interface Timing 

Figure 7-14. Memory Write and I/O Read for Expansion Bus 

H3 

H1 

MSTRB~ I 
I '--------p--------' I 

\\,., ____ ..JI 
XRtN_ ....... ____ ""---J1 

XA ______ ~--M-e-m-O~:~--Ad-d-~-~ __ :------~----~----I/-O-A~~-d_~_ss ____ ~--__ ~ 
I 

XD----< Memo~Write 

External Bus Operation 7-17 



8dernallnterface Timing 

Figure 7-15. I/O Write and Memory Write for Expansion Bus 

H3 

H1 

\ ;-
0 

\ ! 
r\ 

o 

XRf#~ 
o~---__ ...... _____ -J 

~~--~--------1I0~dress 
0 

MemOry:Address >@2X 
0 

< XD---""---( : I/OWrite > < ~emory wr~te 
0 0 

: 
~:L : ~ 

0 

L 

7-18 



External Interface Timing 

Figure 7-16. I/O Write and Memory Read for Expansion Bus 

H3 

Hi 

\--_'-r--l-
\-------JI 

I 0 

o 
o I 

XA ==x I/O ~dress ~ M~mOry Addr~ss ~ 
----,...----.... ----..... --...... I I I 

I 

XD ------IK ___ :-I/O-W-rit-e ~----J>>-i ----;-----;.---.,-« Rea~)-

External Bus Operation 7-19 



External Interface Timing 

Figure 7-17. I/O·Read and Memory Write for Expansion Bus 

H3 

7·20 



External Interface Timing 

Figure 7-18. I/O Read and Memory Read for Expansion Bus 

H3 J. \ I \ I \ I 
, 

\ H1 '\ / \ / \ / 
MSTRB 7-, 

, 

\ l 
10STRB \ / 

XR/W 

, 

XA ~ I/O Address X Memory Address ~ , , 

XD '( Rea~ ) '( Rea~ >-
XRDY ~:L ~~L 

External Bus Operation 7-21 



Extemallnterface Timing 

Figure 7-19. I/O Write and I/O Read for Expansion Bus 

H3 

, 

H1 \ ! \ ! \ ! \ / L 
MSTRB ~ , 

IOSTRB '\ I '\ I 
XR/W \ I 

, 

XA ~ X ~ , 

XD < : Write Data : > '( Rea~ ) 

XRDY ~~L ~~L 

7·22 



External Interface Timing 

Figure 7-20. I/O Write and I/O Write for Expansion Bus 

H3 

H1 

MSTRB 

IOSTRB \ I \ ! 
XANI \ r 

XA ~ X ~ 
XD < : Write Data : >. < : Write Data : >-

XRDY ~~L ~~L 

External Bus Operation 7-23 



£xternallnterface Timing 

Figure 7-21. I/O Read and I/O Read for Expansion Bus 

H3 J. \ I \ ! \ I \ r 
H1 

MSTRB 7- 'C , , 

IOSTRB \ I \ ! 
XR/W 

I I 

XA ~ X ~ I , 

XD ( Rea~ ) ( Rea~ ) 

XRDY ~~L ~~L 

7-24 



Extemallnterface Timing 

Figure 7-22 and Figure 7-23 illustrate the signal states when a bus is inactive 
(after an IOSTRB or (M)STRB access, respectively). The strobes (STRB, 
MSTRB and IOSTRB) and (X)RIW) go to 1. The address is undefined, and the 
ready signal (XRi5Y or ROy) is ignored. 

Figure 7-22. Inactive Bus States for IOSTRB 

H3 

H1 

IOSTRB ~ /: 
I 

XRf\N V 
I 

XA 

XD Write Data 

~:L XRDy:gnOred XRDY 

~ Bus Inactive J 

Extemal Bus Operation 7-25 



External Interface Timing 

Figure 7-23. Inactive Bus States for STRB and MSTRB 

H3 

H1 

(M)STRB \ I 
(X)R/W I 

(X)A 

(X)D Write Data 

{X)RDY ~'L {X)RDY: Ignored 

~ Bus Inactive j 

7-26 



External Interface Timing 

Figure 7-24 illustrates the timing for HOLD and HOLDA. HOLD is an external 
asynchronous input. There is a minimum of one cycle delay from the time when 
the processor recognizes HOLD = 0 until HOLDA = O. When HOLDA = 0, the 
address, data buses, and associated strobes are placed in a high-impedance 
state. All accesses occurring over an interface are complete before a hold is 
acknowledged. 

Figure 7-24. HOLD and HOLDA Timing 

, 
I 

, 
0 

, 

I. 
, 

0 
0 

H3~ ! '\ ! \ \ ! '\ y-
o 

0 0 0 

H1J '\ 1 '\ I '\ I '\ 1 \... , , , , , 

HOLD \ I 

\ 
0 

HOLDA ! 
. 0 0 

STAB 7 ~ 'I 'C 
I 

0 

R!W ). < : 

A > < 
Write Da~a 

0 

D >: C 
~ Bus ~ 

Inactive 

External Bus Operation 7-27 



Programmable Wait States 

7.3 Programmable Walt States 

7-28 

You can control wait-state generation by manipulating memory-mapped con­
trol registers associated with both the primary and expansion interfaces. Use 
the WTCNT field to load an internal timer, and use the SWW field to select one 
of the following four modes of wait-state generation: 

o External ROY 
o WTCNT-generated RDYwtcnt 
o Logical-AND of ROY and RDYwtcnt 
o Logical-OR of ROY and RDYwtcnt 

The four modes are used to generate the internal ready signal, RDYint, that 
controls accesses. As long as RDYint = 1, the current external access is 
delayed. When RDYint = 0, the current access completes. Since the use of 
programmable wait states for both external interfaces is identical, only the pri­
mary bus interface is described in the following paragraphs. 

ROY wtcnt is an internally generated ready signal. When an external access is 
begun, the value in WTCNT is loaded into a counter. WTCNT can be any value 
from 0 through 7. The counter is decremented every H1/H3 clock cycle until 
it becomes O. Once the counter is set to 0, it remains set to 0 until the next ac­
cess. While the counter Is nonzero, ROY wtcnt = 1. While the counter is 0, 
ROY wtcnt = O. 



Programmable Wait States 

When SWW = 0 0, RDYint depends only on RDY. RDY wtent is ignored. 
Table 7-3 is the truth table for this mode. 

Table 7-3. Wait-State Generation When SWW = 0 0 

ROY 

o 
o 
1 
1 

ROYwtcnt 

o 
1 
o 
1 

o 
o 
1 
1 

When SWW = 0 1, RDYint depends only on RDY wtent. RDY is ignored. 
Table 7-4 is the truth table for this mode. 

Table 7-4. Wait-State Generation When SWW = 0 1 

ROY 

o 
o 
1 
1 

ROYwtcnt 

o 
1 
o 
1 

o 
1 
o 
1 

When SWW = 1 0, RDYint is the logical-OR (electrical-AND, since these sig­
nals are low true) of RDY and RDYwtent (see Table 7-5). 

Table 7-5. Wait-State Generation When SWW = 1 0 

ROY 

o 
o 
1 
1 

ROYwtcnt 

o 
1 
o 
1 

o 
o 
o 
1 

When SWW = 1 1, RDYint is the logical-AND (electrical-OR, since these sig­
nals are low true) of RDY and RDYwtent. The truth table for this mode is 
Table 7-6. 

Table 7-6. Wait-State Generation When SWW = 1 1 

ROY ROYwtcnt ROYlnt 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

External Bus Operation 7-29 



Programmable Bank Switching 

7.4 Programmable Bank Switching 

Programmable bank switching allows you to switch between external memory 
banks without externally inserting wait states due to memories that require 
several cycles to turn off. Bank switching is implemented on the primary bus 
and not on the expansion bus. 

The size of a bank is determined by the number of bits specified to be ex­
amined on the BNKCMP field of the primary bus control register (see 
Table 7-1 on page 7-4). For example (see Figure 7-25), if BNKCMP = 16, 
the 16 MSBs of the address are used to define a bank. Since addresses are 
24 bits, the bank size is specified by the eight LSBs, yielding a bank size of 256 
words. If BNKCMP :2: 16, only the 16 MSBs are compared. Bank sizes from 28 

= 256 to 224 = 16M are allowed. Table 7-7 summarizes the relationship be­
tween BNKCMP, the address bits used to define a bank. and the resulting bank 
size. 

Figure 7-25. BNKCMP Example 

.~-------- 24-bitaddress --------... ~ 

23 81 7 0 

I I 
14-~ --- Number of bits to compare --~+~ Defines bank size --I 

Table 7-7. BNKCMP and Bank Size 

BNKCMP 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 
01000 
01001 
01010 
01011 
01100 
01101 
01110 
01111 
10000 
1000(}-11111 

7-30 

MSBs Defining a Bank 

None 
23 
23-22 
23-21 
23-20 
23-19 
23-18 
23-17 
23-16 
23-15 
23-14 
23-13 
23-22 
23-11 
23-12 
23-9 
23-8 
Reserved 

Bank Size (32-Bit Words) 

224= 16M 
223= 8M 
222=4M 
221= 2M 
220= 1M 
219= 512K 
218= 256K 
217= 128K 
216= 64K 
215= 32K 
214= 16K 
213= 8K 
212= 4K 
211= 2K 
210=1K 
29 =512 
28 = 256 
Undefined 



Programmable Bank Switching 

The TMS320C3x has an internal register that contains the MSBs (as defined 
by the BNKCMP field) of the last address used for a read or write over the pri­
mary interface. At reset, the register bits are setto O. If the MSBs ofthe address 
being used for the current primary interface read do not match those contained 
in this internal register, a read cycle is not asserted for one H 1/H3 clock cycle. 
During this extra clock cycle, the address bus switches over to the new ad­
dress, but STRB is inactive (high). The contents of the internal register are re­
placed with the MSBs being used for the current read of the current address. 
If the MSBs of the address being used for the current read match the bits in 
the register, a normal read cycle takes place. 

If repeated reads are performed from the same memory bank, no extra cycles 
are inserted. When a read is performed from a different memory bank, memory 
conflicts are avoided by the insertion of an extra cycle. This feature can be dis­
abled by setting BNKCMP to O. The insertion of the extra cycle occurs only 
when a read is performed. The changing of the MSBs in the internal register 
occurs for all reads and writes over the primary interface. 

Figure 7-26 illustrates the addition of an inactive cycle when switches be­
tween banks of memory occur. 

Figure 7-26. Bank-Switching Example 

H3 

H1 

:c , , , 

A =x X~-------~X===>C 
I --..,....---' , , -

• 
'/c':)\ '~ '~ 0-----""""'<0>-: --------....I.-<~)-: --.....&..-<~)-:--

, 

Extra 
Cycle 

, 

\'/ 

External Bus Operation 7-31 



7-32 



! ! 

Chapter 8 

Peripherals 
ll!!ll! 

The TMS320C3x features two timers, two serial ports (one on the 
TMS320C31), and an on-chip direct memory access (OMA) controller. These 
peripheral modules are controlled through memory-mapped registers located 
on the dedicated peripheral bus. 

The DMA controller is used to perform input/output operations without interfer­
ing with the operation of the CPU. Therefore, it is possible to interface the 
TMS320C3x to slow external memories and peripherals (AIDs, serial ports, 
etc.) without reducing the computational throughput ofthe CPU. The result is 
improved system performance and decreased system cost. 

Major topics discussed in this chapter on peripherals are listed below. 

Topic Page 

8-1 



Timers 

8.1 Timers 

The TMS320C3x timer modules are general~purpose, 32~bit, timer/event 
counters, with two signaling modes and internal or external clocking (see 
Figure 8-1). You can use the timer modules to signal to the TMS320C3x or the 
external world at specified intervals or to count external events. With an inter~ 
nal clock, you can use the timer to signal an external NO converter to start a 
conversion, or it can interrupt the TMS320C3x OMA controller to begin a data 
transfer. The timer interrupt is one of the internal interrupts. With an external 
clock, the timer can count external events and interrupt the CPU after a speci~ 
fied number of events. Each timer has an I/O pin that you can use as an input 
clock to the timer, an output clock signal, or a general~purpose I/O pin. 

Figure B-1. Timer Block Diagram 

8-2 

Period Register (31-0) 

32 

Comparator 
? 

Period = Counter 

Pulse Generator 

Counter (32-bit) 

Counter Register 
(31-0) 

INV 
~--.. TSTAT 

Timer Out 

'{- External Clock 

\-INV 

Three memory~mapped registers are used by each timer: 

o Global~Control Register 

The global-control register determines the operating mode of the timer, 
monitors the timer status, and controls the function of the I/O pin of the timer. 

o Period Register 

The period register specifies the timer's signaling frequency. 



Timers 

o Counter Register 

The counter register contains the current value of the incrementing count­
er. You can increment the timer on the rising edge or the falling edge of the 
input clock. The counter is zeroed and can cause an internal interrupt 
whenever its value equals that in the period register. The pulse generator 
generates two types of external clock signals: pulse or clock. The memory 
map for the timer modules is shown in Figure 8-2. 

Figure 8-2. Memory-Mapped Timer Locations 

Register Peripheral Addre .. 

Timer 0 Timer 1 

Timer Global Control (See Table 8-1) 808020h 808030h 

Reserved 808021h 808031h 

Reserved 808022h 808032h 

Reserved 808023h 808033h 

Timer Counter (See subsection 8.1.2) 808024h 808034h 

Reserved 808025h 808035h 

Reserved 808026h 808036h 

Reserved 808027h 808037h 

Timer Period (See subsection 8.1.2) 808028h 808038h 

Reserved 808029h 808039h 

Reserved 80802Ah 80803Ah 

Reserved 80802Bh 80803Bh 

Reserved 80802Ch 80803Ch 

Reserved 80802Dh 80803Dh 

Reserved 80802Eh 80803Eh 

Reserved 80802Fh 80803Fh 

8.1.1 Timer Global-Control Register 

The timer global control register is a 32-bit register that contains the global and 
port control bits for the timer module. Table 8-1 defines this register's bits, 
names, and functions. Bits 3-0 are the port control bits; bits 11 ~ are the tim­
er global control bits. Figure 8-3 shows the 32-bit register. Note that at reset, 
all bits are set to 0 except for DATIN (which is set to the value read on TCll<). 

Peripherals 8-3 



Timers 

Figure 8-3. Timer Global-Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx xx xx xx lxxlxxl xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xx I xx I xx I TSTAT IINv I CLKSRC I CIP I HLD I GO I xx I xx I DATIN I DATOUT I TIO I FUNC I 
R RN'I RNI RN'I RN'I RN'I R RN'I RN'I ANI· 

R = Read, W = Write, xx = reserved bit, read as 0 

Table B-1. Timer Global-Control Register Bits Summary 

Bits Name Reset Value Function 

0 FUNC 0 FUNC controls the function of TCLK. If FUNC = 0, TCLK is confi-
gured as a general-purpose digital 1/0 port. If FUNC = 1, TCLK Is 
configured as a timer pin (see Figure 8-4 for a description of the 
relationship between FUNC and CLKSRC). 

i/o 0 If FUNC = 0 and CLKSRC = 0, JCLK is configured as a general-
purpose 1/0 pin. In this case,} 1/0 = 0, TCLK is configured as a 
general-purpose input pin. If I/O = 1, TCLK is configured as a gen-
eral-purpose output pin. 

2 DATOUT 0 DATOUT drives TCLK when the TMS320C3x is In 1/0 port mode. 
You can use DATOUT as an input to the timer. 

3 DATIN xt Data Input on TCLK or DATOUT. A write has no effect. 

5-4 Reserved 0-0 Read as O. 

6 GO 0 The GO bit resets and starts the timer counter. When GO = 1 and 
the timer is not held, the counter is zeroed and begins increment-
ing on the next rising edge of the timer input clock. The GO bit is 
cleared on the same rising edge. GO = 0 has no effect on the 
timer. 

7 HLD 0 Counter hold signal. When this bit is 0, the counter is disabled and 
held in its current state. If the timer is driving TCLK, the state of 
TCLK is also held. The internal dlvide-by-two counter is also held 
so that the counter can continue where it left off when HLD is set to 
1. You can read and modify the timer registers while the timer is 
being held. RESET has pri~over HLD. Table 8-2 shows the 
effect of writing to GO and HLD. 

8 C/P 0 Clock/Pulse mode control. When ciP = 1, clock mode is chosen, 
and the signaling of the TSTAT !Lag and external output will have a 
50 percent duty cycle. When C/P = 0, the status flag and external 
output will be active for one H1 cycle during each timer period (see 
Figure 8-5 on page 8-7). 

t x =Oor1 

8-4 



Timers 

Table B-1. Timer Global-Control Register Bits Summary (Continued) 

Bits Name Reset Value Function 

9 CLKSRC 0 Specifies the source of the timer clock. When CLKSRC = 1, an inter-
nal clock with frequency equal to one-half of the H1 frequency is 
used to increment the counter. The INV bit has no effect on the inter-
nal clock source. When CLKSRC = 0, you can use an external signal 
from the TCLK pin to increment the counter. The external clock is 
synchronized internally, thus allowing external asynchronous clock 
sources that do not exceed the specified maximum allowable exter-
nal clock frequency. This will be less than f(H1)/2. (See Figure 8-4 
for a description of the relationship between FUNC and CLKSRC). 

10 INV 0 Inverter control bit. If an external clock source is used and INV = 1, the 
external clock is inverted as it goes into the counter. If the output of the 
pulse generator is routed to TCLK and INV = 1, the output is inverted 
before it goes to TCLK (see Figure 8-1). If INV = 0, no inversion is 
performed on the input or output of the timer. The I NV bit has no effect, 
regardless of its value, when TCLK is used in I/O port mode. 

11 TSTAT 0 This bit indicates the status of the timer. It tracks the output of the 
uninverted TCLK pin. This flag sets a CPU interrupt on a transition from 
o to 1. A write has no effect. 

31-12 Reserved 0-0 Read as O. 

t x =Oor1 

Peripherals 8-5 



Timers 

Figure 8-4. Timer Modes as Defined by CLKSRC and FUNC 

8-6 

Internal I External 
Timer I 

I 
I 
I 
I 

CLKSRC = 1 (Internal) 
FUNC = 0 (I/O Pin) 

(a) 

TCLK 

Timer Internal I External ..... -.--4-+: -. TCLK 

TSTAT 

I 

CLKSRC = 0 (External) 
FUNC = 0 (I/O Pin) 

(e) 

Internal I External 
Timer I 

TSTAT 

I 
I 

DATIN 

CLKSRC = 1 (Internal) 
FUNC = 1 (Timer Pin) 

(b) 

TCLK 

Timer Internal I External 

rTh;;;;;Inl+-.....--~I~ TCLK 

TSTAT 

I 

DATIN 

CLKSRC = 0 (External) 
FUNC = 1 (Timer Pin) 

(d) 



Figure 8-5. Timer Timing 

14 ~ 2/f(H1) 
--.j 14 I 1/f(H1) 

I I I 
I I 

Jl 
I I I I I 

.~----+l~1-1/f(CLKSRC) I 
~14-----------"~""'- period register/f(CLKSRC) 

t t t 
TINT TINT TINT 

(a) TSTAT and timer output (INV = 0) when C/p = 0 (pulse mode) 

~ ~ 1/f(CLKSRC) 
i.I ~ I 2/f{H1) 
I I I 
I I 

J J...--------Ir 
I I I 

!4-~-----------.,~~- period register/f{CLKSRC) I 
~14 ----- 2 x period register/f{CLKSRC) ~ 

t t 
TINT TINT 

(b) TSTAT and timer output (INV = 0) when C/p = 1 (clock mode) 

Timers 

The rate of timer signaling is determined by the frequency of the timer input 
clock and the period register. The following equations are valid with either an 
internal or an external timer clock: 

f(pulse mode) = f(timer clock) / period register 

f(clock mode) = f(timer clock) / (2 x period register) 

Note: Period Register 

If the period register equals 0, refer to Section 8.1.2. 

Table 8-2 shows the result of a write using specified values of the GO and HLD 
bits in the global control register. 

Peripherals 8-7 



Timers 

Table B-2. Result of a Write of Specified Values of GO and HiJj 

GO HLD Result 

o 0 All timer operations are held. No reset is performed. (Reset value) 

o 
o 

Timer proceeds from state before write. 

All timer operations are held, including zeroing ofthe counter. The 
GO bit is not cleared until the timer is taken out of hold. 

Timer resets and starts. 

8.1.2 Timer Period and Counter Registers 

The 32-bit timer period register is used to specify the frequency of the timer 
signaling. The timer counter register is a 32-bit register, which is reset to 0 
whenever it increments to the value of the period register. Both registers are 
set to 0 at reset. 

Certain boundary conditions affect timer operation. These conditions are listed 
below: 

o When the period and counter registers are 0, the operation of the timer is 
dependent upon the C/P mode selected. In pulse mode (C/P = 0), TSTAT 
is set and remains set. In clock mode (C/P = 1), the width of the cycle is 
2/f(H1), and the external clocks are ignored. 

o When the counter register is not 0 and the period register = 0, the counter 
will count, roll over to 0, and then behave as described above. 

o When the counter register is set to a value greater than the period register, 
the counter may overflow when being incremented. Once the counter 
reaches its maximum 32-bit value (OFFFFFFFFh), it simply clocks over to 
o and continues. 

Writes from the peripheral bus override register updates from the counter and 
new status updates to the control register. 

8.1.3 Timer Pulse Generation 

8-8 

The timer pulse generator (see Figure 8-1 on page 8-2) can generate sever­
al external signals. You can invert these signals with the INV bit. The two basic 
modes are pulse mode and clock mode, as shown in Figure 8-5 on page 8-7. 
In both modes, an internal clock source f (timer clock) has a frequency of 
f(H1)/2, and an externally generated clock source f (timer clock) can have a 
maximum frequency of f(H 1 )/2.6. Refer to timer timing in subsection 13.5.16 
on page 13-66. I n pulse mode (C/P = 0), the width of the pulse is 1 /f(H 1). 



Timers 

Figure 8-6 provides some examples of the TelKx output when the period reg­
ister is set to various values and clock or pulse mode is selected. 

Figure 8-6. Timer Output Generation Examples 

~2H1 

1---8H1 

J 4H1 1 

~ 12H1 ~ 

j SH1 l I 

H11-O-uu-u-

(a) INV = 0, ciP = ° (Pulse Mode) 
llmer Period = 1 
Also, 
INV = 0, ciP = 1 (Clock Mode) 
llmer Period = ° 

(b) INV = 0, ciP = ° (Pulse Mode) 
llmer Period = 2 

If- SH1 ~ 

H1 }[ hL...---InL...---In_---'r 

~ 

I 

(c) INV = 0, ciP = ° (Pulse Mode) 
llmer Period = 3 

(d) INV = 0, ciP • 1 (Clock Mode) 
llmer Period = 1 

(e) INV = 0, C/P = 1 (Clock Mode) 
llmer Period = 2 

(1) INV = 0, CiP = 1 (Clock Mode) 
llmer Period = 3 

r 

r 

Peripherals 8-9 



Timers 

8.1.4 Timer Operation Modes 

The timer can receive its input and send its output in several different modes, 
depending upon the setting of CLKSRC, FUNC, and i/o. The four timer modes 
of operation are defined as follows: 

o If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal 
clock. The internal clock is not affected by the INV bit. In this mode, TCLK 
is connected to the I/O port control, and you use TCLK as a general-pur­
pose I/O pin (see Figure 8-7). If i/o = 0, TCLK is configured as a general­
purpose input pin whose state you can read in DATIN. DATOUT has no 
effect on TCLK or DATIN. If i/o = 1, TCLK is configured as a 
general-purpose output pin. DATOUT is placed on TCLK and can be read 
in DATIN. 

Figure 8-7. Timer I/O Port Configurations 

8-10 

I 
Internal I External 

I 
DATOUT (NC) ----gO ~ TCLK 

DATOUT 

DATIN 
i/o =0 

(a) 

Internal 

1 
DATIN 
i/o = 1 

(b) 

I 
I External 

I 
• I TCLK 

I 

o If CLKSRC = 1 and FU NC = 1, the timer input comes from the internal 
clock, and the timer output goes to TCLK. This value can be inverted using 
INV, and you can read in DATIN the value output on TCLK. 

o If CLKSRC = 0 and FUNC = 0, the timer is driven according to the status 
of the i/o bit. If i/o = 0, the timer input comes from TCLK. This value can 
be inverted using INV, and you can read in DATIN the value of TCLK. If i/o 
= 1, TCLK is an output pin. Then, TCLK and the timer are both driven by 
DATOUT. All O-to-1 transitions of DATOUT increment the counter. I NV has 
no effect on DATOUT. You can read in DATIN the value of DATOUT. 

o IfCLKSRC = 0 and FUNC = 1, TCLKdrivesthetimer.lf INV = 0, all 0-to-1 
transitions of TCLK increment the counter. If INV = 1, aIl1-to-0 transitions 
of TCLK increment the counter. You can read in DATIN the value of TCLK. 



Timers 

Figure 8-4 on page 8-6 shows the four timer modes of operation. 

8.1.5 Timer Interrupts 

A timer interrupt is generated whenever the TSTAT bit of the timer control reg­
ister changes from a 0 to a 1. The frequency of timer interrupts depends on 
whether the timer is set up in pulse mode or clock mode. 

o In pulse mode, the interrupt frequency is determined by the following 
equation: 

f (interrupt) 

f (interrupt) 

f (timer clock) 

= f(timer clock) where 
period register' 

= timer frequency 
= interrupt frequency 

o In clock mode, the interruptfrequency is determined by the following equa­
tion: 

f (interrupt) 

f (interrupt) 

f (timer clock) 

= f(timer clock) where 
2 x period register' 

= timer frequency 

= interrupt frequency 

The timer counter is automatically reset to 0 whenever it is equal to the value 
in the timer period register. You can use the timer interrupt for either the CPU 
or the DMA. Interrupt enable control for each timer, for either the CPU or the 
DMA, is found in the CPUlDMA interrupt enable register. Refer to subsection 
3.1.8 on page 3-7 for more information on the CPU/DMA interrupt enable 
register. 

When a timer interrupt occurs, a change in the state of the corresponding 
TCLK pin will be observed if FUNC = 1 and CLKSRC = 1 in the timer global­
control register. The exact change in the state depends on the state of the 
C/P bit. 

Peripherals 8-11 



Timers 

8.1.6 Timer Inltlalizatlon/Reconflguratlon 

8-12 

The timers are controlled through memory-mapped registers located on the 
dedicated peripheral bus. Following is the general procedure for initializing 
and/or reconfiguring the timers: 

1) Halt the timer by clearing the GO/HLD bits ofthe timer global-control regis­
ter. To do this, write a 0 to the timer global-control register. Note that the 
timers are halted on RESET. 

2) Configure the timer via the timer global-control register (with GO = HLD 
= 0), the timer counter register, and timer period register, if necessary. 

3) Start the timer by setting the GO/HLD bits of the timer global-control 
register. 



8.2 Serial Ports 

Serial Ports 

The TMS320C30 has two totally independent bidirectional serial ports. Both 
serial ports are identical, and there is a complementary set of control registers 
in each one. Only one serial port is available on the TMS320C31. You can con­
figure each serial port to transfer 8, 16, 24, or 32 bits of data per word simulta­
neously in both directions. The clock for each serial port can originate either 
internally, via the serial port timer and period registers, or externally, via a 
supplied clock. An internally generated clock is a divide-down of the clockout 
frequency, f(H 1). A continuous transfer mode is available, which allows the se­
rial port to transmit and receive any number of words without new synchroniza­
tion pulses. 

Eight memory-mapped registers are provided for each serial port: 

o Global-control register 
o Two control registers for the six serial I/O pins 
o Three receive/transmit timer registers 
o Data-transmit register 
o Data-receive register 

The global-control register controls the global functions of the serial port and 
determines the serial-port operating mode. Two port control registers control 
the functions of the six serial port pins. The transmit buffer contains the next 
complete word to be transmitted. The receive buffer contains the last complete 
word received. Three additional registers are associated with the transmit/re­
ceive sections of the serial-port timer. A serial-port block diagram is shown in 
Figure 8-8 on page 8-14, and the memory map of the serial ports is shown in 
Figure 8-9 on page 8-15. 

Peripherals 8-13 



Serial Ports 

Figure 8-8. Serial-Port Block Diagram 

I Receive Section II TransmitSection I 

8-14 

RINT 

Receive 
Timer (16) 

Bit Counter 
(8/16/24/32) 

RSR 
(32) 

OR OR 

ORR 
(32) 

CLKR CLKX 
TSTAT CLKR CLKX TSTAT 

Load 

Transmit 
Timer (16) 

Bit Counter 
(8/16/24/32) 

XSR 
(32) 

XINT 

OX OX 

~DX 
OXR 
(32) 



Serial Ports 

Figure 8-9. Memory-Mapped Locations for the Serial Ports 

Register Peripheral Addre .. 

Serial Serial 
PortO Port 1t 

Serial-Port Global Control (See Figure 8-10) 808040h 808050h 

Reserved 808041h 808051h 

FSX/DX/CLKX Port Control (See Figure 8-11) 808042h 808052h 

FSRJDRJCLKR Port Control (See Figure 8-12) 808043h 808053h 

RJX limer Control (See Figure 8-13) 808044h 808054h 

RJX limer Counter (See Figure 8-14) 808045h 808055h 

R/X limer Period (See Figure 8-15) 808046h 808056h 

Reserved 808047h 808057h 

Data Transmit (See Figure 8-16) 808046h 808058h 

Reserved 808049h 808059h 

Reserved 80804Ah 80805Ah 

Reserved 80804Bh 80805Bh 

Data Receive (See Figure 8-17) 80804Ch 80805Ch 

Reserved 80804Dh 80805Dh 

Reserved 80804Eh 80805Eh 

Reserved 80804Fh 80805Fh 

t Reserved locations on the TMS320C31 

8.2.1 Serial-Port Global-Control Register 

The serial-port global-control register is a 32-bit register that contains the glob­
al control bits for the serial port. Table 8-3 defines the register bits, bit names, 
and bit functions. The register is shown in Figure 8-10. 

Table 8-3. Serial-Port Global-Control Register Bits Summary 

Bit Name 

o RRDY 

XRDY 

2 FSXOUT 

Reset Value Function 

o If RRDY = 1, the receive buffer has new data and is ready to be read. A 
three H1/H3 cycle delay occurs from the loading of ORR to RRDY = 1. The 
rising edge of this signal sets RI NT. If RRDY = 0 at reset, the receive buffer 
does not have new data since the last read. RRDY = 0 at reset and after 
the receive buffer is read. 

o 

If XRDY = 1, the transmit buffer has written the last bit of data to the shifter 
and is ready for a new word. A three H1/H3 cycle delay occurs from the 
loading of the transmit shifter until XRDY is set to 1. The rising edge of this 
signal sets XINT. If XRDY=O, the transmit buffer has not written the last 
bit of data to the transmit shifter and is not ready for a new word. XRDY = 
1 at reset. 

This bit configures the FSX pin as an input (FSXOUT = 0) or an output 
(FSXOUT = 1). 

Peripherals 8-15 



Serial Ports 

Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued) 

Bit Name Reset Value Function 

3 XSREMPTY 0 If XSREMPTY = 0, the transmit shift register is empty. If XSREMPTY = 1, 
the transmit shift register is not empty. Reset or XRESET causes this bit 
to = O. 

4 RSRFULL 0 If RSRFULL = 1, an overrun of the receiver has occurred. In continuous 
mode, RSRFULLis setto 1 when both RSR and ORR are full. In noncontin-
uous mode, RSRFULL is set to 1 when RSR and ORR are full and a new 
FSR is received. A read causes this bit to be set to O. This bit can be set 
to 0 only by a system reset, a serial-port receive reset (RRESET = 1), or 
a read. When the receiver tries to set RSRFULL to 1 at the same time that 
the global register is read, the receiver will dominate, and RSRFULL is set 
to 1. If RSRFULL = 0, no overrun of the receiver has occurred. 

5 HS 0 If HS = 1, the handshake mode is enabled. If HS = 0, the handshake mode 
is disabled. 

6 XCLKSRCE 0 If XCLKSRCE = 1, the internal transmit clock is used. If XCLKSRCE = 0, 
the external transmit clock is used. 

7 RCLKSRCE 0 If RCLKSRCE = 1, the internal receive clock is used. If RCLKSRCE = 0, 
the external receive clock is used. 

8 XVAREN 0 This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) data rate 
signaling when transmitting. With a fixed data rate, FSX is active for at least 
one XCLK cycle and then goes inactive before transmission begins. With 
variable data rate, FSX is active while all bits are being transmitted. When 
you use an external FSX and variable data rate signaling, the OX pin is driv-
en by the transmitter when FSX is held active or when a word is being 
shifted out. 

9 RVAREN 0 This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) data rate 
signaling when receiving. With a fixed data rate, FSR is active for at least 
one RCLK cycle and then goes inactive before the reception begins. With 
variable data rate, FSR is active while all bits are being received. 

10 XFSM 0 Transmit frame sync mode. Configures the port for continuous mode oper-
ation(XFSM = 1) or standard mode (XFSM = 0). In continuous mode, only 
the first word of a block generates a sync pulse, and the rest are simply 
transmitted continuously to the end of the block. In standard mode, each 
word has an associated sync pulse. 

11 RFSM 0 Receive frame sync mode. Configures the port for continuous mode 
(RFSM =1) or standard mode (RFSM = 0) operation. In continuous mode, 
only the first word of a block generates a sync pulse, and the rest are simply 
received continuously without expectation of another sync pulse. In stan-
dard mode, each word received has an associated sync pulse. 

12 CLKXP 0 CLKX polarity. If CLKXP = 0, CLKX is active high. If CLKXP = 1, CLKX is 
active low. 

8-16 



Serial Ports 

Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued) 

Bit Name 

13 CLKRP 

14 DXP 

15 DRP 

16 FSXP 

17 FSRP 

19-18 XLEN 

21-20 RLEN 

22 XTINT 

23 XINT 

24 RTINT 

25 RINT 

26 XRESET 

Reset Value Function 

o CLKR polarity. If CLKRP = 0, CLKR is active (high). If CLKRP =1, CLKR 
is active (low). 

o DX polarity. If DXP = 0, DX is active (high). If DXP = 1, DX is active (low). 

o DR polarity. If DRP = 0, DR is active (high). If DRP = 1, DR is active (low). 

o FSX polarity. If FSXP = 0, FSX is active (high). If FSXP = 1, FSX is 
active (low). 

o FSR polarity. If FSRP = 0, FSR is active (high). If FSRP = 1, FSR is 
active (low). 

00 

00 

o 

o 

o 

o 

o 

These two bits define the word length of serial data transmitted. All data 
is assumed to be right-justified in the transmit buffer when fewer than 32 
bits are specified. 

o 0 --- 8 bits 1 0 --- 24 bits 
o 1 --- 16 bits 1 1 --- 32 bits 

These two bits define the word length of serial data received. All data is 
right-justified in the receive buffer. 

o 0 --- 8 bits 1 0 --- 24 bits 
o 1 --- 16 bits 1 1 --- 32 bits 

Transmit timer interrupt enable. If XTINT = 0, the transmit timer interrupt 
is disabled. If XTINT = 1, the transmit timer interrupt is enabled. 

Transmit interrupt enable. If XINT = 0, the transmit interrupt is disabled. If 
XINT = 1, the transmit interrupt is enabled. Note that the CPU receive flag 
XINT and the serial port-to-DMA interrupt (EXINTO in the IE register) is the 
OR of the enabled transmit timer interrupt and the enabled transmit inter­
rupt. 

Receive timer interrupt enable. If RTINT = 0, the receive timer interrupt is 
disabled. If RTINT = 1, the receive timer interrupt is enabled. 

Receive interrupt enable. If RINT = 0, the receive interrupt Is disabled. If 
RINT = 1, the receive interrupt is enabled. Note that the CPU receive flag 
RINT and the serial-port-to-DMA interrupt (ERINTO in the IE register) is the 
OR of the enabled receive timer interrupt and the enabled receive inter­
rupt. 

Transmit reset. If XRESET = 0, the transmit side of the serial port is reset. 
To take the transmit side of the serial port out of reset, set XRESET to 1. 
However, do not set XRESET to 1 until at least three cycles after XRESET 
goes inactive. This applies only to system reset. Setting XRESETto 0 does 
not change the contents of any of the serial-port control registers. It places 
the transmitter in a state corresponding to the beginning of a frame of data. 
Resetting the transmitter generates a transmit interrupt. Reset this bit dur­
ing the time the mode of the transmitter is set. You can toggle XFSM with­
out resetting the global-control register. 

Peripherals 8-17 



Serial Ports 

Table 8-3. Serial-Port Global-Control Register Bits Summary (Concluded) 

Bit Name Reset Value Function 

27 RRESET 0 Receive reset. If RRESET = 0, the receive side of the serial port is reset. 
To take the receive side of the serial port out of reset, set RRESET to 1. 
Setting RRESET to 0 does not change the contents of any of the serial­
port control registers. It places the receiver in a state corresponding to the 
beginning of a frame of data. Reset this bit at the same time that the mode 
of the receiver is set. RFSM can be toggled without resetting the global­
control register. 

31-28 Reserved 0-0 Read as O. 

Figure 8-10. Serial-Port Global-Control Register 
19 18 17 16 

XLEN 

RN/ RN/ RN/ 

RN/ RN/ RN/ RN/ RN/ RN/ RN/ RN/ RN/ RN/ RN/ R R RN/ R R 

R = Read, W = Write, xx = reserved bit, read as 0 

8.2.2 FSXlDXlCLKX Port-Control Register 

This 32-bit port control register controls the function of the serial port FSX, OX, 
and CLKX pins. At reset, all bits are set to O. Table 8-4 defines the register bits, 
bit names, and functions. Figure 8-11 shows this port control register. 

8-18 



Serial Ports 

Table 8-4. FSXlDXlCLKX Port-Control Register Bits Summary 

Bit Name Reset Value Function 

0 ClKXFUNC 0 ClKXFUNC controls the function of ClKX. If ClKXFUNC = 0, 
ClKX is configured as a general-purpose digital I/O port. If 
ClKXFUNC = 1, ClKX is a serial port pin. 

ClKXi/O 0 If ClKX i/O:: 0, ClKX is configured as a general-purpose input 
pin. If ClKX I/O = 1 , ClKX is configured as a general-purpose out-
put pin. 

2 ClKXDATOUT 0 Data output on ClKX. 

3 ClKXDATIN x Data input on ClKX. A write has no effect. 

4 DXFUNC 0 DXFUNC controls the function of DX.lf DXFUNC = 0, DX is config-
ured as a general-purpose digital I/O port. If DXFUNC = 1, DX is 
a serial port pin. 

5 Dxi/o 0 If DX i/o = 0, DX is configured as a general-purpose input pin. If 
DX i/o = 1, DX is configured as a general-purpose output pin. 

6 DXDATOUT 0 Data output on DX. 

7 DXDATIN xt Data input on DX. A write has no effect. 

8 FSXFUNC 0 FSXFUNC controls the function of FSX. If FSXFUNC = 0, FSX is 
configured as a general-purpose digital I/O port. If FSXFUNC = 1, 
FSX is a serial port pin. 

9 FSXi/O 0 If FSX 1/0 = 0, FSX is configured as a general-purpose input pin. 
If FSX I/O = 1, FSX is configured as a general-purpose output pin. 

10 FSXDATOUT 0 Data output on FSX. 

11 FSXDATIN xt Data input on FSX. A write has no effect. 

31-12 Reserved 0-0 Read as O. 

t x=Oor1 

Figure 8-11. FSXlDXlCLKX Port-Control Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

R RI'N RI'N RI'N R RI'N RI'N R RI'N RI'N RI'N 

R = Read, W = Write, xx = reserved bit, read as 0 

Peripherals 8-19 



Serial Ports 

8.2.3 FSR/DR/CLKR Port-Control Register 

This 32-bit port control register is controlled by the function of the serial port 
FSR, DR, and CLKR pins. At reset, all bits are set to O. Table 8-5 defines the 
register bits, the bit names, and functions. Figure 8-12 illustrates this port con­
trol register. 

Table 8-5. FSR/DR/CLKR Port-Control Register Bits Summary 

Bit Name 

o CLKRFUNC 

CLKRf/O 

2 CLKRDATOUT 

3 CLKRDATIN 

4 DRFUNC 

5 DR i/o 

6 DRDATOUT 

7 DRDATIN 

8 FSRFUNC 

9 FSR 110 

10 FSRDATOUT 

11 FSRDATIN 

31-12 Reserved 

tx = 0 or 1 

Reset Value Function 

o CLKRFUNC controls the function of CLKR. If CLKRFUNC=O, 
CLKR is configured as a general-purpose digital I/O port. If 
CLKRFUNC = 1, CLKR i~ a serial port pin. 

o 

o 
x 

o 

o 

o 
xt 

o 

o 

o 
x 

0-0 

If CLKRI/o = 0, CLKR is configured as a general-purpose input pin. 
If CLKRI/O = 1 , CLKR is configured as a general-purpose output pin. 

Data output on CLKR. 

Data input on CLKR. A write has no effect. 

DRFUNC controls the function of DR. If DRFUNC = 0, DR is 
configured as a general-purpose digital I/O port. If DRFUNC = 1 , DR 
is a serial port pin. 

If DRi/o = 0, DR is configured as a general-purpose input pin. 
If DRi/o = 1, DR is configured as a general-purpose output pin. 

Data output on DR 

Data input on DR. A write has no effect. 

FSRFUNC controls the function of FSR. If FSRFUNC = 0, FSR is 
configured as a general-purpose digital I/O port. If 
FSRFU NC = 1, FSR is a serial port pin. 

If FSR i/o = 0, FSR is configured as a general-purpose input pin. If 
FSR i/o = 1, FSR is configured as a general-purpose output pin. 

Data output on FSR 

Data input on FSR. A write has no effect. 

Read as O. 

Figure 8-12. FSR/DR/CLKR Port-Control Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Ixx Ixx Ixx xx I xx xx I xx xx I xx xx xx xx xx xx I xx I xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

R R/W R/W R R/W R/W R R/W R/W 

R = Read, W = Write, xx = reserved bit, read as 0 

8-20 



Serial Ports 

8.2.4 Recelve/Transmlt Timer-Control Register 

A 32-bit receive/transmit timer control register contains the control bits for the 
timer module. At reset, all bits are set to o. Table 8-6 lists the register bits, bit 
names, and functions. Bits 5-0 control the transmitter timer. Bits 11-6 control 
the receiver timer. Figure 8-13 shows the register. The serial port receive/ 
transmit timer function is similar to timer module operation. It can be consid­
ered a 16-bit-wide timer. Refer to Section 8.1 on page 8-2 for more informa­
tion on timers. 

Table 8-6. Receive/Transmit Timer-Control Register 

Bit Name 

o XGO 

2 

3 

4 

5 

6 

7 

XC/P 

XCLKSRC 

Reserved 

XTSTAT 

RGO 

Reset Value Function 

o The XGO bit resets and starts the transmit timer counter. When XGO 
is set to 1 and the timer is not held, the counter is zeroed and begins 
incrementing on the next rising edge of the timer input clock. The XGO 
bit is cleared on the same rising edge. Writing 0 to XGO has no effect 
on the transmit timer. 

o 

o 

o 

o 
o 

o 

o 

Transmit counter hold signal. When this bit is setto 0, the counter is dis­
abled and held in its current state. The internal divide-by-two counter 
is also held so thatthe counter will continue where it left off when XHLD 
is set to 1. You can read and modify the timer registers while the timer 
is being held. RESET has priority over XHLD. 

XClock/Pulse mode control. When XC/P = 1, the clock mode is chosen. 
The signaling of the sj?tus flag and external output has a 50 percent 
duty cycle. When XC/P = 0, the status flag and external output are ac­
tive for one CLKOUT cycle during each timer period. 

This bit specifies the source of the transmit timer clock. When 
XCLKSRC = 1, an internal clock with frequency equal to one-half the 
CLKOUT frequency is used to increment the counter. When XCLKSRC 
= 0, you can use an external signal from the CLKX pin to increment the 
counter. The external clock source is synchronized internally, thus al­
lowing for external asynchronous clock sources that do not exceed the 
specified maximum allowable external clock frequency, that is, less 
than f(H1}/2.6. 

Read as zero. 

This bit indicates the status of the transmit timer. It tracks what would 
be the output of the uninverted CLKX pin. This flag sets a CPU interrupt 
on a transition from 0 to 1 . A write has no effect. 

The RGO bit resets and starts the receive timer counter. When RGO 
is set to 1 and the timer is not held, the counter is zeroed and begins 
incrementing on the next rising edge of the timer input clock. The RGO 
bit is cleared on the same rising edge. Writing 0 to RGO has no effect 
on the receive timer. 

Receive counter hold signal. When this bit is set to 0, the counter is dis­
abled and held in its current state. The internal divide-by-two counter 
is also held so that the counter will continue where it left off when RHLD 
is set to 1. You can read and modify the timer registers while the timer 
is being held. RESET has priority over RHLD. 

Peripherals 8-21 



Serial Ports 

Table 8-6. Receive!Transmit Timer-Control Register (Concluded) 

Bit Name 

8 RC/P 

9 RCLKSRC 

10 Reserved 

11 RTSTAT 

31-12 Reserved 

Reset Value 

o 

o 

o 
o 

Function 

RClock/Pulse mode control. When RC/P = 1, the clock mode is cho­
sen. The signaling of the st~us flag and external output has a 50 per­
cent duty cycle. When RC/P = 0, the status flag and external output 
are active for one CLKOUT cycle during each timer period. 

This bit specifies the source of the receive timer clock. When 
RCLKSRC = 1, an internal clock with frequency equal to one-half the 
CLKOUT frequency is used to increment the counter. When 
RCLKSRC = 0, you can use an external signal from the CLKR pin to 
increment the counter. The external clock source is synchronized in­
ternally, thus allowing for external asynchronous clock sources that 
do not exceed the specified maximum allowable external clock fre­
quency, that is, less than f(H1)/2.6. 

Read as zero. 

This bit indicates the status of the receive timer. It tracks what would 
be the output of the uninverted CLKR pin. This flag sets a CPU inter­
rupt on a transition from 0 to 1. A write has no effect. 

Read as O. 

Figure 8-13. Receive!Transmit Timer-Control Register 
31 30 29 28 27 28 25 24 23 22 21 20 19 18 17 18 

Ixxlxxlxxlxxl xx xx xx 1 xx xx xx xx Ixx xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 xx 1 xx Ixx 1 xx 1 RTSTAT 1 xx 1 RCLKSRC 1 RC/P RHLD RGO 1 XTSTAT 1 xx 1 XCLKSRC 1 xC/P 1 XHLD 1 XGO I 
R R/W R/W R R/W R/W R R/W R/W R/W 

R = Read, W = Write, xx = reserved bit. read as 0 

8.2.5 Recelve/Transmit Timer-Counter Register 

The receive/transmit timer counter register is a 32-bit register (see 
Figure 8-14). Bits 15-0 are the transmittimer counter, and bits 31-16 are the 
receive timer counter. Each counter is cleared to 0 whenever it increments to 
the value of the period register (see Section 8.2.6). It is also set to 0 at reset. 

Figure 8-14. Receive!Transmit Timer Counter Register 
31 

Receive Counter 

15 
Transmit Counter 

NOTE: All bits are read/write. 

8-22 

16 

o 



Serial Ports 

8.2.6 Recelve/Transmlt Timer-Period Register 

The receive/transmit timer period register is a 32-bit register (see 
Figure 8-15). Bits 15-0 are the timer transmit period, and bits 31-16 are the 
receive period. Each register is used to specify the period of the timer. It is also 
cleared to 0 at reset. 

Figure 8-15. Receive/Transmit Timer-Period Register 
31 16 

Receive Period 

15 o 
Transmit Period 

Note: All bits are read/write. 

8.2.7 Data-Transmit Register 

Figure 8-16. 

When the data-transmit register (DXR) is loaded, the transmitter loads the 
word into the transmit shift register (XSR), and the bits are shifted out. The 
delay from a write to DXR until an FSX occurs (or can be accepted) is two 
CLIO( cycles. The word is not loaded into the shift register until the shifter is 
empty. When DXR is loaded into XSR, the XRDY bit is set, specifying that the 
buffer is available to receive the next word. Four tap points within the transmit 
shift register are used to transmit the word. These tap points correspond to the 
four data word sizes and are illustrated in Figure 8-16. The shift is a left-shift 
(LSB to MSB) with the data shifted out of the MSB corresponding to the appro­
priate tap point. 

Transmit Buffer Shift Operation 

- Shift Direction -

31 24 23 16 15 a 7 0 

I 
I 

I 
I 

I 
I 

I 
I 

I 
32-bit 24-bit 16-bit a-bit 
word tap word tap word tap word tap 

Peripherals 8-23 



Serial Ports 

8.2.8 Data-Receive Register 

When serial data is input, the receiver shifts the bits into the receive shift regis­
ter (RSR). When the specified number of bits are shifted in, the data-receive 
register (ORR) is loaded from RSR, and the RRDY status bit is set. The receiv­
er is double-buffered. If the ORR has not been read and the RSR is full, the 
receiver is frozen. New data coming into the DR pin is ignored. The receive 
shifter will not write over the ORR. The ORR must be read to allow new data 
in the RSR to be transferred to the ORR. When a write to ORR occurs at the 
same time that an RSR to ORR transfer takes place, the RSR to ORR transfer 
has priority. 

Data is shifted to the left (LSB to MSB). Figure 8-17 illustrates what happens 
when words less than 32 bits are shifted into the serial port. In this figure, it is 
assumed that an 8-bit word is being received and that the upper three bytes 
of the receive buffer are originally undefined. In the first portion of the figure, 
byte a has been shifted in. When byte b is shifted in, byte a is shifted to the left. 
When the data receive register is read, both bytes a and b are read. 

Figure 8-17. Receive Buffer Shift Operation 

..... Shift Direction ..... 

31 24 23 0 16 15 8 7 

X 
, 

X 
, a After Byte a ,L......-_X __ ...... , ____ -'--___ --'-___ ---II 

After Byte b X X a b 

8.2.9 Serial-Port Operation Configurations 

8-24 

Several configurations are provided for the operation of the serial port clocks 
and timer. The clocks for each serial port can originate either internally or exter­
nally. Figure 8-18 shows serial port clocking in the I/O mode (CLKRFUNC = 
0) when CLKX is either an input or an output. Figure 8-19 shows clocking in 
the serial-port mode (CLKRFUNC=1). Both figures use a transmit section for 
an example. The same relationship holds for a receive section. 



Figure 8-18. Serial-Port Clocking in I/O Mode 

Internal, External 

TSTAT Internal , 
~ Timer In ~ C]IOCk ,~ 

I XSR ~ I 

DATOUT : 
DATIN--.-----' 

ClKRFUNC = 0 (I/O Mode) 
ClKXI/O = 1 (CLKX, an Output) 
XClKSRC = 1 (Internal ClK for Timer) 

(a) 

Internal, External 

TS~ . ~ Internal , 
-:Tlmer In~ Clock' 

IXSRI4T I·ClKX 

DATOUT (NC) -0 + 
DATIN --....1-----'-

ClKRFUNC = 0 (I/O Mode) 
ClKXI/O = 0 (CLKX, an Input) 
XClKSRC = 1 (Internal ClK for Timer) 

(e) 

Serial Ports 

Internal, External , 

DATAOUT--i~---' 

DATIN-.-----' 

ClKRFUNC = 0 (I/O Mode) 
ClKXI/O = 1 (CLKX, an Output) 
XClKSRC = 0 (External ClK for Timer) 

(b) 

Internal I External 

DATOUT (NC)-O 

DATIN------' 

ClKRFUNC = 0 (I/O Mode) 

I 

ClKXI/O = 0 (ClKX, an Input) 
XCLKSRC = 0 (External ClK for Timer) 

(d) 

Peripherals 8-25 



Serial Ports 

Figure 8-19. Serial-Port Clocking in Serial-Port Mode 

Internal, External 
Internal , 
Clock , 

CLIO( 

DATOUT(NC)---o INV 
DATIN _-+-_....J 

CLKRFUNC = 1 (Serial-Port Mode) 
XCLKSRCE = 1 (Output Serial-Port CLK) 
XCLKSRC = 0 or 1 

(a) 

DATOUT (NC) ---0 

DATIN--+-....J 

Internal, External 

~ J-+- Internal , 
Timer Clock , 
~ClKX 

DATOUT (NC) ~ , 
DAriN INV 

CLKRFUNC = 1 (Serial-Port Mode) 
XCLKSRCE = 0 (Input Serial-Port CLK) 
XCLKSRC = 1 (Internal CLK for Timer) 

(b) 

FUNC = 1 (Serial-Port Mode) 
XCLKSRCE = 0 (Input Serial-Port CLK) 
XCLKSRC = 0 (External CLK for Timer) 

(c) 

8.2.10 Serial·Port Timing 

8-26 

The formula for calculating the frequency of the serial-port clock with an inter­
nally generated clock is dependent upon the operation mode of the serial-port 
timers, defined as 

f (pulse mode) = f (timer clock)/period register 

f (clock mode) = f (timer clock)/(2 x period register) 

An internally generated clock source f(timer clock) has a maximum frequency 
of f(H1)/2. An externally generated serial-port clock f (timer clock) (CLlO( or 
CLKR) has a maximum frequency of less than f(H1 )/2.6. See serial port timing 
in Table 13-27 on page 13-58. Also, see subsection 8.1 .3 on page 8-8 for in­
formation on timer pulse/clock generation. 



Serial Ports 

Transmit data is clocked out on the rising edge of the selected serial-port clock. 
Receive data is latched into the receive shift register on the falling edge of the 
serial-port clock. All data is transmitted and loaded MSB first and right-justi­
fied. If fewer than 32 bits are transferred, the data are right-justified in the 32-bit 
transmit and receive buffers. Therefore, the LSBs of the transmit buffer are 
the bits that are transmitted. 

The transmit ready (XRDY) signal specifies that the data-transmit register 
(DXR) is available to be loaded with new data. XRDY goes active as soon as 
the data is loaded into the transmit shift register (XSR). The last word may still 
be shifting out when XRDY goes active. If DXR is loaded before the last word 
has completed transmission, the data bits transmitted are consecutive; that is, 
the LSB of the first word immediately precedes the MSB of the second, with 
all signaling valid as in two separate transmits. XRDY goes inactive when DXR 
is loaded and remains inactive until the data is loaded into the shifter. 

The receive ready (RRDY) Signal is active as long as a new word of data is 
loaded into the data receive register and has not been read. As soon as the 
data is read, the RRDY bit is turned off. 

When FSX is specified as an output, the activity of the signal is determined 
solely by the internal state ofthe serial port. If a fixed data rate is specified, FSX 
goes active when DXR is loaded into XSR to be transmitted out. One serial­
clock cycle later, FSX turns inactive, and data transmission begins. If a variable 
data rate is specified, the FSX pin is activated when the data transmission be­
gins and remains active during the entire transmission of the word. Again, the 
data is transmitted one clock cycle after it is loaded into the data transmit 
register. 

An input FSX in the fixed data rate mode should go active for at least one serial 
clock cycle and then inactive to initiate the data transfer. The transmitter then 
sends the number of bits specified by the LEN bits. In the variable data-rate 
mode, the transmitter begins sending from the time FSX goes active until the 
number of specified bits has been shifted out. In the variable data-rate mode, 
when the FSX status changes prior to all the data bits being shifted out, the 
transmission completes, and the DX pin is placed in a high-impedance state. 
An FSR input is exactly complementary to the FSX. 

When using an external FSX, if DXR and XSR are empty, a write to DXR results 
in a DXR-to-XSR transfer. This data is held in the XSR until an FSX occurs. 
When the external FSX is received, the XSR begins shifting the data. If XSR 
is waiting for the external FSX, a write to DXR will change DXR, but a DXR-to­
XSR transfer will not occur. XSR begins shifting when the external FSX is re­
ceived, or when it is reset using XRESET. 

Peripherals 8-27 



Serial Ports 

Continuous Transmit and Receive Modes 

When continuous mode is chosen, consecutive writes do not generate or ex­
pect new sync pulse signaling. Only the first word of a block begins with an ac­
tive synchronization. Thereafter, data continues to be transmitted as long as 
new data is loaded into OXR before the last word has been transmitted. As 
soon as TXROY is active and all of the data has been transmitted out of the 
shift register, the OX pin is placed in a high-impedance state, and a subsequent 
write to DXR initiates a new block and a new FSX. 

Similarly with FSR, the receiver continues shifting in new data and loading 
ORR. If the data-receive buffer is not read before the next word is shifted in, 
you will lose subsequent incoming data. You can use the RFSM bit to terminate 
the receive-continuous mode. 

Handshake Mode 

The handshake mode (HS = 1) allows for direct connection between proces­
sors. In this mode, all data words are transmitted with a leading 1 (see 
Figure 8-20). For example, if an eight-bit word is to be transmitted, the first bit 
sent is a 1, followed by the eight-bit data word. 

In this mode, once the serial port transmits a word, it will not transmit another 
word until it receives a separately transmitted zero bit. Therefore, the 1 bit that 
precedes every data word is, in effect, a request bit. 

Figure 8-20. Data Word Format in Handshake Mode 

ox 

14-j4----- Data Word (8 Bits) ------~~ 

I I 

After a serial port receives a word (with the leading 1) and that word has been 
read from the ORR, the receiving serial port sends a single 0 to the transmitting 
serial port. Thus, the single 0 bit acts as an acknowledge bit (see Figure 8-21). 
This single acknowledge bit is sent every time the ORR is read, even if the ORR 
does not contain new data. 

Figure 8-21. Single Zero Sent as an Acknowledge Bit 

DX--Q= 
Single 0 

8-28 



Serial Ports 

When the serial port is placed in the handshake mode, the insertion and dele­
tion of a leading 1 for transmitted data, the sending of a 0 for acknowledgement 
of received data, and the waiting for this acknowledge bit are all performed au­
tomatically. Using this scheme, it is simple to connect processors with no exter­
nal hardware and to guarantee secure communication. Figure 8-22 is a typi­
cal configuration. 

In the handshake mode, FSX is automatically configured as an output. Contin­
uous mode is automatically disabled. After a system reset or XRESET, the 
transmitter is always permitted to transmit. The transmitter and receiver must 
be reset when entering the handshake mode. 

Figure 8-22. Direct Connection Using Handshake Mode 

TMS320C3x #1 

CLKX 
FSX 

OX 

CLKR 
FSR 

OR 

8.2.11 Serial-Port Interrupt Sources 

TMS320C3x #2 

CLKR 
FSR 
OR 

CLKX 
FSX 
OX 

A serial port has the following interrupt sources: 

o The transmit timer Interrupt: The rising edge of XTSTAT causes a sing­
le-cycle interrupt pulse to occur. When XTINT is 0, this interrupt pulse is 
disabled. 

o The receive timer Interrupt: The rising edge of RTSTAT causes a single­
cycle interrupt pulse to occur. When RTI NT is 0, this interrupt pulse is dis­
abled. 

o The transmitter Interrupt: Occurs immediately following a OXR-to-XSR 
transfer. The transmitter interrupt is a single-cycle pulse. When the 
serial-port global-control register bit XINT is 0, this interrupt pulse is dis­
abled. 

o The receiver interrupt: Occurs immediately following an RSR to ORR 
transfer. The receiver interrupt is a single-cycle pulse. When the 
serial-port global-control register bit RINT is 0, this interrupt pulse is 
disabled. 

The transmit timer interrupt pulse is ORed with the transmitter interrupt pulse to create 
the CPU transmit interrupt flag XI NT. The receive timer interrupt pulse is ORed with the 
receiver interrupt pulse to create the CPU receive interrupt flag RI NT. 

Peripherals 8-29 



Serial Ports 

8.2.12 Serial-Port Functional Operation 

8-30 

The following paragraphs and figures illustrate the functional timing of the vari­
ous serial-port modes of operation. The timing descriptions are presented with 
the assumption that all signal polarities are configured to be positive, that is, 
ClKXP = ClKRP = DXP = DRP = FSXP = FSRP = O. logical timing, in situa­
tions where one or more of these polarities are inverted, is the same except 
with respect to the opposite polarity reference points, that is, rising vs. falling 
edges, etc. 

These discussions pertain to the numerous operating modes and configura­
tions of the serial-port logic. When it is necessary to switch operating modes 
or change configurations of the serial port, you should do so only when 
XRESET or RRESET are asserted (low), as appropriate. Therefore, when 
transmit configurations are modified, XRESET should be low, and when re­
ceive configurations are modified, RRESET should be low. When you use 
handshake mode, however, since the transmitter and receiver are interrelated, 
you should make any configuration changes with XRESET and RRESET both 
low. 

All of the serial-port operating configurations can be broadly classified in two 
categories: fixed data-rate timing and variable data-rate timing. The following 
paragraphs discuss fixed and variable data-rate operation and all of their vari­
ations. 

Fixed Data-Rate Timing Operation 

Fixed data-rate serial-port transfers can occur in two varieties: burst mode and 
continuous mode. In burst mode, transfers of single words are separated by 
periods of inactivity on the serial port. In continuous mode, there are no gaps 
between successive word transfers; the first bit of a new word is transferred 
on the next ClKX/R pulse following the last bit of the previous word. This oc­
curs continuously until the process is terminated. 

In burst mode with fixed data-rate timing, FSX/FSR pulses initiate transfers, 
and each transfer involves a single word. With an internally generated FSX 
(see Figure 8-23), transmission is initiated by loading DXR. In this mode, 
there is a delay of approximately 2.5 ClKX cycles (depending on ClKX and 
H 1 frequencies) from the time DXR is loaded until FSX occurs. With an exter­
nal FSX, the FSX pulse initiates the transfer, and the 2.5-cycie delay effectively 
becomes a setup requirement for loading DXR with respect to FSX. Therefore, 
in this case, you must load DXR no later than three ClKX cycles before FSX 
occurs. Once the XSR is loaded from the DXR, an XINT is generated. 



Serial Ports 

Figure 8-23. Fixed Burst Mode 

CLKXlR 

FSR/FSX (External) ________ ....J 

FSX (Internal) 
--------~ 

DWR--------------~ 

i i i 
DXR Loaded XINT RINT 

In receive operations, once a transfer is initiated, FSR is ignored until the last 
bit. For burst-mode transfers, FSR must be low during the last bit, or another 
transfer will be initiated. After a full word has been received and transferred to 
the ORR, an RINT is generated. 

In fixed data-rate mode, you can perform continuous transfers even if RIXFSM 
= 0, as long as properly timed frame synchronization is provided, or as long 
as DXR is reloaded each cycle with an internally generated FSX (see 
Figure 8-24). 

Figure 8-24. Fixed Continuous Mode With Frame Sync 

CLKXlR 

FSX (Internal) ______ ~ -- --FSR/FSX (External) ______ -', ~~ .. ~~Er-l_mEm 
DRIDX ___________ ~~~ 

1 J ~~ xL 
RINT RINT 

DXR Loaded XINT 

DXR Loaded Load DXR 
Read DRR 

Load DXR 
Read DRR 

Peripherals 8-31 



Serial Ports 

8-32 

For receive operations and with externally generated FSX, once transfers 
have begun, frame sync pulses are required only during the last bit transferred 
to initiate another contiguous transfer. Otherwise, frame sync inputs are ig­
nored. Therefore, continuous transfers will occur if frame sync is held high. 
With an internally generated FSX, there is a delay of approximately 2.5 CLKX 
cycles from the time DXR is loaded until FSX occurs. This delay occurs each 
time DXR is loaded; therefore, during continuous transmission, the instruction 
that loads DXR must be executed by the N-3 bit for an N-bit transmission. 
Since delays due to pipelining may vary, you should incorporate a conserva­
tive margin of safety in allowing for this delay. 

Once the process begins, an XINT and an RINT are generated at the begin­
ning of each transfer. The XINT indicates that the XSR has been loaded from 
DXR and can be used to cause DXR to be reloaded. To maintain continuous 
transmission in fixed rate mode with frame sync, especially with an internally 
generated FSX, DXR must be reloaded early in the ongoing transfer. 

The RINT indicates that a full word has been received and transferred into the 
DRR. RI NT is therefore commonly used to indicate an appropriate time to read 
DRR. 

Continuous transfers are terminated by discontinuing frame sync pulses or, in 
the case of internally generated FSX, not reloading DXR. 

You can accomplish continuous serial-port transfers without the use of frame 
sync pulses if RIXFSM are set to 1. In this mode, operation of the serial port 
is similar to continuous operation with frame sync, except that a frame sync 
pulse is involved only in the first word transferred, and no further frame sync 
pulses are used. Following the first word transferred (see Figure 8-25), no in­
ternal frame sync pulses are generated, and frame sync inputs are ignored. 
Additionally, you should set RIXFSM prior to or during the first word trans­
ferred; you must set RIXFSM no later than the transfer of the ~ 1 bit of the first 
word, except for transmit operations. For transmit operations in the fixed data­
rate mode, XFSM must be set no later than the ~2 bit. You must clear 
RIXFSM no later than the ~ 1 bit to be recognized in the current cycle. 



Serial Ports 

Figure 8-25. Fixed Continuous Mode Without Frame Sync 

CLKX/R 

FSR/FSX (External) 

FSX (Internal) 

-------' 
-------' II II 

DR/DX ___________ --<::EJQ~~ 

1 xL 1M ~b ~~ 
DXRLoaded 

DXRLoaded LoadDXR 
Read ORR 

Load DXR 
Read ORR 

Timing of RINT and XINT and data transfers to and from DXR and ORR, re­
spectively, are the same as in fixed data-rate continuous mode with frame 
sync. This mode of operation also exhibits the same delay of 2.5 CLKX cycles 
after DXR is loaded before an internal FSX is generated. As in the case of con­
tinuous operation in fixed data-rate mode with frame sync, you must reload 
DXR no later than transmission of the N-3 bit. 

When you use continuous operation in fixed data-rate mode, RlXFSM can be 
set and cleared as desired, even during active transfers, to enable or disable 
the use offrame sync pulses as dictated by system requirements. Under most 
conditions, the effect of changing the state of RlXFSM occurs during the trans­
fer in which the RlXFSM change was made, provided the change was made 
early enough in the transfer. For transmit operations with internal FSX in fixed 
data-rate mode, however, a one-word delay occurs before frame sync pulse 
generation resumes when clearing XFSM to 0 (see Figure 8-26). Therefore, 
in this case, one additional word is transferred before the next FSX pulse is 
generated. Also note that, as discussed previously, the clearing of XFSM is 
recognized during the transmission of the word currently being transmitted as 
long as XFSM is cleared no later than the ~ 1 bit. The setting of XFSM is rec­
ognized as long as XFSM is set no later than the ~2 bit. 

Peripherals 8-33 



Serial Ports 

Figure 8-26. Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal 

I I I I I I 
I 1 st Word I 2nd Word I 3rd Word 14th Word 1 5th Word I 

CLKXJ1.flJ1J1..hJU1.htU1.htU1.htU1.htU1.htm 
FSX I I I I I I 

(Internal) n I Inn n r 
I i i ' I · I . I 

8-34 

DX-------«~~~~~ocm 

r r r 
LOADDXR SET XFSM RESET XFSM 

Variable Data-Rate Timing Operation 

Variable data-rate timing also supports operation in either burst or continuous 
mode. Burst-mode operation with variable data-rate timing is similar to burst­
mode operation with fixed data-rate timing. With variable data-rate timing (see 
Figure 8-27), however, FSXlR and data timing differ slightly at the beginning 
and end of transfers. Specifically, there are three major differences between 
fixed and variable data-rate timing: 

o FSXlR pulses typically last for the entire transfer interval, although FSR 
and external FSX are ignored after the first bit transferred. FSXlR pulses 
in fixed data-rate mode typically last only one CLKX/R cycle but can last 
longer. 

o Data transfer begins during the CLKX/R cycle in which FSXlR occurs, 
rather than the CLKX/R cycle following FSXlR, as is the case with fixed 
data-rate timing. 

o With variable data-rate timing, frame sync inputs are ignored until the end 
of the last bit transferred, rather than the beginning of the last bit trans­
ferred, as is the case with fixed data-rate timing. 



Serial Ports 

Figure 8-27. Variable Burst Mode 

CLKXlR 

FSR/FSX (External) _________ ....... 

FSX (Internal) _________ --" II 

DX/DR ------------~~-----------

iii 
DXR Loaded XINT RINT 

When you transmit continuously in variable data-rate mode with frame sync, 
timing is the same as for fixed data-rate mode, except for the differences be­
tween these two modes as described under Variable Data-Rate Timing Opera­
tion. The only other exception is that you must reload DXR no later than the 
N-4 bit to maintain continuous operation of the variable data-rate mode (see 
Figure 8-28); you must reload DXR no later than the N-3 bit to maintain con­
tinuous operation of the fixed data-rate mode. 

Figure 8-28. Variable Continuous Mode With Frame Sync 

CLKXlR 

FS~FSX(Externao __________ ~r--~~~liir--'~IIm~~r--l~m;m;~ 

FSX (InternaO ________ .... II II 

DX/DR ------------a:DG~I..o..'"""~:....n....:;:.C1:.....11~=-.I~ 

DXR !aded XIJ i xlT i XI!T i I RINT I RINT I 
Load 
DXR Load DXR 

Read DRR 
Load DXR 
Read DRR 

Continuous operation in variable data-rate mode without frame sync (see 
Figure 8-29) is also similar to continuous operation without frame sync in fixed 
data-rate mode. As with variable data-rate mode continuous operation with 
frame sync, you must reload DXR no later than the N-4 bit to maintain continu­
ous operation. Additionally, when RlXFSM is set or cleared in the variable da­
ta-rate mode, you must make the modification no later than the ~ 1 bit for the 
result to be affected in the current transfer. 

Peripherals 8-35 



Serial Ports 

Figure 8-29. Variable Continuous Mode Without Frame Sync 

CLKXlR 

FSR/FSX (External) 

FSX (Internal) 
----------------~ 

----------------~ 

If 

II 

OX/DR -------------<:!DC~, ..... -"------~----

1 X!T 1M x!. 
DXR Loaded R/XFSM RINT 

DXR Loaded 

Load DXR 
Read ORR 

XI NT 
RINT 

Load DXR 
Read ORR 

8.2.13 Serial-Port Initialization/Reconfiguration 

The serial ports are controlled through memory-mapped registers on the dedi­
cated peripheral bus. Following is a general procedure for initializing and/or 
reconfiguring the serial ports. 

1) Halt the serial port by clearing the XRESET and/or RRESET bits ofthe ser­
ial-port global-control register. To do this, write a 0 to the serial-port global­
control register. Note that the serial ports are halted on RESET. 

2) Configure the serial port via the serial-port global-control register (with 
XRESET = RRESET = 0) and the FSXlDXlCLKX and FSR/DRlCLKR port­
control registers. If necessary, configure the receive/transmit registers: 
timer control (with XHLD = RHLD = 0), timer counter, and timer period. Re­
fer to subsection 8.2.14 for more information. 

3) Start the serial port operation by setting the XRESET and RRESET bits 
of the serial-port global-control register and the XHLD and RHLD bits of 
the serial-port receive/transmit timer-control register, if necessary. 

8.2.14 TMS320C3x Serial-Port Interface Examples 

8-36 

In addition to the examples presented in this section, DMA/serial port initializa­
tion examples can be found in Example 8-6 and Example 8-7 on pages 8-59 
and 8-61, respectively. 



Serial Ports 

8.2.14.1 Handshake Mode Example 

When handshake mode is used, the transmit (FSXlDS/CLKX) and receive 
(FSRlDRlCLKR) signals transmit and receive data, respectively. In other 
words, even if the TMS320C3x serial port is receiving data only with hand­
shake mode, the transmit signals are still needed to transmit the acknowledge 
signal. This is the serial port register setup for the TMS320C3x serial port 
handshake communication, as shown in Figure 8-22 on page 8-29: 

Global control 
Transmit port control 
Receive port control 
SJ)Ort timer control 
S_port timer count 
SJ)Ort timer period 

x = user-configurable 

= 011xOxOxxxxOOOOOOOOxx01100100b 
= 0111h 
= 0111h 
= OFh 
= Oh 
:t 01 h (if two C3xs have the same 

system clock) 

Since the FSX is set as an output and continuous mode is disabled when hand­
shake mode is selected, you should set the XFSM and RFSM bits to 0 and the 
FSXOUT bit to 1 in the global control register. You should set the XRESET, 
RRESET, and HS bits to 1 in order to start the handshake communication. You 
should set the polarity of the serial port pins active (high) for simplification. Al­
though the CLKX/CLKR can be set as either input or output, you should set 
the CLKX as output and the CLKR as input. The rest of the bits are user-confi­
gurable as long as both serial ports have consistent setup. 

You need the serial port timer only if the CLKX or CLKR is configured as an 
output. Since only the CLKX is configured as an output, you should set the tim­
er control register to OFh. When the serial port timer is used, you should also 
set the serial timer register to the proper value for the clock speed. The serial 
port timer clock speed setup is similar to the TMS320C3x timer. Refer to Sec­
tion 8.1 on page 8-2 for detailed information on timer clock generation. 

The maximum clock frequency for serial transfers is F(CLKI N)/4 if the internal 
clock is used and F(CLKIN)/5.2 if an external clock is used. Therefore, if two 
TMS320C3xs have the same system clock, the timer period register should 
be set equal to or greater than 1, which makes the clock frequency equal to 
F(CLKIN)/8. 

Example 8-1 and Example 8-2 are serial port register setups for the above 
case. (Assume two TMS320C3xs have the same system clock.) 

Peripherals 8-37 



Serial Ports 

Example 8-1. Serial-Port Register Setup #1 

Global control 
Transmit port control 
Receive port control 
S-port timer control 
S-port timer count 

OEBC0064h~ 32 bits, fixed data rate, burst mode, 
Olllh ~ FSX (output), CLKX (output) - F(CLKIN)/8 
Olllh ~ CLKR (input), handshake mode, transmit 
OFh~ and receive interrupt is enabled. 
Oh 

S-port timer period ~ Olh 

Example 8-2. Serial-Port Register Setup #2 

Global control 
Transmit port control 
Receive port control 
S-port timer control 
S-port timer count 

OC000364h~ 8 bits, variable data rate, burst mode, 
Olllh; FSX (output), CLKX (output) - f(CLKIN)/24 
Olllh ~ CLKR (input), handshake mode, transmit 
OFh~ and receive interrupt is disabled. 
Oh 

s-port timer period ~ Olh 

Since the data has a leading 1 and the acknowledge signal is a 0 in the hand­
shake mode, the TMS320C3x serial port can distinguish between the data and 
the acknowledge signal. Therefore, even if the TMS320C3x serial port re­
ceives the data before the acknowledge signal, the data will not be misinter­
preted as the acknowledge signal and be lost. In addition, the acknowledge 
signal is not generated until the data is read from the data receive register 
(ORR). Therefore, the TMS320C3x will not transmit the data and the acknowl­
edge signal Simultaneously. 

8.2.14.2 CPU Transfer With Serlal·Port Transmit Polling Method 

8-38 

Example 8-3 sets up the CPU to transfer data (128 words) from an array buffer 
to the serial port 0 output register when the previous value stored in the serial 
port output register has been sent. Serial port 0 is initialized to transmit 32-bit 
data words with an internally generated frame sync and a bit-transfer rate of 
8H 1 cycles/bit. 



Serial Ports 

Example 8-3. CPU Transfer With Serial-Port Transmit Palling Method 

* TITLE: CPU TRANSFER WITH SERIAL-PORT TRANSMIT POLLING METHOD 

* 

SOURCE 

.GLOBAL START 
• DATA 
.WORD ARRAY 
.BSS _ARRAY, 128 

SPORT 
SPRESET 
SGCCTRL 
SXCTRL 
STCTRL 
STPERIOD 
RESET 

.WORD 808040H 

.WORD 008C0044 

.WORD 048C0044H 

.WORD 111H 

.WORD OOFH 

.WORD 00000002h 

.WORD OH 

START 
• TEXT 
LDP RESET 
ANDN 10H,IE 

* SERIAL PORT INITIALIZATION 
LDI @SPORT,AR1 
LDI @RESET,RO 
LDI 4,IRO 
STI RO,*+AR1(IRO) 
LDI @SPRESET,RO 
STI RO,*AR1 
LDI @SXCTRL,RO 
STI RO,*+AR1(3) 
LDI @STPERIOD,RO 
STI RO,*+AR1(6) 
LDI @STCTRL,RO 
STI RO,*+AR1(4) 
LDI @SGCCTRL,RO 
STI RO,*AR1 

* CPU WRITES THE FIRST WORD 

LDI @SOURCE,ARO 
LDI *ARO++,R1 
STI R1,*+AR1(8) 

DATA ARRAY LOCATED IN .BSS SECTION 
THE UNDERSCORE USED IS JUST TO MAKE IT 
ACCESSIBLE FROM C (OPTIONAL) 
SERIAL-PORT GLOBAL CONTROL REG ADDRESS 
SERIAL-PORT RESET 
SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION 
SERIAL-PORT TX PORT CONTROL REG INITIALIZATION 
SERIAL-PORT TIMER CONTROL REG INITIALIZATION 
SERIAL-PORT TIMER PERIOD 
SERIAL-PORT TIMER RESET VALUE 

LOAD DATA PAGE POINTER 
DISABLE SERIAL-PORT TRANSMIT INTERRUPT TO CPU 

SERIAL-PORT TIMER RESET 

SERIAL-PORT RESET 
SERIAL-PORT TX CONTROL REG INITIALIZATON 

SERIAL-PORT TIMER PERIOD INITIALIZATION 

SERIAL-PORT TIMER CONTROL REG INITIALIZATION 

SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION 

* CPU WRITES 127 WORDS TO THE SERIAL PORT OUTPUT REG 

LDI 8,IRO 
LDI 2,RO 
LDI 126,RC 
RPTB LOOP 

WAIT AND *AR1,RO,R2 
BZ WAIT 

LOOP STI R1,*+AR1(IRO) 
I I LDI *++ARO(1),R1 

BU $ 
• END 

WAIT UNTIL XRDY BIT - 1 

Peripherals 8-39 



Serial Ports 

8.2.14.3 Serial Ale Interface Example 

The TLC320C4x analog interface chips (AIC) from Texas Instruments offer a 
zero-glue-logic interface to the TMS320C3x family of DSPs. The interface is 
shown in Figure 8-30 as an example of the TMS320C3x serial-port configura­
tion and operation. 

Figure 8-30. TMS320C3x Zero-Glue-Logie Interface to TLC3204x Example 

TMS320C3x 

XFO 
CLKRO f+-J CLKXO 

FSRO 
ORO , 

FSXO 
DXO 

TCLKO 

TMS320C4x 

RESET WORD 
SCLK 

OUT+ 
FSR OUT-
DR 
FSX IN+ 
OX IN-
MCLK 

-
-+ 

+-

~ 
GND 

VCC 

Analog 
Out 

Analog 
In 

The TMS320C3x resets the AIC through the external pin XFO. It also gener­
ates the master clock for the AIC through the timer 0 output pin, TCLKO. (Pre­
cise selection of a sample rate may require the use of an external oscillator 
rather than the TCLKO output to drive the AIC MCLK input.) In turn, the AIC 
generates the CLKRO and CLKXO shift clocks as well as the FSRO and FSXO 
frame synchronization signals. 

A typical use of the AIC requires an 8-kHz sample rate of the analog signal. 
If the clock input frequency to the TMS320C3x device is 30 MHz, you should 
load the following values into the serial port and timer registers. 

Serial Port: 
Port global control register: 
FSXlDXlCLKX port control register 
FSR/DR/CLKR port control register 

Timer: 
Timer global control register 
Timer period register 

OE970300h 
00000111h 
00000111h 

000002C1h 
00000001h 

8.2.14.4 Serial AID and D/A Interface Example 

8-40 

The DSP201/2 and DSP1 01/2 family of D/As and NDs from Burr Brown also 
offer a zero-glue-logic interface to the TMS320C3x family of DSPs. The inter­
face is shown in Example 8-4. This interface is used as an example of the 
TMS320C3x serial-port configuration and operation. 



Serial Ports 

Example 8-4. TMS320C3x Zero-Glue-Logie Interface to Burr Brown AID and D/A 

Burr Brown DSP102 AID Burr Brown DSP202 D/A 

CASC r--+5V +5V- CASC 

TMS320C3x 

XCLK CLKRO CLKXO XCLK 

SOUTA DRO DXO SINA 
:l:2.75V~ VINA L VOUTA r---+ 

SYNC SINB 

:l:2.75V~ 
FSRO 

r---+ VINB 
FSXO SYNC VOUTB 

:1:3 V 

:l:3V 

OSCO 
SSF -+5V 

- OSC1 
+5V- SSF 

+5V- SWL 

1 MOhm CONY TCLKO CONY 

-'VV\r i 1 i 
12.29 MHz 

HD~ 
-'-

22pF T - '-T 22pF 

The DSP1 02 AID is interfaced to the TMS320C3x serial port receive side; the 
DSP202 D/A is interfaced to the transmit side. The AIDs and D/As are hard­
wired to run in cascade mode. In this mode, when the TMS320C3x initiates a 
convert command to the AID via the TClKO pin, both analog inputs are con­
verted into two 16-bit words, which are concatenated to form one 32-bit word. 
The AID signals the TMS320C3x via the AID's SYNC signal (connected to the 
TMS320C3x FSRO pin) that serial data is to be transmitted. The 32-bit word 
is then serially transmitted, MSB first, out the SOUTA serial pin of the DSP1 02 
to the DRO pin of the TMS320C3x serial port. The TMS320C3x is programmed 
to drive the analog interface bit clock from the ClKXO pin of the TMS320C3x. 
The bit clock drives both the AID's and D//J\s XClK input. The TMS320C3x 
transmit clock also acts as the input clock on the receive side of the 
TMS320C3x serial port. Since the receive clock is synchronous to the internal 
clock of the TMS320C3x, the receive clock can run at full speed (that is, 
f(H1)/2). 

Peripherals 8-41 



Serial Ports 

8-42 

Similarly, on receiving a convert command, the pipelined D/A converts the last 
word received from the TMS320C3x and signals the TMS320C3x via the 
SYNC signal (connected to the TMS320C3x FSXO pin) to begin transmitting 
a 32-bit word representing the two channels of data to be converted. The data 
transmitted from the TMS320C3x DXO pin is input to both the SINA and SINB 
inputs of the D/A as shown in the figure. 

The TMS320C3x is set up to transfer bits at the maximum rate of about eight 
Mbps, with a dual-channel sample rate of about 44.1 kHz. Assuming a 32-MHz 
ClKIN, you can configure this standard-mode fixed-data-rate signaling inter­
face by setting the registers as described below: 

Serial Port: 
Port global-control register: 
FSXlDXlClKX port-control register 
FSR/DR/ClKR port-control register 
Receive/transmit timer-control register 

Timer: 
Timer global-control register 
Timer period register 

OEBC0040h 
0OO00111h 
0OO00111h 
OOOOOOOFh 

000002C1h 
OOOOOOB5h 



DMA Controller 

8.3 DMA Controller 

The TMS320C3x has an on-chip direct memory access (DMA) controller that 
reduces the need for the CPU to perform input/output functions. The DMA con­
troller can perform input/output operations without interfering with the opera­
tion of the CPU. Therefore, it is possible to interface the TMS320C3x to slow 
external memories and peripherals (NDs, serial ports, etc.) without reducing 
the computational throughput of the CPU. The result is improved system per­
formance and decreased system cost. 

A DMA transfer consists of two operations: a read from a memory location and 
a write to a memory location. The DMA controller can read from and write to 
any location in the TMS320C3x memory map. This includes all 
memory-mapped peripherals. The operation of the DMA is controlled with the 
following set of memory-mapped registers: 

o DMA global-control register 
o DMA source-address register 
o DMA destination-address register 
o DMA transfer-counter register 

Table 8-7 shows these registers, their memory-mapped addresses, and their 
functions. Each of these DMA registers is discussed in the succeeding subsec­
tions. 

Peripherals 8-43 



DMA Controller 

Table 8-7. Memory-Mapped Locations for a DMA Channel 

8-44 

Register 

DMA Global Control (See Table 8-8) 

Reserved 

Reserved 

Reserved 

DMA Source Address (see subsection 8.3.2) 

Reserved 

DMA Destination Address (see subsection 8.3.2) 

Reserved 

DMA Transfer Counter (see subsection 8.3.3) 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Peripheral 
Addr ... 

808000h 

808001h 

808002h 

808003h 

808004h 

808005h 

808006h 

808007h 

808008h 

808009h 

80800Ah 

80800Bh 

80800Ch 

80800Dh 

80800Eh 

80800Fh 



DMA Controller 

Table 8-8. DMA Global-Control Register Bits 

Bit Name 

1-0 START 

3-2 STAT 

4 INCSRC 

5 DECSRC 

6 INCDST 

7 DECDST 

9-8 SYNC 

10 TC 

11 TCINT 

31-12 Reserved 

Re .. tValue 

0-0 

0-0 

0 

0 

o 

o 

0-0 

o 

o 

0-0 

Function 

These bits control the state in which the DMA starts and stops. The 
DMA may be stopped without any loss of data (see Table 8-9). 

These bits indicate the status of the DMA and change every cycle 
(see Table 8-10). 

If INCSRC = 1, the source address is incremented after every read. 

If DECSRC = 1, the source address is decremented after every 
read. If INCSRC = DECSRC, the source address is not modified 
after a read. 

If INCDST = 1, the destination address is incremented after every 
write. 

If DECDST = 1, the destination address is decremented after every 
write. If INCDST = DECDST, the destination address is not modified 
after a write. 

The SYNC bits determine the timing synchronization between the 
events initiating the source and the destination transfers. The inter­
pretation of the SYNC bits is shown in Table 8-11. 

The TC bit affects the operation of the transfer counter. If TC = 0, 
transfers are not terminated when the transfer counter becomes O. 
If TC = 1, transfers are terminated when the transfer counter be­
comes O. 

If TCINT = 1, the DMA interrupt is set when the transfer counter 
makes a transition to O. If TCINT = 0, the DMA interrupt is not set 
when the transfer counter makes a transition to O. 

Read as O. 

Note: When the DMA completes a transfer, the START bits remain in 11 (base 2). The DMA starts when the START bits are set 
to 11 and one of the following conditions applies: 

o The transfer counter is set to a value different from axo, or 
o The TC bit is set to O. 

Peripherals 8-45 



DMA Controller 

Table 8-9. START Bits and Operation of the DMA (Bits 0-1) 

START Function 

o 0 DMA read or write cycles In progress will be completed; any data read will 
be ignored. Any pending read or write will be cancelled. The DMA is reset 
so that when It starts a new transaction begins; that is, a read is per­
formed. (Reset value) 

o 1 If a read or write has begun, it is completed before it stops. If a read or 
write has not begun, no read or write Is started. 

1 0 If a DMA transfer has begun, the entire transfer is completed (including 
both read and write operations) before stopping. If a transfer has not be­
gun, none is started. 

1 1 DMA starts from reset or restarts from the previous state. 

Table 8-10. STAT Bits and Status of the DMA (Bits 2-3) 

STAT Function 

00 DMA is being held between DMA transfer (between a write and read). 
This is the value at reset. (Reset value) 

o 1 DMA is being held in the middle of a DMA transfer, that is, between a read 
and a write. 

1 0 Reserved. 

1 1 DMA busy; that is, DMA is performing a read or write or waiting for a 
source or destination synchronization interrupt. 

Table 8-11. SYNC Bits and Synchronization of the DMA (Bits 8-9) 

8-46 

SYNC Function 

o 0 No synchronization. Enabled interrupts are ignored. (Reset value) 

o 1 Source synchronization. A read is performed when an enabled interrupt 
occurs. 

1 0 Destination synchronization. A write is performed when an enabled inter­
rupt occurs. 

1 1 Source and destination synchronization. A read is performed when an 
enabled interrupt occurs. A write is then performed when the next en­
abled interrupt occurs. 



DMA Controller 

8.3.1 DMA Global-Control Register 

Figure 8-31. 

31 30 29 28 

I xxi xxi xxi xxi 

15 14 13 

I xx I xx I xx 

The global-control register controls the state in which the DMA controller oper­
ates. This register also indicates the status of the DMA, which changes every 
cycle. Source and destination addresses can be incremented, decremented, 
or synchronized using specified global-control register bits. At system reset, 
all bits in the DMA control register are cleared to O. Table 8-8 on page 8-45 
lists the register bits, names, and functions. Figure 8-31 shows the bit config­
uration of the global-control register. 

DMA Global-Control Register 

27 26 25 24 23 22 21 20 19 18 17 16 
xx I xx I xx I xx xx xx xx xx xx xx xx xx 

12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I TCINTI TC I SYNC I DECDSTI INCDST I DECSRC I INCSRC I STAT START I 

RNI RNI RNI ANI ANI ANI ANI RNI R RANI ANI 

R = Read, W = Write, xx = reserved bit, read as 0 

8.3.2 Destination- and Source-Address Registers 

The DMA destination-and-source address registers are 24-bit registers whose 
contents specify destination and source addresses. As specified by control 
bits DECSRC, INCSRC, DECDST, and INCDST of the DMA global-control 
register, these registers are incremented and decremented at the end of the 
corresponding memory access, that is, the source register for a read and the 
destination register for a write. On system reset, 0 is written to these registers. 

8.3.3 Transfer-Counter Register 

The transfer-counter register is a 24-bit register, controlled by a 24-bit counter 
that counts down. The counter decrements at the beginning of a DMA memory 
write. In this way, it can control the size of a block of data transferred. The trans­
fer counter register is set to 0 at system reset. When the TCINT bit of DMA 
global-control register is set, the transfer-counter register will cause a DMA in­
terrupt flag to be set upon count down to O. 

8.3.4 CPU/DMA Interrupt-Enable Register 

The CPUlDMA interrupt enable register (IE) is a 32-bit register located in the 
CPU register file. The CPU interrupt enable bits are in locations 10-1. The 
DMA interrupt-enable bits are in locations 26-16. A 1 in a CPUlDMA interrupt­
enable register bit enables the corresponding interrupt. A 0 disables the corre­
sponding interrupt. At reset, 0 is written to this register. 

Peripherals 8-47 



DMA Controller 

Table 8-12 lists the bits, names, and functions of the CPU/DMA interrupt en­
able register. Figure 8-32 shows the IE register. The priority and decoding 
schemes of CPU and DMA interrupts are identical. Note that when the DMA 
receives an interrupt, this interrupt is acted upon according to the SYNC field 
of the DMA control register. Also note that an interrupt can affect the DMA but 
not the CPU and can affect the CPU but not the DMA. Refer to subsection 3.1.8 
on page 3-7 and to Chapter 6. 

Table 8-12. CPU/DMA Interrupt-Enable Register Bits 

Bit Name Function 

0 EINTO Enable external interrupt 0 (CPU) 

1 EINT1 Enable external interrupt 1 (CPU) 

2 EINT2 Enable external interrupt 2 (CPU) 

3 EINT3 Enable external interrupt 3 (CPU) 

4 EXINTO Enable serial-port 0 transmit interrupt (CPU) 

5 ERINTO Enable serial-port 0 receive interrupt (CPU) 

6 EXINT1 Enable serial-port 1 transmit interrupt (CPU) 

7 ERINT1 Enable serial-port 1 receive interrupt (CPU) 

8 ETINTO Enable timer 0 interrupt (CPU) 

9 ETINT1 Enable timer 1 interrupt (CPU) 

10 EDINT Enable DMA controller interrupt (CPU) 

15-11 Reserved Read as 0 

16 EINTO Enable external interrupt 0 (DMA) 

17 EINT1 Enable external interrupt 1 (DMA) 

18 EINT2 Enable external interrupt 2 (DMA) 

19 EINT3 Enable external interrupt 3 (DMA) 

20 EXINTO Enable serial-port 0 transmit interrupt (DMA) 

21 ERINTO Enable serial-port 0 receive interrupt (DMA) 

22 EXINT1 Enable serial-port 1 transmit interrupt (DMA) 

23 ERINT1 Enable serial-port 1 receive interrupt (DMA) 

24 ETINTO Enable timer 0 interrupt (DMA) 

25 ETINT1 Enable timer 1 Interrupt (DMA) 

26 EDINT Enable DMA controller interrupt (DMA) 

31-27 Reserved Read asO 

8-48 



DMA Control/er 

Figure 8-32. CPU/DMA Interrupt-Enable Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 18 

15 14 13 12 11 10 9 B 7 8 5 4 3 2 o 

Note: xx = Reserved bit, read as 0 
R = read, W = write 

8.3.5 DMA Memory Transfer Operation 

Each DMA memory transfer consists of two parts: 

o Read data from the address specified by the DMA source register 

o Write data that has been read to the address specified by the DMA desti­
nation register 

A transfer is complete only when the read and write are complete. You can stop 
a transfer by setting the START bits to the desired value. When the DMA is re­
started (START = 1 1), it completes any pending transfer. 

At the end of a DMA read, the source address is modified as specified by the 
SRCINC and SRCDEC bits of the DMA global-control register. At the end of 
a DMA write, the destination address is modified as specified by the DSTINC 
and DSTDEC bits of the DMA global control register. At the end of every DMA 
write, the DMA transfer counter is decremented. 

DMA on-chip reads and writes (reads and writes from on-chip memory and pe­
ripherals) are single-cycle. DMA off-chip reads are two cycles. The first cycle 
is the external read, and the second cycle loads the DMA register. The external 
read cycle is identical to a CPU read cycle. DMA off-chip writes are identical 
to CPU off-chip writes. If the DMA has been started and is transferring data 
over either external bus, you should not modify the bus-control register asso­
ciated with that bus. If you must modify the bus-control register (see Chapter 
7), stop the DMA, make the modification, and then restart the DMA. Failure to 
do this may produce an unexpected zero-wait-state bus access. 

Peripherals 8-49 



DMA Controller 

Through the 24-bit source and destination registers, the DMA is capable of ac­
cessing any memory-mapped location in the TMS320C3x memory map. 
Table 8-13, Table 8-14, and Table 8-15 show the number of cycles a DMA 
transfer requires, depending on whether the source and destination are on­
chip memory and peripherals, the external port, or the 1/0 port. T represents 
the number of transfers to be performed, Cr represents the number of wait­
states for the source read, and Cw represents the number of wait-states for the 
destination write. Each entry in the table represents the total cycles required 
to do the T transfers, assuming that there are no pipeline conflicts. 

Accompanying each table is a figure illustrating the timing of the DMA transfer. 
IRI and IWI represent single-cycle reads and writes, respectively. IR.RI and 
IW.WI represent multicycle reads and writes. ICrl and ICwl show the number 
of wait cycles for a read and write. 

Table 8-13. DMA Timing When Destination Is On-Chip 

8-50 

Cycles (H1) 1121314/516171819110111112113114115116117118119 
Source On-Chip RI I R I IRI : : : : : : : : : : 

: : : : : : : : : : : : 
Destination On-Chip Iwl Iwl Iwl : : : : : : 

Source Primary Bus R .R·R: II I R.R. R: I I I R.R.R :11 : 

I Cr I : : I Cr I : : I Cr I : : 
: : : : : : : : : : : : : : : 

Destination On-Chip : : : Iwl : : : Iwl : : : Iwl 
Source Expansion Bus R.R .R: II I R.R.R: II I R .R.R: II : 

: 

Destination On-Chip 

legend: 
T 
Cr 
CW 

IRI 
IWI 
IR.RI 
IW.w1 
III 

Number of transfers 
Source-read wait states 
Destination-write wait states 
Single-cycle reads 
Single-cycle writes 
Multicycle reads 
Multicycle writes 
Internal register cycle 

I Cr 
: : 
: : 

I I Cr I : : I Cr I : : 
: : : : : : : : : : : 
: Iwl : : : Iwl : : : Iwl 

Source Destination On-Chip 
On-Chip (1 + 1) T 

Primary Bus (2 + Cr + 1)T 

Expansion Bus (2 + Cr + 1) T 

: : : 
: : : 
: : : 

: : : 

: : : 

: : : 
: : : 

: : : 
: : : 
: : : 
: : : 



DMA Controller 

Table 8-14. DMA Timing When Destination Is a Primary Bus 

Cycles (H1) 
Source On-Chip 

Destination Primary Bus 

Source Primary Bus 

Destination Primary Bus 

Source Expansion Bus 

Destination Primary Bus 

Legend: 

T Number of transfers 
Cr Source-read wait states 

1 12 1314151 617 181911011111211311411sI1~ 17118119 
RI IR I : : IR I : : : : : : : : : 

: : : : : : : : : : : : : : : : : : 
Iw.w.w.wlw.w.w.wIW.w.w.wl : : : : : 
: : I Cw I : I Cw I : I Cw I : : : : : 

R .R. R: I : : : .R .R.R : II : : : : : : 

I Cr I : : : : I Cr I : : : : : : 
: : : : : : : : : : : : : : : : : 

: : : W.w.w.wl : : : Iw.w.w.wl : : 
: : : : I Cw I : : : : : I Cw I : : 

R. R.R : I I R. R. R: II I R.R.R : II : : : : 

I Cr I : I Cr I : : I Cr I : : : : : 
: : : : : : : : : : : 
: : : W.w.w.wl Iw.w.w.wl Iw.w.w.wl 
: : : : ICw I : : I Cw I : 

Source Destination Primary Bus 

On-Chip 1 + (2 + Cw) T 

Primary (2 + Cr + 2 + Cw) T 
Bus 

Expansion (2 + Cr + 2 + Cw) 
Bus + (2 + Cw + max(1, Cr - Cw + 

1»(T -1) 

: I Cw I 

Cw Destination-write wait states 
IRI Single-cycle reads 
IWI Single-cycle writes 
IR.RI Multicycle reads 
IW.WI Multicycle writes 
II I Internal register cycle 

Peripherals 8-51 



DMA Controller 

Table 8-15. DMA Timing When Destination Is an Expansion Bus 

8-52 

Cycles (H1) 
Source On-Chip 

Destination Expansion Bus 

Source Primary Bus 

Destination Expansion Bus 

Source Expansion Bus 

Destination Expansion Bus 

Legend: 

T Number of transfers 
Cr Source-read wait states 

1 121314151617 181 9110111112113114115116117118119 
RI IRI : : IR I : : : : : : : : : : 

: : : : : : : : : : : : : : : : : 
Iw.w.w.wlw.w.w.wlw.w.w.W : : : : : 
: : I Cw I : I Cw I : I Cw : : : : : 

R.R.RI II IR.R .R I I I R·R. R II : : : : 

I Cr I : : I Cr : : I Cr : : : : : 
: : : : : : : : : : : : : : : : 

: : : Iw.w.W.W Iw.w.w.W Iw.w.w.wl 

: : : : : I Cw : : I Cw : : I 

R·R·R: I I : : : R.R.R: II : : : 

I Cr I : : : : I Cr I : : : : 
: : : : : : : : : : : : : : 
: : : Iw.w.w.W : : : Iw.w.w.wl 

: : : : 

Source 

On-Chip 

Primary 
Bus 

: 

Expansion 
Bus 

ICw : : : : : 

Destination Expansion Bus 

1 + (2+ Cw)T 

(2 + Cr + 2 + Cw) 
+ (2 + Cw + max(1.c;.- Cw + 
1))(T -1) 

(2 + c;. + 2 + Cw) T 

I Cw I 

Cw I 

: : 

: : 
: : 
: : 
: : 

cw Destination-write wait states 
IRI = Single-cycle reads 
IWI Single-cycle writes 
IR.RI Multicycle reads 
IW.WI Multicycle writes 
III Internal register cycle 



DMA Controller 

Table 8-16 shows the maximum DMA transfer rates, assuming that there are 
no wait states (Cr = Cw = 0). Table 8-17 shows the maximum DMA transfer 
rates, assuming there is one wait state for the read (Cr = 1) and no wait states 
for the write (Cw = 0). Table 8-18 shows the maximum DMA transfer rates, 
assuming there is one wait state for the read (Cr = 1) and one wait state for the 
write (Cw = 1). 

In each table, the time for the complete transfer (the read and the write) is con­
sidered. Since one bus access is required for the read and another for the 
write, internal bus transfer rates will be twice the DMA transfer rate. It is also 
assumed that no conflicts with the CPU exist. Rates are listed in Mwords/sec. 
A word is 32 bits (4 bytes). 

Table 8-16. Maximum DMA Transfer Rates When C, = Cw = 0 

Destination 

Source Internal Primary Expansion 

Internal 8.33 Mwords/sec 8.33 Mwords/sec 8.33 Mwords/sec 

Primary 5.56 Mwords/sec 4.17 Mwords/sec 5.56 Mwords/sec 

Expansion 5.56 Mwords/sec 5.56 Mwords/sec 4.17 Mwords/sec 

Table 8-17. Maximum DMA Transfer Rates When C, = 1, Cw = 0 

Destination 

Source Internal Primary Expansion 

Internal 8.33 Mwords/sec 8.33 Mwords/sec 8.33 Mwords/sec 

Primary 4.17 Mwords/sec 3.33 Mwords/sec 4.17 Mwords/sec 

Expansion 4.17 Mwords/sec 4.17 Mwords/sec 3.33 Mwords/sec 

Table 8-18. Maximum DMA Transfer Rates When C, = 1, Cw = 1 

Destination 

Source Internal Primary Expansion 

Internal 8.33 Mwords/sec 5.56 Mwords/sec 5.56 Mwords/sec 

Primary 4.17 Mwords/sec 2.78 Mwords/sec 4.17 Mwords/sec 

Expansion 4.17 Mwords/sec 4.17 Mwords/sec 2.78 Mwords/sec 

Peripherals 8-53 



DMA Controller 

8.3.6 Synchronization of DMA Channels 

You can synchronize a DMA channel with interrupts. Refer to Table 8-11 on 
page 8-46 for the relationship between the SYNC bits of the DMA global con­
trol register and the synchronization performed. This section describes the fol­
lowing four synchronization mechanisms: 

o No synchronization (SYNC = 0 0) 
o Source synchronization (SYNC = 0 1) 
o Destination synchronization (SYNC = 1 0) 
o Source and destination synchronization (SYNC = 1 1) 

No Synchronization 

When SYNC = 0 0, no synchronization is performed. The DMA performs reads 
and writes whenever there are no conflicts. All interrupts are ignored and 
therefore are considered to be globally disabled. However, no bits in the DMA 
interrupt-enable register are changed. Figure 8-33 shows the 
synchronization mechanism when SYNC = 0 o. 

Figure 8-33. No DMA Synchronization 

8-54 

Source Synchronization 

When SYNC=O 1, the DMA is synchronized to the source (see Figure 8-34). 
A read will not be performed until an interrupt is received by the DMA. Then 
all DMA interrupts are disabled globally. However, no bits in the DMA interrupt 
enable register are changed. 



DMA Controller 

Figure 8-34. DMA Source Synchronization 

Destination Synchronization 

When SYNC = 1 0, the DMA is synchronized to the destination. First, all inter­
rupts are ignored until the read is complete. Though the DMA interrupts are 
considered globally disabled, no bits in the DMA interrupt-enable register are 
changed. A write will not be performed until an interrupt is received by the 
DMA. Figure 8-35 shows the synchronization mechanism when SYNC = 1 O. 

Figure 8-35. DMA Destination Synchronization 

Source and Destination Synchronization 

When SYNC = 1 1, the DMA is synchronized to both the source and destina­
tion. A read is performed when an interrupt is received. A write is performed 
on the following interrupt. Source and destination synchronization when 
SYNC = 1 1 is shown in Figure 8-36. 

Peripherals 8-55 



DMA Controller 

Figure 8-36. DMA Source and Destination Synchronization 

8.3.7 DMA Interrupts 

8-56 

You can generate a DMA interrupt to the CPU whenever the transfer count 
reaches 0, indicating that the last transfer has taken place. The TCINT bit in 
the DMA global control register determines whether the interrupt will be gener­
ated.lfTCINT = 1, the DMA interrupt is generated.lfTCINT = 0, the DMA inter­
rupt is not generated. If the DMA interrupt is generated, the EDINT bit, bit 10 
in the interrupt enable register, must also be set to enable the CPU to be inter­
rupted by the DMA. 

A second bit in the DMA global control register, the TC bit, is also generally 
associated with the state of the TCI NT bit and the interrupt operation. The TC 
bit determines whether transfers are terminated when the transfer counter be­
comes 0 or whether they are allowed to continue. If TC = 1 , transfers are termi­
nated when the transfer count becomes O. If TC = 0, transfers are not termi­
nated when the transfer count becomes O. 

In general, if TCINT is 0, TC should also be cleared to O. Otherwise, the DMA 
transfer will terminate, and the CPU will not be notified.lfTCINT is 1, TC should 
also be 1 in most cases. In this case, the CPU will be notified when the transfer 
completes, and the DMA will be halted and ready to start a new transfer. 



DMA Control/er 

8.3.8 DMA Initialization/Reconfiguration 

You can control the DMA through memory-mapped registers located on the 
dedicated peripheral bus. Following is the general procedure for initializing 
and/or reconfiguring the DMA: 

1} Halt the DMA by clearing the START bits of the DMA global-control regis­
ter. You can do this by writing a 0 to the DMA global-control register. Note 
that the DMA is halted on RESET. 

2} Configure the DMA via the DMA global-control register (with START = OO), 
as well as the DMA source, destination, and transfer-counter registers, if 
necessary. Refer to subsection 8.3.10 on page 8-58 for more information. 

3} Start the DMA by setting the START bits ofthe DMA global-control register 
as necessary. 

8.3.9 Hints for DMA Programming 

The following hints help you improve your DMA programming and avoid unex­
pected results: 

I 

o Reset the DMA register before starting it. This clears any previously 
latched interrupt that may no longer exist. 

o In the event of a CPU-DMA access conflict, the CPU always prevails. 
Carefully allocate the different sections of the program in memory for fast­
er execution. If a CPU program access conflicts with a DMA access, enab­
ling the cache helps if the program is located in external memory. DMA on­
chip access happens during the H3 phase. Refer to Chapter 9 for details 
on CPU accesses. 

Note: Expansion and Peripheral Buses 

The expansion and peripheral buses cannot be accessed simultaneously 
because they are multiplexed into a common port (see Figure 2-1 on page 
2-3). This might increase CPU-DMA access conflicts. 

o Ensure that each interrupt is received when you use interrupt synchroniza­
tion; otherwise, the DMA will never complete the block transfer. 

o Use read/Write synchronization when reading from or writing to serial ports 
to guarantee data validity. 

The following are indications that the DMA has finished a set of transfers: 

o The DINT bit in the IIF register is set to 1 (interrupt polling). This requires 
that the TCINT bit in the DMA control register be set first. This interrupt­
polling method does not cause any additional CPU-DMA access conflict. 

Peripherals 8-57 



DMA Controller 

o The transfer counter has a zero value. However, notice that the transfer 
counter is decremented after the DMA read operation finishes (not after 
the write operation). Nevertheless, a transfer counter with a 0 value can 
be used as an indication of a transfer completion. 

o The STAT bits in the DMA channel control register are set to 002' You can 
poll the DMA channel control register for this value. However, because the 
DMA registers are memory-mapped into the peripheral bus address 
space, this option can cause further CPU-DMA access conflicts. 

8.3.10 DMA Programming Examples 

Example 8-5, Example 8-6, and Example 8-7 illustrate initialization proce­
dures for the DMA. 

When linking the examples, you should allocate section memory addresses 
carefully to avoid CPU-DMA conflict. In the 'C3x, the CPU always prevails in 
cases of conflict. In the event of a CPU program-DMA data conflict, the enab­
ling of the cache helps if the .text section is in external memory. For example, 
when linking the code in Example 8-5, Example 8-6, and Example 8-7, the 
.text section can be allocated into RAMO, .data into RAM 1 , and .bss into 
RAM1, where RAMO and RAM1 correspond to on-chip RAM block 0 and block 
1, respectively. 

In Example 8-5, the DMA initializes a 128-element array to O. The DMA sends 
an interrupt to the CPU after the transfer is completed. This program assumes 
previous initialization of the CPU interrupt vector table (specifically the DMA­
to-CPU interrupt). The program initializes the ST and IE registers for interrupt 
processing. 

Example 8-S.Array Initialization With DMA 

* TITLE: ARRAY INITIALIZATION WITH DMA 
* 

DMA 
RESET 
CONTROL 
SOURCE 
DESTIN 
COUNT 
ZERO 

8-58 

• GLOBAL START 
• DATA 
.WORD 808000H 
.WORD OC40H 
.WORD OC43H 
.WORD ZERO 
.WORD _ARRAY 
.WORD 128 
.FLOAT 0.0 
.BSS _ARRAY,128 
• TEXT 

DMA GLOBAL CONTROL REG ADDRESS 
DMA GLOBAL CONTROL REG RESET VALUE 
DMA GLOBAL CONTROL REG INITIALIZATION 
DATA SOURCE ADDRESS 
DATA DESTINATION ADDRESS 
NUMBER OF WORDS TO TRANSFER 
ARRAY INITIALIZATION VALUE 0.0 - Ox80000000 
DATA ARRAY LOCATED IN .BSS SECTION 



START 

DMA Controller 

LDP DMA LOAD DATA PAGE POINTER 
LDI @DMA,ARO POINT TO DMA GLOBAL CONTROL REGISTER 
LDI @RESET,RO RESET DMA 
STI RO,*ARO 
LDI @SOURCE,RO INITIALIZE DMA SOURCE ADDRESS REGISTER 
STI RO,*+ARO(4) 
LDI @DESTIN,RO INITIALIZE DMA DESTINATION ADDRESS REGISTER 
STI RO,*+ARO(6) 
LDI @COUNT,RO INITIALIZE DMA TRANSFER COUNTER REGISTER 
STI RO,*+ARO(8) 
OR 400H,IE ENABLE INTERRUPT FROM DMA TO CPU 
OR 2000H,ST ENABLE CPU INTERRUPTS GLOBALLY 
LDI @CONTROL,RO INITIALIZE DMA GLOBAL CONTROL REGISTER 
STI RO,*ARO START DMA TRANSFER 
BU $ 
.END 

Example 8-6 sets up the DMA to transfer data (128 words) from the serial port 
o input register to an array buffer with serial port receive interrupt (RINTO). The 
DMA sends an interrupt to the CPU when the data transfer completes. 

Serial port 0 is initialized to receive 32-bit data words with an internally gener­
ated receive-bit clock and a bit-transfer rate of 8H1 cycles/bit. 

This program assumes previous initialization of the CPU interrupt vector table 
(specifically the DMA-to-CPU interrupt). The serial port interrupt directly af­
fects only the DMA; therefore, no CPU serial port interrupt vector setting is re­
quired. 

Example 8-6.DMA Transfer With Serial-Port Receive Interrupt 
* TITLE DMA TRANSFER WITH SERIAL PORT RECEIVE INTERRUPT 

* 
• GLOBAL START 
• DATA 

DMA • WORD 808000H 
CONTROL • WORD OD43H 
SOURCE • WORD 80804CH 
DESTIN • WORD ARRAY 
COUNT • WORD 128 
IEVAL • WORD 00200400H 
RESET1 • WORD OD40H 

.BSS _ARRAY, 128 

SPORT • WORD 808040H 
SGCCTRL • WORD OA300080H 
SRCTRL • WORD 111H 
STCTRL • WORD 3COH 
STPERIOD • WORD 0OO20000H 
SPRESET • WORD 01300080H 
RESET • WORD OH 

• TEXT 

START LDP DMA 

DMA GLOBAL CONTROL REG ADDRESS 
DMA GLOBAL CONTROL REG INITIALIZATION 
DATA SOURCE ADDRESS: SERIAL PORT INPUT REG 
DATA DESTINATION ADDRESS 
NUMBER OF WORDS TO TRANSFER 
IE REGISTER VALUE 
DMA RESET 

DATA ARRAY LOCATED IN .BSS SECTION 
THE UNDERSCORE USED IS JUST TO MAKE IT 
ACCESSIBLE FROM C (OPTIONAL) 

SERIAL PORT GLOBAL CONTROL REG ADDRESS 
SERIAL PORT GLOBAL CONTROL REG INITIALIZATION 
SERIAL PORT RX PORT CONTROL REG INITIALIZATION 
SERIAL PORT TIMER CONTROL REG INITIALIZATION 
SERIAL PORT TIMER PERIOD 
SERIAL PORT RESET 
SERIAL-PORT TIMER RESET 

LOAD DATA PAGE POINTER 

Peripherals 8-59 



DMA Controller 

* DMA INITIALIZATION 

LDI @DMA,ARO 
LDI @SPORT,ARl 
LDI @RESET,RO 
STI RO,*+AR1(4) 
LDI @RESET1,RO 
STI RO,*ARO 

POINT TO DMA GLOBAL CONTROL REGISTER 

RESET SPORT TIMER 

RESET DMA 
LDI @SPRESET,RO 
STI RO,*ARl 
LDI @SOURCE,RO 
STI RO,*+ARO(4) 
LDI @DESTIN,RO 
STI RO,*+ARO(6) 
LDI @COUNT,RO 
STI RO,*+ARO(B) 
OR @IEVAL, IE 
OR 2000H,ST 
LDI @CONTROL,RO 
STI RO,*ARO 

RESET SPORT 
INITIALIZE DMA SOURCE ADDRESS REGISTER 

INITIALIZE DMA DESTINATION ADDRESS REGISTER 

INITIALIZE DMA TRANSFER COUNTER REGISTER 

ENABLE INTERRUPTS 
ENABLE CPU INTERRUPTS GLOBALLY 
INITIALIZE DMA GLOBAL CONTROL REGISTER 
START DMA TRANSFER 

* SERIAL PORT INITIALIZATION 

LDI @SRCTRL,RO SERIAL-PORT RECEIVE CONTROL REG INITIALIZATION 

8-60 

STI RO,*+AR1(3) 
LDI @STPERIOD,RO SERIAL-PORT TIMER PERIOD INITIALIZATION 
STI RO,*+AR1(6) 
LDI @STCTRL,RO SERIAL-PORT TIMER CONTROL REG INITIALIZATION 
STI RO,*+AR1(4) 
LDI @SGCCTRL,RO SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION 
STI RO,*ARl 
BU $ 
• END 

Example 8-7 sets up the DMA to transfer data (128 words) from an array buff­
er to the serial port 0 output register with serial port transmit interrupt XI NTO. 
The DMA sends an interrupt to the CPU when the data transfer completes. 

Serial port 0 is initialized to transmit 32-bit data words with an internally gener­
ated frame sync and a bit-transfer rate of 8H 1 cycles/bit. The receive-bit clock 
is internally generated and equal in frequency to one-half of the 'C3x H1 fre­
quency. 

This program assumes previous initialization of the CPU interrupt vector table 
(specifica"y the DMA-to-CPU interrupt). The serial port interrupt directly af­
fects only the DMA; therefore, no CPU serial port interrupt vector setting is re­
quired. 

Note: Serial Port Transmit Synchronization 

The DMA uses serial port transmit interrupt XINTO to synchronize transfers. 
Because the XINTO is generated when the transmit buffer has written the last 
bit of data to the shifter, an initial CPU write to the serial port is required to 
trigger XINTO to enable the first DMA transfer. 



DMA Controller 

Example 8-7. DMA Transfer With Serial-Port Transmit Interrupt 

* TITLE: DMA TRANSFER WITH SERIAL PORT TRANSMIT INTERRUPT 
* .GLOBAL START 

• DATA 
DMA • WORD 808000H 
CONTROL • WORD OE13H 
SOURCE • WORD CARRAY+1) 
DESTIN • WORD 80804CH 
COUNT • WORD 127 
IEVAL • WORD 00100400H 

.BSS _ARRAY, 128 

RESET1 • WORD OE10H 
SPORT • WORD 808040H 
SGCCTRL • WORD 04880044H 
SXCTRL • WORD 111H 
STCTRL • WORD OOFH 
STPERIOD • WORD 00000002H 
SPRESET • WORD 00880044H 
RESET • WORD OH 

• TEXT 
START LDPDMA 

* DMA INITIALIZATION 

LDI @DMA,ARO 
LDI @SPORT,AR1 
LDI@RESET,RO 
STI RO , *+AR1 ( 4 ) 
STIRO, *ARO 
STI RO,*AR1 
LDI@SOURCE,RO 
STI RO, *+ARO ( 4 ) 
LDI @DESTIN,RO 
STI RO , *+ARO ( 6 ) 
LDI@COUNT,RO 
STI RO , *+ARO ( 8 ) 
OR @IEVAL, IE 
OR 2000H,ST 
LDI @CONTROL,RO 
STI RO, *ARO 

DMA GLOBAL CONTROL REG ADDRESS 
DMA GLOBAL CONTROL REG INITIALIZATION 
DATA SOURCE ADDRESS 
DATA DESTIN ADDRESS: SERIAL-PORT OUTPUT REG 
NUMBER OF WORDS TO TRANSFER =(MSG LENGHT-1) 
IE REGISTER VALUE 
DATA ARRAY LOCATED IN .BSS SECTION 
THE UNDERSCORE USED IS JUST TO MAKE IT 
ACCESSIBLE FROM C (OPTIONAL) 
DMA RESET 
SERIAL-PORT GLOBAL CONTROL REG ADDRESS 
SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION 
SERIAL-PORT TX PORT CONTROL REG INITIALIZATION 
SERIAL-PORT TIMER CONTROL REG INITIALIZATION 
SERIAL-PORT TIMER PERIOD 
SERIAL-PORT RESET 
SERIAL-PORT TIMER RESET 

LOAD DATA PAGE POINTER 

POINT TO DMA GLOBAL CONTROL REGISTER 

RESET SPORT TIMER 
RESET DMA 
RESET SPORT 
INITIALIZE DMA SOURCE ADDRESS REGISTER 

INITIALIZE DMA DESTINATION ADDRESS REGISTER 

INITIALIZE DMA TRANSFER COUNTER REGISTER 

ENABLE INTERRUPT FROM DMA TO CPU 
ENABLE CPU INTERRUPTS GLOBALLY 
INITIALIZE DMA GLOBAL CONTROL REGISTER 
START DMA TRANSFER 

Peripherals 8-61 



DMA Controller 

* SERIAL PORT INITIALIZATION 

LDI @SXCTRL,RO SERIAL-PORT TX CONTROL REG INITIALIZATION 
STI RO, *+ARl (2 ) 
LDI @STPERIOD,RO 
STI RO, *+ARl (6 ) 
LDI @STCTRL,RO 
STI RO, *+ARl ( 4 ) 
LDI@SGCCTRL,RO 
STIRO,*ARl 

SERIAL-PORT TIMER PERIOD INITIALIZATION 

SERIAL-PORT TIMER CONTROL REG INITIALIZATION 

SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION 

* CPU WRITES THE FIRST WORD (TRIGGERING EVENT ---> XINT IS GENERATED) 

LDI @SOURCE,ARO 

8-62 

LDI *-ARO (1) ,RO 
STI RO , *+ARl ( B ) 
BU $ 
.END 

Other examples are as follows: 

o Transfer a 256-word block of data from off-chip memory to on-Chip 
memory and generate an interrupt on completion. The order of memory 
is to be maintained. 

DMA source address: 800000h 
DMA destination address: 809800h 
DMA transfer counter: 00000100h 
DMA global control: 00000C53h 
CPU/DMA interrupt enable (IE): 00000400h 

o Transfer a 128-word block of data from on-chip memory to off-chip 
memory and generate an interrupt on completion. The order of memory 
is to be inverted; that is, the highest addressed member of the block is to 
become the lowest addressed member. 

DMA source address: 809800h 
DMA destination address: 800000h 
DMA transfer counter: 00000080h 
DMA global control: 00000C93h 
CPU/DMA interrupt enable (IE): 00000400h 

o Transfer a 200-word block of data from the serial-port-O receive register 
to on-chip memory and generate an interrupt on completion. The transfer 
is to be synchronized with the serial-port-O receive interrupt. 

DMA source address: 80804Ch 
DMA destination address: 809COOh 
DMA transfer counter: 000000C8h 
DMA global control: OOOOOD43h 
CPU/DMA interrupt enable (IE): 00200400h 



DMA Controller 

o Transfer a 200-word block of data from off-chip memory to the serial-port-O 
transmit register and generate an interrupt on completion. The transfer is 
to be synchronized with the serial-port-O transmit interrupt. 

DMA source address: 809COOh 
DMA destination address: 808048h 
DMA transfer counter: OOOOOOC8h 
DMA global control: OOOOOE13h 
CPU/DMA interrupt enable (IE): 00400400h 

o Transfer data continuously between the serial-port-O receive register and 
the serial-port-O transmit register to create a digital loop back. The transfer 
is to be synchronized with the serial-port-O receive and transmit interrupts. 

DMA source address: 80804Ch 
DMA destination address: 808048h 
DMA transfer counter: OOOOOOOOh 
DMA global control: 00000303h 
CPU/DMA interrupt enable (IE): 00300000h 

Peripherals 8-63 



8-64 



IIII I 
!mll!] 

Chapter 9 

Pipeline Operation 

Two characteristics of the TMS320C3x that contribute to its high performance 
are: 

o Pipelining, and 
o Concurrent I/O and CPU operation. 

Five functional units control TMS320C3x operation: 

o Fetch 
o Decode 
DRead 
o Execute 
o Direct memory access (DMA) 

Pipelining is the overlapping or parallel operations of the fetch, decode, read, 
and execute levels of a basic instruction. 

By performing inpuVoutput operations, the DMA controller reduces the need 
for the CPU to do so, thereby decreasing pipeline interference and enhancing 
the CPU's computational throughput. 

Major topics discussed in this chapter are as follows: 

Topic Page 

9-1 



Pipeline Structure 

9.1 Pipeline Structure 

9-2 

The five major units of the TMS320C3x pipeline structure and their functions 
are as follows: 

o Fetch Unit (F) 

This unit fetches the instruction words from memory and updates the pro­
gram counter (PC). 

o Decode Unit (D) 

This unit decodes the instruction word and performs address generation. 
The unit also controls any modifications to the auxiliary registers and the 
stack pOinter. 

o Read Unit CR) 

This unit, if required, reads the operands from memory. 

o Execute Unit (E) 

This unit, if required, reads the operands from the register file, performs 
any necessary operation, and writes results to the register file. If required, 
the unit writes results of previous operations to memory. 

o DMA Channel COMA) 

The DMA channel reads and writes to memory. 

A basic instruction has four levels: 

o Fetch 
o Decode 
DRead 
o Execute 

Figure 9-1 illustrates these four levels of the pipeline structure. The levels are 
indexed according to instruction and execution cycle. The perfect overlap in 
the pipeline, where all four units operate in parallel, occurs at cycle (m). Those 
levels about to be executed are at m + 1 , and those just executed are at m - 1. 
The TMS320C3x pipeline control allows a high-speed execution rate of one 
execution per cycle. It also manages pipeline conflicts so that they are trans­
parent to the user. You do not need to take any special precautions to guaran­
tee correct operation. 



Pipeline Structure 

Figure ~ 1. TMS320C3x Pipeline Structure 

CYCLE F D R E 

m-3 w 

m-2 x w 

m-1 y x w 

m z y x w Perfect overlap 

m +1 z y x 
m+2 z y 

m+3 z 

D = Decode, E = Execute, F = Fetch, R = Read; W. X. Y. Z = Instruction Representations 

Priorities from highest to lowest have been assigned to each of the functional 
units as follows: 

1) Execute (highest) 
2) Read 
3) Decode 
4) Fetch 
5) DMA (lowest) 

When the processing of an instruction is ready to pass to the next higher pipe­
line level, but that level is not ready to accept a new input, a pipeline conflict 
occurs. In this case, the lower-priority unit waits until the higher-priority unit 
completes its currently executing function. 

Despite the DMA controller's low priority, you can minimize or even eliminate 
conflicts with the CPU through suitable data structuring because the DMA con­
troller has its own data and address buses. 

Pipeline Operation 9-3 



Pipeline Conflicts 

9.2 Pipeline Conflicts 

The pipeline conflicts of the TMS320C3x can be grouped into the following 
categories: 

o Branch Conflicts 

Branch conflicts involve most of those instructions or operations that read 
and/or modify the PC. 

o Register Conflicts 

Register conflicts involve delays that can occur when reading from or writ­
ing to registers that are used for address generation. 

o Memory Conflicts 

Memory conflicts occur when the internal units of the TMS320C3x com­
pete for memory resources. 

Each of these three categories is discussed in the following sections. Exam­
ples are included. Note that in these examples, when data is refetched or an 
operation is repeated, the symbol representing the stage of the pipeline is ap­
pended with a number. For example, if a fetch is performed again, the instruc­
tion mnemonic is repeated. When an access is detained for multiple cycles be­
cause of not ready, the symbols ROY and ROY are used to indicate not ready 
and ready, respectively. 

9.2.1 Branch Conflicts 

9-4 

The first class of pipeline conflicts occurs with standard (nondelayed) 
branches, that is, BR, Bcond, OBcond, CALL, IDLE, RPTB, RPTS, RETlcond, 
RETScond, interrupts, and reset. Conflicts arise with these instructions and 
operations because during their execution, the pipeline is used only for the 
completion of the operation; other information fetched into the pipeline is dis­
carded or refetched, or the pipeline is inactive. This is referred to as flushing 
the pipeline. Flushing the pipeline is necessary in these cases to guarantee 
that portions of succeeding instructions do not inadvertently get partially ex­
ecuted. TRAPcond and CALLcond are classified differently from the other 
types of branches and are considered later. 

Example ~ 1 shows the code and pipeline operation for a standard branch. 

Note: Dummy Fetch 

One dummy fetch (an MPYF instruction) is performed, which affects the 
cache. After the branch address is available, a new fetch (an OR instruction) 
is performed. 



Pipeline Conflicts 

Example 9-1. Standard Branch 

BR THREE 
MPYF 
ADD 
SUBF 
AND 

Unconditional branch 
Not executed 
Not executed 
Not executed 
Not executed 

THREE OR Fetched after BR is fetched 

STI 

PIPELINE OPERATION 

PC F D R E 

n BR 

n+1 MPYF BR 

n+1 (nop) (nop) BR 

n+1 (nop) (nop) (nop) BR 

THREE OR (nop) (nop) (nop) 

STI OR (nop) (nop) 

I / 
THREE-PC Fetch held for 

new PC value 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

RPTS and RPTB both flush the pipeline, allowing the RS, RE, and RC registers 
to be loaded at the proper time relative to the flow of the pipeline. If these regis­
ters are loaded without the use of RPTS or RPTB, no flushing of the pipeline 
occurs. If you are not using any of the repeat modes, then you can use RS, RE, 
and RC as general-purpose 32-bit registers and not cause any pipeline con­
flicts. In cases such as the nesting of RPTB due to nested interrupts, it might 
be necessary to load and store these registers directly while using the repeat 
modes. Since up to four instructions can be fetched before entering the repeat 
mode, you should follow loads by a branch to flush the pipeline. If the RC is 
changing when an instruction is loading it, the direct load takes priority over 
the modification made by the repeat mode logic. 

Pipeline Operation 9-5 



Pipeline Conflicts 

Delayed branches are implemented to guarantee the fetching ofthe next three 
instructions. The delayed branches include BRO. BconaD. and DBconoD. 
Example ~2 shows the code and pipeline operation for a delayed branch. 

Example 9-2. Delayed Branch 

9-6 

BRD THREE 
MPYF 
ADD 
SUBF 
AND 

THREE MPYF 

Unconditional delayed branch 
Executed 
Executed 

; Executed 
Not executed 

Fetched after SUBF is fetched 

PIPELINE OPERATION 

PC F D R E 

" BRD 

"+1 MPYF BRD No execute delay 

"+2 ADDF MPYF BRD 

"+3 SUBF ADDF MPYF BRD 

THREE 
)' 

MPYF SUBF ADDF MPYF 

THREE-PC 

D = Decode, E = Execute, F = Fetch, R. Read, PC = Program Counter 



Pipeline Conflicts 

9.2.2 Register Conflicts 

Register conflicts involve reading or writing registers used for addressing. 
These conflicts occur when the pertinent register is not ready to be used. Some 
conditions under which you can avoid register conflicts are discussed in Sec­
tion 9.3 on page 9-18. 

The registers comprise the following three functional groups: 

o Group 1 

This group includes auxiliary registers (AR~AR7), index registers (IRO, 
IR1), and block size register (81<). 

o Group2 

This group includes the data page pointer (DP). 

o Group3 

This group includes the system stack pointer (SP). 

If an instruction writes to one of these three groups, the decode unit cannot use 
any register within that particular group until the write is complete, that is, in­
struction execution is completed. In Example 9-3, an auxiliary register is 
loaded, and a different auxiliary register is used on the next instruction. Since 
the decode stage needs the result of the write to the auxiliary register, the de­
code of this second instruction is delayed two cycles. Every time the decode 
is delayed, a refetch of the program word is performed; that is, the ADDF is 
fetched three times. Since these are actual refetches, they can cause not only 
conflicts with the DMA controller but also cache hits and misses. 

Pipeline Operation 9-7 



Pipeline Conflicts 

Example 9--3. Write to an AR Followed by an AR for Address Generation 

9-8 

PC 

n 

n+1 

n+2 

n+2 

n+2 

n+3 

LDI 7,ARl ; 7 - ARl 
NEXT MPYF *AR2,RO i Decode delayed 2 cycles 

ADDF 
FLOAT 

PIPELINE OPERATION 

F o R E 

LDI 

MPYF LDI 

ADD .. MPYF LDI 

ADDF MPYF (nop) LDI 7,ARI 

ADDF MPYF (nop) (nop) 

FLOAT ADDF MPYF (nop) 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

The case for reads of these groups is similar to the case for writes. If an 
instruction must read a member of one of these groups, the use of that particu­
lar group by the decode for the following instruction is delayed until the read 
is complete. The registers are read at the start of the execute cycle and there­
fore require only a one-cycle delay of the following decode. For four registers 
(IRO, IR1, BK, or DP), there is no delay. For all other registers, including the 
SP, the delay occurs. 

In Example 9-4, two auxiliary registers are added together, with the result go­
ing to an extended-precision register. The next instruction uses a different aux­
iliary register as an address register. 



Pipeline Conflicts 

Example 9-4.A Read of ARs Followed by ARs for Address Generation 

PC 

n 

"+1 

"+2 

"+2 

"+3 

ADDI ARO , ARl, Rl 
NEXT MPYF *++AR2,RO 

ADDF 
FLOAT 

J ARO + ARl - Rl 
; Decode delayed one cycle 

PIPELINE OPERATION 

F D R E 

ADDI 

MPYF ADDI 

ADDF MPYF ADDI 

ADDF MPYF (nop) ADDI ARO, ARl , RO 

FLOAT ADDF MPYF (nop) 

D '"' Decode, E '"' Execute, F .. Fetch, R.. Read, PC = Program Counter 

Loop counter auxiliary registers for the decrement and branch (DBR)) instruc­
tion are regarded in the same way as they are for addressing. Therefore, the 
operation shown in Example 9-3 and Example ~ can also occur for this in­
struction. 

Pipeline Operation 9-9 



Pipeline Conflicts 

9.2.3 Memory Conflicts 

9-10 

Memory conflicts can occur when the memory bandwidth of a physical 
memory space is exceeded. For example, RAM blocks 0 and 1 and the ROM 
block can support only two accesses per cycle. The external interface can sup­
port only one access per cycle. Section 9.4 on page 9-21 contains some condi­
tions under which you can avoid memory conflicts. 

Memory pipeline conflicts consist of the following four types: 

D Program wait 

A program fetch is prevented from beginning. 

D Program fetch Incomplete 

A program fetch has begun but is not yet complete. 

D Execute only 

An instruction sequence requires three CPU data accesses in a single 
cycle. 

D Hold everything 

A primary or expansion bus operation must complete before another one 
can proceed. 

These four types of memory conflicts are illustrated in examples and dis­
cussed in the paragraphs that follow. 

Program Walt 

Two conditions can prevent the program fetch from beginning: 

D The start of a CPU data access when: 

• Two CPU data accesses are made to an internal RAM or ROM block, 
and a program fetch from the same block is necessary. 

• One of the external ports is starting a CPU data access, and a program 
fetch from the same port is necessary. 

D A multicycle CPU data access or DMA data access over the external bus 
is needed. 



Pipeline Conflicts 

Example 9-5 illustrates a program wait until a CPU data access completes. 
In this case, *ARO and *AR1 are both pointing to data in RAM block 0, and the 
MPYF instruction will be fetched from RAM block O. This results in the conflict 
shown in Example 9-5. Since no more than two accesses can be made to 
RAM block 0 in a single cycle, the program fetch cannot begin and must wait 
until the CPU data accesses are complete. 

Example 9-5. Program Wait Until CPU Data Access Completes 

ADDF3 *ARO,*AR1,RO 
FIX 
MPYF 
ADDF3 
NEGB 

PIPELINE OPERATION 

PC F D R E 

n ADDF3 

n+1 FIX ADDF3 

n+2 (WAIT) FIX ADDF3 

n+2 MPYF (nop) FIX ADDF3 *ARO,AR1,RO 

n+3 ADDF3 MPYF (nop) FIX 

n + 4 NEGB ADDF3 MPYF (nop) 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

Example 9-6 shows a program wait due to a multicycle data-data access or 
a multicycle DMA access. The ADDF, MPYF, and SUBF are fetched from a 
portion of memory other than the external port that the DMA requires. The 
DMA begins a multicycle access. The program fetch corresponding to the 
CALL is made to the same external port that the DMA is using. 

Either of two cases may produce this situation: 

o One of the following two memory boundaries is crossed: 

• From 7F FFFFh to 80 OOOOh, or 
• From 80 9FFFh to 80 AOOOh. 

o Code that has been cached is executed, and the instruction prior to the 
ADDF is one of the following (conditional or unconditional): 

• a delayed branch instruction, or 
• a delayed decrement and branch instruction. 

Pipeline Operation 9·11 



Pipeline Conflicts 

Even though the DMA has the lowest priority, multicycle access cannot be 
aborted. The program fetch must therefore wait until the DMA access com­
pletes. 

Example 9-6. Program Wait Due to Multicycle Access 

PIPELINE OPERATION 

PC F D R E 

n ADDF 

n+1 MPYF ADDF 

n+2 SUBF MPYF ADDF 

n+3 (WAIT) SUBF MPYF ADDF 

n+3 CALL (nop) SUBF MPYF 

n+4 CALL (nop) SUBF 

o = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

Program Fetch Incomplete 

A program fetch incomplete occurs when a program fetch requires more than 
one cycle to complete due to wait states. In Example 9-7, the MPYF and 
ADDF are fetched from memory that supports single-cycle accesses. The 
SUBF is fetched from memory, which requires one wait state. One example 
that demonstrates this conflict is a fetch across a bank boundary on the 
primary port. See Section 7.4 on page 7-30. 

Example 9-7. Multicycle Program Memory Fetches 

PIPELINE OPERATION 

PC F D R E 

n MPYF 

n + 1 ADDF MPYF 

n +2 RDY SUBF ADDF MPYF 

n +2 RDY SUBF (nop) ADDF MPYF 

n+3 ADDI SUBF (nop) ADDF 

o = Decode, E = Execute, F .. Fetch, R .. Read, PC = Program Counter 

9-12 



Pipeline Conflicts 

Execute Only 

The execute only type of memory pipeline conflict occurs when performing an 
interlocked load or when a sequence of instructions requires three CPU data 
accesses in a single cycle. There are three cases in which this occurs: 

o An instruction performs a store and is followed by an instruction that does 
two memory reads. 

o An instruction performs two stores and is followed by an instruction that 
performs at least one memory read. 

o An interlocked load (LOll or LOFI) instruction is performed, and XF1 = 1. 

The first case is shown in Example 9-8. Since this sequence requires three 
data memory accesses and only two are available, only the execute phase of 
the pipeline is allowed to proceed. The dual reads required by the LOF II LOF 
are delayed one cycle. Note that a refetch of the next instruction can occur. 

Example 9-8. Single Store Followed by Two Reads 

STF RO,*ARl RO - *ARl 
LDF *AR2,Rl *AR2 -Rl in parallel with 

II LDF *AR3,R2 *AR3 -R2 

PIPELINE OPERATION 

PC F 0 R E 

" srrF 

"+ 1 LDF II LDF srrF 

"+2 w LDF II LDF srrF 

"+3 x w LDF II LDF srrF 

"+4 x w LDF II LDF (nop) 

"+4 y x W LDF II LDF *AR2,Rl and *AR3,R2 

D= Decode, E= Execute, F. Fetch, R= Read, PC=ProgramCounter, W,X,Y=lnstructionRepresentatlons 

Pipeline Operation 9-13 



Pipeline Conflicts 

Example 9-9 shows a parallel store followed by a single load or read. Since 
the two parallel stores are required, the next CPU data memory read must wait 
a cycle before beginning. One program memory refetch can occur. 

Example 9-9. Parallel Store Followed by Single Read 

9-14 

II 

PC F 

n STF II STF 

n+1 ADDF 

n+2 tACK 

n+3 ASH 

n+4 ASH 

n+4 

STF 
STF 
ADDF 
lACK 
ASH 

RO,*ARO 
R2,*ARl 
@SUM,Rl 

RO -+*ARO in parallel with 
R2 -+ *ARl 
Rl + @SUM -+ Rl 

PIPELINE OPERATION 

D R E 

STF II STF 

ADDF STF II STF 

tACK ADDF STF II STF 

tACK ADDF (nop) 

ASH tACK ADDF 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 



Pipeline Conflicts 

The final case involves an interlocked load (LOll or LOFI) instruction and XF1 
= 1. Since the interlocked loads use the XF1 pin as an acknowledge that the 
read can complete, the loads might need to extend the read cycle, as shown 
in Example 9-10. Note that a program refetch can occur. 

Example ~ 10. Interlocked Load 
NOT Rl,RO 
LDII JOOh,AR2 
ADDI *AR2,R2 
CMPI RO,R2 

PIPELINE OPERATION 

PC F D R E 

" NOT 

"+1 LOll NOT 

"+2 ADOI LOll NOT 

"+3 CMPI ADOI LOll NOT 

"+3 CMPI ADOI LDII 

"+4 CMPI ADOI LDII 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

Hold Everything 

Three situations result in hold-everything memory pipeline conflicts: 

D A CPU data load or store cannot be performed because an external port is 
busy. 

D An external load takes more than one cycle. 

D Conditional calls and traps are processed. 

Pipeline Operation 9-15 



Pipeline Conflicts 

The first type of hold everything conflict occurs when one of the external ports 
is busy due to an access that has started but is not complete. In Example 9-11, 
the first store is a two-cycle store. The CPU writes the data to an external port. 
The port control then takes two cycles to complete the data-data write. The 
LDF is a read over the same external port. Since the store is not complete, the 
CPU continues to attempt LDF until the port is available. 

Example 9-11. Busy External Port 

STF RO,@OMAl 
LOF @OMA2,RO 

PIPELINE OPERATION 

PC F D R E 

n STF 

n+1 LDF STF 

n+2 w LDF STF 

n+2 w LDF (nop) STF 

n+2 w LDF (nop) (nop) 

n+3 x w LDF (nop) 

n+4 y x W LOF 

D = Decode, E = Execute, F", Fetch, R = Read, PC '" Program Counter, W, X, Y", Instruction Representations 

9-16 



Plpeline Conflicts 

The second type of hold everything conflict involves multicycle data reads. The 
read has begun and continues until completed. In Example 9-12, the LDF is 
performed from an external memory that requires several cycles to complete. 

Example 9-12. Multicycle Data Reads 
LDF @DMA,RO 

PIPELINE OPERATION 

PC F D R E 

" LDF 

"+1 I LDF 

"+2 J I LDF 

"+3 x, (dummy) I LDF 

"+3 x2 J I LDF 

o • Decode, E. Execute, F. Fetch, R. Read, PC. Program Counter, I, J, K .. Instruction Repreeentationa 

The final type of hold everything conflict involves conditional calls and traps, 
which are different from the other branch instructions. Whereas the other 
branch instructions are conditional loads, the conditional calls and traps are 
conditional stores, which require one cycle more than a conditional branch 
(see Example 9-13). The added cycle is used to push the return address after 
the call condition is evaluated. 

Example 9-13. Conditional Calls and Traps 

PIPELINE OPERATION 

PC F D R E 

"9 CALLcond 

"+1 I CALLcond 

"+1 (nop) (nop) CALLcond 

"+1 (nop) (nop) (nop) CALLcond 

"+1 (nop) (nop) (nop) CALLcond 

" + 2/ CALLaddr I (nop) (nop) (nop) 

o = Decode, E = Execute, F = Fetch, R .. Read, PC .. Program Counter, I, = Instruction Repreeentatlon 

Pipeline Operation 9~ 17 



Resolving Register Conflicts 

9.3 Resolving Register Conflicts 

If the auxiliary registers (AR7-ARO), the index registers (IR1-IRO), data page 
pOinter (DP), or stack pointer (SP) are accessed for any reason other than ad­
dress generation, pipeline conflicts associated with the next memory access 
can occur. The pipeline conflicts and delays are presented in subsection 9.2 
on page 9-4. 

Example 9-14, Example 9-15, and Example 9-16 demonstrate either some 
common uses of these registers that do not produce a conflict or ways that you 
can avoid the conflict. 

Example 9-14. Address Generation Update of an AR Followed by an AR for Address 
Generation 

9-18 

pc F 

" LOF 

"+1 MPYF 

"+2 ADOF 

"+3 FIX 

"+4 MPYF 

"+5 ADOF 

LOF 7 • 0 , RO , 7. 0 - RO 
MPYF *++ARO(IR1),RO 
ADOF *AR2,RO 
FIX 
MPYF 
ADOF 

PIPELINE OPERATION 

D R 

LOF 

MPYF LOF 

ADOF MPYF 

FIX ADOF 

MPYF FIX 

E 

LOF 

MPYF 

ADOF 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter, W, X, Y. Z = Instruction Representations 



Resolving Register Conflicts 

Example 9-15. Write to an AR Followed by an AR for Address Generation Without a 
Pipeline Conflict 

PC F 

" LDI 

"+ 1 MPYF 

"+2 ADDF 

"+3 MPYF 

"+4 SUBF 

"+5 STF 

LDI @TABLE,AR2 
MPYF @VALUE,Rl 
ADDF R2,Rl 
MPYF *AR2++,Rl 
SUBF 
STF 

PIPELINE OPERATION 

D R 

LDI 

MPYF LDI 

ADDF MPYF 

MPYF ADDF 

SUBF MPYF 

E 

LDI 

MPYF 

ADDF 

7, 
AR2 

D = Decode, E = Execute, F = Fetch, R = Read, pc. Program Counter 

Pipeline Operation 9-19 



Resolving Register Conflicts 

Example 9-16. Write to DP Followed by a Direct Memory Read Without a Pipeline Conflict 

9-20 

PC F 

n LOP 

n+1 POP 

n+2 Lor 

n+3 LOI 

n+4 PUSHF 

n+5 PUSH 

LOP 
POP 
LOF 
LOI 
PUSHF 
PUSH 

TABLE_ADOR 
RO 
*-AR3 (2) ,Rl 
@TABLE_ADOR,ARO 
R6 
R4 

PIPELINE OPERATION 

D R E 

LOP 

POP LOP 

Lor POP LOP 

LOI LOF POP 

PUSHF LOI LOF 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 



Resolving Memory Conflicts 

9.4 Resolving Memory Conflicts 

If program fetches and data accesses are performed in such a manner that the 
resources being used cannot provide the necessary bandwidth, the program 
fetch is delayed until the data access is complete. Certain configurations of 
program fetch and data accesses yield conditions under which the 
TMS320C3x can achieve maximum throughput. 

Table 9-1 shows how many accesses can be performed from the different 
memory spaces when it is necessary to do a program fetch and a single data 
access and still achieve maximum performance (one cycle). As shown in 
Table 9-1, four cases achieve one-cycle maximization. 

Table 9-1. One Program Fetch and One Data Access for Maximum Performance 

Case # 

1 

2 

3 

4 

Primary Bus 
Accesses 

Accesses From 
Dual-Access 

Internal Memory 

2 from any 
combination 

of internal memory 

1 

expansion Bust 
Or Peripheral 

Accesses 

1 
t The expansion bus is available only on the TMS32OC30. 

Pipeline Operation 9-21 



Resolving Memory Conflicts 

Table 9-2 shows how many accesses can be performed from the different 
memory spaces when it is necessary to do a program fetch and two data ac­
cesses and still achieve maximum performance (one cycle). Six conditions 
achieve this maximization. 

Table 9-2. One Program Fetch and Two Data Accesses for Maximum Performance 

9·22 

Case 1# 

1 

4 

5 

Primary Bus 
Accesses 

1 Program 

1 Data 

Accesses From 
Dual-Access 

Internal Memory 

2 from any 
combination 

of internal memory 

1 Data 

1 Data 

2 from same internal 
memory block and 
1 from a different 
internal memory 

block 

3 from different 
internal memory 

blocks 

6 2 from any 
combination 

of Internal memory 

t The expansion bus is available only on the TMS320C30. 

Expanslont Or 
Peripheral Bu. 

Accesse. 

1 Data 

1 Program 

1 



Clocking of Memory Accesses 

9.5 Clocking of Memory Accesses 

This section uses the relationships between internal clock phases (H1 and H3) 
to memory accesses to illustrate how the TMS320C3x handles multiple 
memory accesses. Whereas the previous section discusses the interaction 
between sequences of instructions, this section discusses the flow of data on 
an individual instruction basis. 

Each major clock period of 60 ns is composed of two minor clock periods of 
30 ns, labeled H3 and H1. The active clock period for H3 and H1 is the time 
when that signal is high. 

r I Major Clock PeriocJ 

H1 I L 
H3 I I 

The precise operation of memory reads and writes can be defined according 
to these minor clock periods. The types of memory operations that can occur 
are program fetches, data loads and stores, and DMA accesses. 

9.5.1 Program Fetches 

Internal program fetches are always performed during H3 unless a single data 
store must occur at the same time due to another instruction in the pipeline. 
In this case, the program fetch occurs during H 1, and the data store during H3. 

External program fetches always start at the beginning of H3, with the address 
being presented on the external bus. At the end of H 1, they are completed with 
the latching of the instruction word. 

Pipeline Operation 9-23 



Clocking of Memory Accesses 

9.5.2 Data Loads and Stores 

Four types of instructions perform loads, memory reads, and stores: 

o Two-operand instructions, 
o Three-operand instructions, 
o Multiplier/ALU operation with store instructions, and 
o Parallel multiply and add instructions. 

See Chapter 5 for detailed information on addressing modes. 

As discussed in Chapter 7, the number of bus cycles for external memory 
accesses differs in some cases from the number of CPU execution cycles. For 
external reads, the number of bus cycles and CPU execution cycles is identi­
cal. For external writes, there are always at least two bus cycles, but unless 
there is a port access conflict, there is only one CPU execution cycle. In the 
following examples, any difference in the number of bus cycles and CPU 
cycles is noted. 

Two-Operand Instruction Memory Accesses 

Two-operand instructions include all instructions whose bits 31-29 are 000 or 
010 (see Figure 9-2). In the case of a data read, bits 15-0 represent the src 
operand. Internal data reads are always performed during H1. External data 
reads always start at the beginning of H3, with the address being presented 
on the external bus; they complete with the latching of the data word at the end 
of H1. 

Figure 9-2. Two-Operand Instruction Word 

31 

9-24 

2423 1615 87 

dst(src) I i i i iii I I 
Operation • G 

Iii 

src(ds~ 

In the case of a data store, bits 15-0 represent the dst operand. Internal data 
stores are performed during H3. External data stores always start at the begin­
ning of H3, with the address and data being presented on the external bus. 

Three-Operand Instruction Memory Reads 

Three-operand instructions include all instructions whose bits 31-29 are 001 
(see Figure 9-3). The source operands, src1 and src2, come from either regis­
ters or memory. When one or more of the source operands are from memory, 
these instructions are always memory reads. 



Clocking of Memory Accesses 

Figure 9-3. Three-Operand Instruction Word 

2423 1615 87 o 

dst I i iii iii iii i I 
Operation • T 

i i 
src1 srdJ. 

If only one of the source operands is from memory (either src1 or src2) and is 
located in internal memory, the data is read during H 1. If the single memory 
source operand is in external memory, the read starts at the beginning of H3, 
with the address being presented on the external bus, and completes with the 
latching of the data word at the end of H 1 . 

If both source operands are to be fetched from memory, several cases occur. 
If both operands are located in internal memory, the src1 read is performed 
during H3 and the src2 read during H 1 , thus completing two memory reads in 
a single cycle. 

If src1 is in internal memory and src2 is in external memory, the src2 access 
begins at the start of H3 and latches at the end of H1. At the same time, the 
src1 access to internal memory is performed during H3. Again, two memory 
reads are completed in a single cycle. 

If src1 is in external memory and src2is in internal memory, two cycles are nec­
essary to complete the two reads. In the first cycle, both operands are ad­
dressed. Since src1 takes an entire cycle to be read and latched from external 
memory, the internal operation on src2 cannot be completed until the second 
cycle. Ordering the operands so that src1 is located internally is necessary to 
achieve single-cycle execution. 

If src1 and src2are both from external memory, two cycles are required to com­
plete the two reads. In the first cycle, the src 1 access is performed and loaded 
on the next H3; in the second cycle, the src2 access is performed and loaded 
on that cycle's H 1. 

If src2 is in external memory and src 1 is in on-Chip or external memory and is 
immediately preceded by a single store instruction to external memory, a 
dummy src2 read can occur between the execution of the store instruction and 
the src2 read, regardless of which memory space is accessed (STRB, 
MSTRB, or IOSTRB). The dummy read can cause an externally interfaced 
FIFO address pointer to be incremented prematurely, thereby causing the loss 
of FIFO data. Example 9-17 illustrates how the dummy read can occur. 
Example 9-18 offers an alternative code segment that suppresses the dummy 
read. In the alternative code segment, the dummy read is eliminated by swap­
ping the order of the source operands. 

Pipeline Operation 9-25 



Clocking of Memory Accesses 

Example 9-17. Dummy src2 Read 

H1 

H3 

9·26 

PC 

n 

n+1 

n+2 

n+3 

n+4 

n+5 

n+6 

n+7 

n+8 

STI RO,*AR6 
ADDI3 *AR3, *AR1, RO 

AR6 points to MSTRB space 
AR3 points to on-chip RAM 
ARl points to MSTRB space 

PIPELINE OPERATION 
F I D I R I E 

STl 

ADDl3 STl 

ADDl3 STl 

STl RO,*AR6 
The read of src2 cannot start 
until the store is complete. 

ADDl3 dummy load of src2 

second cycle of dummy load 

ADDl3 actual read of src2 and srcl 

ADDl3 *AR3,*ARl,RO 

D = Decode, IE = Execute, F = Fetch, R = Read, PC = Program Counter 

Two cycles are required for the MSTRB store. Two other cycles are required for the 
dummy MSTRB read of*AR3 (because the read follows a write). One cycle is required 
for an actual MSTRB read of *AR3. 



Clocking of Memory Accesses 

Example 9-18. Operand Swapping Alternative 

H1 

H3 

PC 

n 

n+1 

n+2 

n+3 

n+4 

n+5 

n+6 

n+7 

Switch the operands of the three-operand instruction so that the internal read 
is performed first. 

STl RO, *AR6 ;AR6 points to MSTRB space 
ADDl3 *AR1,*AR3,RO ;AR3 points to on-chip RAM 

F 

STl 

ADDl3 

;ARl points to MSTRB space 

PIPELINE OPERATION 

I D I R I E 

STl 

ADDl3 STl 

ADDl3 

STl RO,*AR6 

The read of src2 cannot start 
until the store is complete. 
actual read of src2 and srcl 

second cycle of src2 read 

ADDl3 *ARl,*AR3,RO 

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter 

Operations with Parallel Stores 

The next class of instructions includes every instruction that has a store in par­
allel with another instruction. Bits 31 and 30 for these instructions are equal 
to 1 1. 

The instruction word format for those operations that perform a multiply or ALU 
operation in parallel with a store is shown in Figure 9--4. If the store operation 
to dst2 is external or internal, it is performed during H3. Two bus cycles are 
required for external stores, but only one CPU cycle is necessary to complete 
the write. 

If the memory read operation is external, it starts at the beginning of H3 and 
latches at the end of H1. If the memory read operation is internal, it is per-

Pipeline Operation 9-27 



Clocking of Memory Accesses 

formed during H1. Note that memory reads are performed by the CPU during 
the read (R) phase of the pipeline, and stores are performed during the ex­
ecute (E) phase. 

Figure 9-4. Multiply or CPU Operation With a Parallel Store 

Iii I 
Operation 

9-28 

i i 
src1 

16
1

'5, 

src3 • 

iii 
dst2. 

87 o 
iii 

src'.2. 

The instruction word format for those instructions that have parallel stores to 
memory is shown in Figure 9-5. If both destination operands, dst1 and dst2, 
are located in internal memory, dst1 is stored during H3 and dst2 during H1, 
thus completing two memory stores in a single cycle. 

If dst1 is in external memory and dst2 is in internal memory, the dst1 store be­
gins at the start of H3. The dst2 store to internal memory is performed during 
H 1. Two bus cycles are required for the external store, but only one CPU cycle 
is necessary to complete the write. Again, two memory stores are completed 
in a single cycle. 

If dst1 is in internal memory and dst2 is in external memory, an additional bus 
cycle is necessary to complete the dst2 store. Only one CPU cycle is neces­
sary to complete the write, but the port access requires three bus cycles. In the 
first cycle, the internal dst1 store is performed during H3, and dst2 is written 
to the port during H1. During the next cycle, the dst2store is performed on the 
external bus, beginning in H3, and executes as normal through the following 
cycle. 

If dst1 and dst2 are both written to external memory, a single CPU cycle is still 
all that is necessary to complete the stores. In this case, four bus cycles are 
required. 

1) In the first cycle, both dst1 and dst2are written to the port, and the external 
bus access for dst1 begins. 

2) The store for dst1 is completed on the second cycle, and the store for dst2 
begins on the third external bus cycle. 

3) Finally, the store for dst2 is completed on the fourth external bus cycle. 



Clocking of Memory Accesses 

Figure 9-5. Two Parallel Stores 

31 2423 1615 87 o 
11 I 11 I S~ !lISTI 1 Isr~ 1 0 I 0

1 0 1 src1 I I iii i I I 
dst1 dst2 

Parallel Multiplies and Adds 

Memory addressing for parallel multiplies and adds is similar to that for three­
operand instructions. The parallel multiplies and adds include all instructions 
whose bits 31-30 = 10 (see Figure 9-6). 

For these operations, src3 and src4 are both located in memory. If both oper­
ands are located in internal memory, src3 is performed during H3, and src4 is 
performed during H1, thus completing two memory reads in a single cycle. 

If src3 is in internal memory and src4 is in external memory, the src4 access 
begins at the start of H3 and latches at the end of H 1. At the same time, the 
src3 access to internal memory is performed during H3. Again, two memory 
reads are completed in one cycle. 

If src3 is in external memory and src4 is in internal memory, two cycles are nec­
essary to complete the two reads. In the first cycle, the internal src4 access 
is performed. During the H3 of the next cycle, the src3 access is performed. 

If src3 and src4 are both from external memory, two cycles are necessary to 
complete the two reads. In the first cycle, the src3 access is performed; in the 
second cycle, the src4 access is performed. 

Figure 9-6. Parallel Multiplies and Adds 

31 2423 1615 87 o I I 

src2 . 

i I I iii 
src:3 sr04 

Pipeline Operation 9-29 



9-30 



, 

Chapter 10 

Assembly Language Instructions 

The TMS320C3x assembly language instruction set supports numeric-inten­
sive, signal-processing, and general-purpose applications. The instructions 
are organized into major groups consisting of load-and-store, two- or three-op­
erand arithmetic/logical, parallel, program-control, and interlocked operations 
instructions. The addressing modes used with the instructions are described 
in Chapter 5. 

The TMS320C3x instruction set can also use one of 20 condition codes with 
any of the 10 conditional instructions, such as LDFcond; This chapter defines 
the condition codes and flags. 

The assembler allows optional syntax forms to simplify the assembly language 
for special-case instructions. These optional forms are listed and explained. 

Each of the individual instructions is described and listed in alphabetical order 
(see subsection 10.3.2 on page 10-16). Example instructions demonstrate the 
special format and explain its content. 

This chapter discusses the following major topics: 

Topic Page 

10-1 



Instruction Set 

10.1 Instruction Set 

All of the instructions in the TMS320C3x instruction set are one machine word 
long. Most require one cycle to execute. All instructions are a single machine 
word long, and most instructions require one cycle to execute. In addition to 
multiply and accumulate instructions, the TMS320C3x possesses a full com­
plement of general-purpose instructions. 

The instruction set contains 113 instructions organized into the following func­
tional groups: 

o Load-and-store 
o Two-operand arithmetic/logical 
o Three-operand arithmetic/logical 
o Program control 
o Interlocked operations 
o Parallel operations 

Each of these groups is discussed in the succeeding subsections. 

10.1.1 Load·and·Store Instructions 

The TMS320C3x supports 1210ad-and-store instructions (see Table 10-1). 
These instructions can: 

o Load a word from memory into a register, 
o Store a word from a register into memory, or 
o Manipulate data on the system stack. 

Two of these instructions can load data conditionally. This is useful for locating 
the maximum or minimum value in a data set. See Section 10.2 on page 10-10 
for detailed information on condition codes. 

Table 10-1. Load-and-Store Instructions 

Instruction Description Instruction Description 

LDE Load floating-point exponent POP Pop integer from stack 

LDF Load floating-point value POPF Pop floating-point value from stack 

LDFcond Load floating-point value PUSH Push integer on stack 
conditionally 

LDI Load integer PUSHF Push floating-point value on stack 

LDlcond Load integer conditionally STF Store floating-point value 

LDM Load floating-point mantissa STI Store integer 

LDP Load data page pointer 

10-2 



Instruction Set 

10.1.2 Two-Operand Instructions 

The TMS320C3x supports 35 two-operand arithmetic and logical instructions. 
The two operands are the source and destination. The source operand can be 
a memory word, a register, or a part of the instruction word. The destination 
operand is always a register. 

As shown in Table 10-2, these instructions provide integer, floating-point, or 
logical operations, and multiprecision arithmetic. 

Table 10-2. Two-Operand Instructions 

Instruction Description Instruction Description 

ABSF Absolute value of a floating- NORM Normalize floating-point value 
point number 

ABSI Absolute value of an integer NOT Bitwise logical-complement 

ADDCt Add integers with carry ORT Bitwise logical-OR 

ADDFt Add floating-point values RND Round floating-point value 

ADDlt Add integers ROL Rotate left 

ANDt Bitwise logical-AND ROLC Rotate left through carry 

ANDNt Bitwise logical-AND with ROR Rotate right 
complement 

ASHt Arithmetic shift RORC Rotate right through carry 

CMPFt Compare floating-point values SUBBt Subtract integers with borrow 

CMPlt Compare integers SUBC Subtract integers conditionally 

FIX Convert floating-point value to SUBF Subtract floating-point values 
integer 

FLOAT Convert integer to floating-point SUBI Subtract integer 
value 

LSHt Logical shift SUBRB Subtract reverse integer with 
borrow 

MPYFt Multiply floating-point values SUBRF Subtract reverse floating-point 
value 

MPYlt Multiply integers SUBRI Subtract reverse integer 

NEGB Negate integer with borrow TSTBt Test bit fields 

NEGF Negate floating-point value XORt Bitwise exclusive-OR 

NEGI Negate integer 

Two- and three-operand versions 

Assembly Language Instructions 10-3 



Instruction Set 

10.1.3 Three-Operand Instructions 

Most instructions have only two operands; however, some arithmetic and log­
ical instructions have three-operand versions. The 17 three-operand instruc­
tions allow the TMS320C3x to read two operands from memory or the CPU 
register file in a single cycle and store the results in a register. The following 
factors differentiate the two- and three-operand instructions: 

o Two-operand instructions have a single source operand (or shift count) 
and a destination operand. 

o Three-operand instructions can have two source operands (or one source 
operand and a count operand) and a destination operand. A source oper­
and can be a memory word or a register. The destination of a three-oper­
and instruction is always a register. 

Table 10-3 lists the instructions that have three-operand versions. Note that 
you can omit the 3 in the mnemonic from three-operand instructions (see sub­
section 10.3.2 on page 10-16). 

Table 1o-a. Three-Operand Instructions 
Instruction Description Instruction Description 

ADDC3 Add with carry MPYF3 Multiply floating-point values 

ADDF3 Add floating-point values MPYI3 Multiply integers 

ADDI3 Add integers OR3 Bitwise logical-OR 

AND3 Bitwise logical-AND SUBB3 Subtract integers with borrow 

ANDN3 Bitwise logical-AND with complement SUBF3 Subtract floating-point values 

ASH3 Arithmetic shift SUBI3 Subtract Integers 

CMPF3 Compare floating-point values TSTB3 Test bit fields 

CMPI3 Compare integers XOR3 Bitwise exclusive-OR 

LSH3 Logical shift 

10-4 



Instruction Set 

10.1.4 Program-Control Instructions 

The program-control instruction group consists of all of those instructions (17) 
that affect program flow. The repeat mode allows repetition of a block of code 
(RPTB) or of a single line of code (RPTS). Both standard and delayed 
(single-cycle) branching are supported. Several ofthe program control instruc­
tions are capable of conditional operations (see Section 11.2 on page 11-6 
for detailed information on condition codes). Table 1 0-4 lists the program con­
trol instructions. 

Table 10-4. Program Control Instructions 

Instruction Description Instruction Description 

Bcond Branch conditionally (standard) IDLE Idle until interrupt 

BconaD Branch conditionally (delayed) NOP No operation 

BR Branch unconditionally (standard) RETlcond Return from interrupt conditionally 

BRD Branch unconditionally (delayed) RETScond Return from subroutine 
conditionally 

CALL Call subroutine RPTB Repeat block of instructions 

CALLcond Call subroutine conditionally RPTS Repeat single instruction 

DBcond Decrement and branch SWI Software interrupt 
conditionally (standard) 

DBconaD Decrement and branch TRAPcond Trap conditionally 
conditionally (delayed) 

lACK Interrupt acknowledge 

10.1.5 Low-Power Control Instructions 

The low-power control instruction group consists of three instructions that af­
fect the low-power modes. The low-power idle (IDLE2) instruction allows ex­
tremely low-power mode. The divide-clock-by-16 (LOPOWER) instruction re­
duces the rate of the input clock frequency. The restore-clock-to-regular­
speed (MAXSPEED) instruction causes the resumption of full-speed opera­
tion. Table 10-5 lists the low-power control instructions. 

Table 10-5. Low-Power Control Instructions 

Instruction 

IDLE2 

LOPOWER 

Description 

Low-power idle 

Divide clock by 16 

Instruction Description 

MAXSPEED Restore clock to regular speed 

Assembly Language Instructions 10-5 



Instruction Set 

10.1.6 Interlocked-Operations Instructions 

The interlocked operations instructions (Table 10-6) support multiprocessor 
communication and the use of external signals to allow for powerful synchroni­
zation mechanisms. The instructions also guarantee the integrity of the com­
munication and result in a high-speed operation. Refer to Chapter 6 for exam­
ples of the use of interlocked instructions. 

Table 10-6. Interlocked Operations Instructions 

Instruction 

LOFI 

LOll 

Description Instruction Description 

Load floating-point value, interlocked STFI Store floating-point value, inter­
locked 

Load integer, interlocked STII Store integer, interlocked 

SIGI Signal, interlocked 

10-6 



Instruction Set 

10.1.7 Parallel-Operations Instructions 

The parallel-operations instructions group makes a high degree of parallelism 
possible. Some of the TMS320C3x instructions can occur in pairs that will be 
executed in parallel. These instructions offer the following features: 

o Parallel loading of registers, 
o Parallel arithmetic operations, or 
o Arithmetic!logical instructions used in parallel with a store instruction. 

Each instruction in a pair is entered as a separate source statement. The sec­
ond instruction in the pair must be preceded by two vertical bars (11). 
Table 10-7 lists the valid instruction pairs. 

Table 10-7. Parallel Instructions 

Mnemonic 

ABSF 
IISTF 

ABSI 
IISTI 

ADDF3 
IISTF 

ADDI3 
IISTI 

AND3 
IISTI 

ASH3 
IISTI 

FIX 
IISTI 

FLOAT 
IISTF 

LDF 
IISTF 

LDI 
IISTI 

LSH3 
IISTI 

MPYF3 
IISTF 

MPYI3 
IISTI 

Description 

Parallel Arithmetic with Store Instructions 

Absolute value of a floating-point number and store floating-point value 

Absolute value of an integer and store integer 

Add floating-point values and store floating-point value 

Add integers and store integer 

Bitwise logical-AND and store integer 

Arithmetic shift and store integer 

Convert floating-point to integer and store integer 

Convert integer to floating-point value and store floating-point value 

Load floating-point value and store floating-point value 

Load integer and store integer 

Logical shift and store integer 

Multiply floating-point values and store floating-point value 

Multiply integer and store integer 

Assembly Language Instructions 10-7 



Instruction Set 

Tab/e 10-7. Para/Ie/Instructions (Continued) 

Mnemonic 

NEGF 
IISTF 

NEGI 
IISTI 

NOT 
IISTI 

OR3 
IISTI 

STF 
IISTF 

STI 
IISTI 

SUBF3 
IISTF 

SUBI3 
IISTI 

XOR3 
IISTI 

LDF 
II LDF 

LDI 
II LDI 

MPYF3 
IIADDF3 

MPYF3 
II SUBF3 

MPYI3 
IIADDI3 

MPYI3 
IISUBI3 

10-8 

Description 

Parallel Arithmetic with Store Instructions (Concluded) 

Negate floating-point value and store floating-point value 

Negate integer and store integer 

Complement value and store integer 

Bitwise logical-OR value and store integer 

Store floating-point values 

Store integers 

Subtract floating-point value and store floating-point value 

Subtract integer and store integer 

Bitwise exclusive-OR values and store integer 

Parallel Load Instructions 

Load floating-point 

Load integer 

Parallel Multiply and Add/Subtract Instructions 

Multiply and add floating-point 

Multiply and subtract floating-point 

Multiply and add integer 

Multiply and subtract integer 



Instruction Set 

10.1.8 Illegal Instructions 

The TMS320C3x has no illegal instruction-detection mechanism. Fetching an 
illegal (undefined) opcode can cause the execution of an undefined operation. 
Proper use of the TI TMS320 floating-point software tools will not generate an 
illegal opcode. Only the following can cause the generation of an illegal op­
code: 

o Misuse of the tools 
o An error in the ROM code 
o Defective RAM 

Assembly Language Instructions 10-9 



Condition Codes and Flags 

10.2 Condition Codes and Flags 

The TMS320C3x provides 20 condition codes (00000-10100, excluding 
01011) that you can place in the condfield of any ofthe conditional instructions, 
such as RETScond or LDFcond. The conditions include signed and unsigned 
comparisons, comparisons to 0, and comparisons based on the status of indi­
vidual condition flags. Note that all conditional instructions can accept the suf­
fix U to indicate unconditional operation. 

Seven condition flags provide information about properties of the result of 
arithmetic and logical instructions. The condition flags are stored in the status 
register (ST) and are affected by an instruction only when either of the follow­
ing two cases occurs: 

o The destination register is one of the extended-precision registers 
(R7-RO). (This allows for modification ofthe registers used for addressing 
but does not affect the condition flags during computation.) 

o The instruction is one of the compare instructions (CMPF, CMPF3, CMPI, 
CMPI3, TSTB, or TSTB3). (This makes it possible to set the condition flags 
according to the contents of any of the CPU registers.) 

The condition flags can be modified by most instructions when either of the 
preceding conditions is established and either of the following two cases oc­
curs: 

o A result is generated when the specified operation is performed to infinite 
precision. This is appropriate for compare and test instructions that do not 
store results in a register. It is also appropriate for arithmetic instructions 
that produce underflow or overflow. 

o The output is written to the destination register, as shown in Table 1 Q-8. 

This is appropriate for other instructions that modify the condition flags. 

Table 10-8. Output Value Formats 

10-10 

Type Of Operation 

Floating-point 

Integer 

Logical 

Output Format 

8-bit exponent, one sign bit, 31-bit fraction 

32-bit integer 

32-bit unsigned integer 

Figure 10-1 on page 10-11 shows the condition flags in the low-order bits of 
the status register. Following the figure is a list of status register condition flags 
and descriptions of how the flags are set by most instructions. For specific de­
tails of the effect of a particular instruction on the condition flags, see the de­
scription of that instruction in subsection 10.3.3 on page 10-18. 



Condition Codes and Flags 

Figure 1 (}-1. Status Register 
31 30 29 28 27 28 25 24 23 22 21 20 19 18 17 18 

I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I 

15 14 13 12 11 o 

NOTE: xx = reserved bit 
R = read, W = write 

LUF Latched Floating-Point Underflow Condition Flag 

LUF is set whenever UF (floating-point underflow flag) is set. LUF can be 
cleared only by a processor reset or by modifying it in the status register (ST). 

LV Latched Overflow Condition Flag 

LV is set whenever V (overflow condition flag) is set. Otherwise, it is un­
changed. LV can be cleared only by a processor reset or by modifying it in the 
status register (ST). 

UF Floating-Point Underflow Condition Flag 

A floating-point underflow occurs whenever the exponent of the result is less 
than or equal to -128. If a floating-point underflow occurs, UF is set, and the 
output value is set to O. UF is cleared if a floating-point underflow does not oc­
cur. 

N Negative Condition Flag 

Logical operations assign N the state of the MSB of the output value. For inte­
ger and floating-point operations, N is set if the result is negative, and cleared 
otherwise. Zero is positive. 

Z Zero Condition Flag 

For logical, integer, and floating-point operations, Z is set if the output is 0 and 
cleared otherwise. 

Assembly Language Instructions 10-11 



Condition Cod6S and Flags 

10-12 

V Overflow Condition Flag 

For integer operations, V is set if the result does not fit into the format specified 
for the destination (that is, -2 32:iS result:iS 2 32 - 1). Otherwise, V is cleared. 
For floating-point operations, V is set if the exponent of the result is greater 
than 127; otherwise, V is cleared. Logical operations always clear V. 

C Carry Flag 

When an integer addition is performed, C is set if a carry occurs out of the bit 
corresponding to the MSB of the output. When an integer subtraction is per­
formed, C is set if a borrow occurs into the bit corresponding to the MSB of the 
output. Otherwise, for integer operations, C is cleared. The carry flag is unaf­
fected by floating-point and logical operations. For shift instructions, this flag 
is set to the final value shifted out; for a 0 shift count, this is set to O. 

Table 1 Q-9lists the condition mnemonic, code, description, and flag for each 
of the 20 condition codes. 



Condition Codes and Flags 

Table 10-9. Condition Codes and Flags 

Condition Code Description Flagt 

Unconditional Compares 

U 00000 Unconditional Don't care 

Unsigned Compares 

LO 00001 Lower than C 
LS 00010 Lower than or same as CORZ 
HI 00011 Higher than -CAND-Z 
HS 00100 Higher than or same as -C 
EO 00101 Equal to Z 
NE 00110 Not equal to -Z 

Signed Compares 

LT 00111 Less than N 
LE 01000 Less than or equal to NORZ 
GT 01001 Greater than -N AND-Z 
GE 01010 Greater than or equal to -N 
EO 00101 Equal to Z 
NE 00110 Not equal to -Z 

Compare to Zero 

Z 00101 Zero Z 
NZ 00110 Not zero -Z 
P 01001 Positive -NAND-Z 
N 00111 Negative N 
NN 01010 Nonnegative -N 

Compare to Condition Flags 

NN 01010 Nonnegative -N 
N 00111 Negative N 
NZ 00110 Nonzero -Z 
Z 00101 Zero Z 
NV 01100 No overflow -V 
V 01101 Overflow V 
NUF 01110 No underflow -UF 
UF 01111 Underflow UF 
NC 00100 No carry -C 
C 00001 Carry C 
NLV 10000 No latched overflow -LV 
LV 10001 Latched overflow LV 
NLUF 10010 No latched floating-point underflow -LUF 
LUF 10011 Latched floating-point underflow LUF 
ZUF 10100 Zero or floating-point underflow ZORUF 

t - = logical complement (not-true condition) 

Assembly Language Instructions 10-13 



Individual Instructions 

10.3 Individual Instructions 

This section contains the individual assembly language instructions for the 
TMS320C3x. The instructions are listed in alphabetical order. Information for 
each instruction includes assembler syntax, operation, operands, encoding, 
description, cycles, status bits, mode bit, and examples. 

Definitions of the symbols and abbreviations, as well as optional syntax forms 
allowed by the assembler, precede the individual instruction description sec­
tion. Also, an example instruction shows the special format used and explains 
its content. 

A functional grouping of the instructions, as well as a complete instruction set 
summary, can be found in Section 10.1 on page 10-2. Appendix A lists the 
opcodes for all of the instructions. Refer to Chapter 5 for information on 
memory addressing. Code examples using many of the instructions are pro­
vided in Chapter 11. 

10.3.1 Symbols and Abbreviations 

10-14 

Table 10-10 lists the symbols and abbreviations used in the individual instruc­
tion descriptions. 



Table 10-10. Instruction Symbols 

Symbol 

src 
src1 
srcfl 
src3 
sr04 

dst 
dsM 
dst2 
disp 
cond 
count 

G 
T 
P 
B 

Ixl 
x-v 
x(man) 
x(exp) 

op1 
II op2 

xANDy 
xORy 
xXORy 
-x 

x«y 
x»y 
*++SP 
*SP--

ARn 
IRn 
Rn 
RC 
RE 
RS 
ST 

C 
GIE 
N 
PC 
RM 
SP 

Meaning 

Source operand 
Source operand 1 
Source operand 2 
Source operand 3 
Source operand 4 

Destination operand 
Destination operand 1 
Destination operand 2 
Displacement 
Condition 
Shift count 

General addressing modes 
Three-operand addressing modes 
Parallel addressing modes 
Conditional-branch addressing modes 

Absolute value of x 
Assign the value of x to destination y 
Mantissa field (sign + fraction) of x 
Exponent field of x 

Individual Instructions 

Operation 1 performed in parallel with operation 2 

Bitwise logical-AND of x and y 
Bitwise logical-OR of x and y 
Bitwise logical-XOR of x and y 
Bitwise logical-complement of x 

Shift x to the left y bits 
Shift x to the right y bits 
Increment SP and use incremented SP as address 
Use SP as address and decrement SP 

Auxiliary register n 
Index register n 
Register address n 
Repeat count register 
Repeat end address register 
Repeat start address register 
Status register 

Carry bit 
Global interrupt enable bit 
Trap vector 
Program counter 
Repeat mode flag 
System stack pointer 

Assembly Language Instructions 10-15 



Individual Instructions 

10.3.2 Optional Assembler Syntax 

10-16 

The assembler allows a relaxed syntax form for some instructions. These op­
tional forms simplify the assembly language so that special-case syntax can 
be ignored. Following is a list of these optional syntax forms. 

o You can omit the destination register on unary arithmetic and logical oper­
ations when the same register is used as a source. For example, 

ABSI RO,RO can be written as ABSI RO. 

Instructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI, 
NORM, NOT, RND 

o You can write all three-operand instructions without the 3. For example, 

ADDI3 RO,R1,R2 can be written as ADDI RO,R1 ,R2. 

Instructions affected: ADDC3, ADDF3, ADDI3, AND3, ANDN3, ASH3, 
LSH3, MPYF3, MPYI3, OR3, SUBB3, SUBF3, SUBI3, XOR3 

This also applies to all of the pertinent parallel instructions. 

o You can write all three-operand comparison instructions without the 3. For 
example, 

CMPI3 RO,*ARO can be written as CMPI RO,*ARO. 

Instructions affected: CMPI3, CMPF3, TSTB3 

o Indirect operands with an explicit 0 displacement are allowed. In three-op­
erand or parallel instructions, operands with 0 displacement are automati­
cally converted to no-displacement mode. For example: 

LDI *+ARO(O),R1 is legal. 

Also 

ADDI3 *+ARO(O),R1,R2 is equivalent to ADDI3 *ARO,R1 ,R2. 

o You can write indirect operands with no displacement, in which case a dis­
placement of 1 is assumed. For example, 

LDI *ARO++(1),RO can be written as LDI *ARO++,RO. 

o All conditional instructions accept the suffix U to indicate unconditional op­
eration. Also, you can omit the U from unconditional short branch instruc­
tions. For example: 

BU label can be written as B label. 

o You can write labels with or without a trailing colon. For example: 

labelO: NOP 
label 1 NOP 
label2: (Label assembles to next source line.) 



Individual Instructions 

D Empty expressions are not allowed for the displacement in indirect mode: 

LDI *+AROO,RO is not legal. 

D You can precede long immediate mode operands (destination of SR and 
CALL) with an @ sign: 

BR label can be written as BR@label. 

D You can use the LOP pseudo-op to load a register (usually DP) with the 
eight MSBs of a relocatable address: 

LOP addr,REG or LOP @addr,REG 

The @ sign is optional. 

If the destination REG is the DP, you can omit the DP in the operand. LOP 
generates an LDI instruction with an immediate operand and a special re­
location type. 

D You can write parallel instructions in either order. For example: 

ADDI can be written as STI 
IISTI IIADDI. 

D You can write the parallel bars indicating part 2 of a parallel instruction any­
where on the line from column 0 to the mnemonic. For example: 

ADDI 
IISTI 

can be written as ADDI 
II STI. 

D If the second operand of a parallel instruction is the same as the third (des­
tination register) operand, you can omit the third operand. This allows you 
to write three-operand parallel instructions that look like normal two-oper­
and instructions. For example, 

ADDI *ARO,R2,R2 
II MPYI *AR1,RO,RO 

can be written as ADD *ARO,R2 
II MPYI *AR1,RO. 

Instructions (applies to all parallel instructions that have a register second 
operand) affected: ADDI, ADDF, AND, MPYI, MPYF, OR, SUBI, SUBF, 
andXOR. 

D You can write all commutative operations in parallel instructions in either 
order. For example, you can write the ADDI part of a parallel instruction in 
either of two ways: 

ADDI *ARO,R1,R2 or ADDI R1,*ARO,R2. 

Instructions affected: parallel instructions containing any of ADDI, ADDF, 
MPYI, MPYF, AND, OR, and XOR. 

Assembly Language Instructions 10-17 



Individual Instructions 

o Use the syntax in Table 10-11 to designate CPU registers in operands. 
Note the alternate notation Rn, 0 :s n :s 27, which is used to designate 
any CPU register. 

Table 10-11. CPU Register Syntax 

Assembler. Alternate 
Syntax Register Syntax Assigned Function 

RO RO Extended-precision register 
Rl Rl Extended-precision register 
R2 R2 Extended-precision register 
R3 R3 Extended-precision register 
R4 R4 Extended-precision register 
R5 R5 Extended-precision register 
R6 R6 Extended-precision register 
R7 R7 Extended-precision register 

ARO R8 Auxiliary register 
ARl R9 Auxiliary register 
AR2 Rl0 Auxiliary register 
AR3 Rll Auxiliary register 
AR4 R12 Auxiliary register 
AR5 R13 auxiliary register 
AR6 R14 Auxiliary register 
AR7 R15 Auxiliary register 

DP R16 Data-page pointer 
IRO R17 Index register 0 
IRl R18 Index register 1 
BK R19 Block-size register 
SP R20 Active stack pointer 

ST R21 Status register 
IE R22 CPU/DMA interrupt enable 
IF R23 CPU interrupt flags 

10F R24 I/O flags 

RS R25 Repeat start address 
RE R26 Repeat end address 
RC R27 Repeat counter 

10.3.3 Individual Instruction Descriptions 

10-18 

Each assembly language instruction for the TMS320C3x is described In 
this section in alphabetical order. The description includes the assembler syn­
tax, operation, operands, encoding, description, cycles, status bits, mode bit, 
and examples. 



Syntax 

Operation 

Operands 

INST sre, dst 

or 

INST1 src2, dst1 
II INST2 src3, dst2 

Examplelnstruction EXAMPLE 

Each instruction begins with an assembler syntax expression. You can place 
labels either before the command (instruction mnemonic) on the same line or 
on the preceding line in the first column. The optional comment field that con­
cludes the syntax is not included in the syntax expression. Space(s) are 
required between each field (label, command, operand, and comment fields). 

The syntax examples illustrate the common one-line syntax and the two-line 
syntax used in parallel addressing. Note that the two vertical bars II that indi­
cate a parallel addressing pair can be placed anywhere before the mnemonic 
on the second line. The first instruction in the pair can have a label, but the sec­
ond instruction cannot have a label. 

Isrel- dst 

or 

Isrc21 - dst1 
II src3 - dst2 

The instruction operation sequence describes the processing that occurs 
when the instruction is executed. For parallel instructions, the operation se­
quence is performed in parallel. Conditional effects of status register specified 
modes are listed for such conditional instructions as Beond. 

sre general addressing modes (G): 
o 0 register (Rn, 0 :is n :is 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :is n :is 27) 

or 

sre2 indirect (disp = 0,1, IRO, IR1) 
dst1 register (Rn1, 0 :is n1 :is 7) 
sre3 register (Rn2, 0 :is n2 :is 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Operands are defined according to the addressing mode and/or the type of ad­
dressing used. Note that indirect addressing uses displacements and the in­
dex registers. Refer to Chapter 5 for detailed information on addressing. 

Assembly Language Instructions 10-19 



EXAMPLE Exame'e Instruction 

Encoding 

Description 

Cycles 

Status Bits 

10-20 

1615 87 0 
i i 

dst 

i i 

I src 
i I I i iNST 

or 

31 2423 1615 87 0 

I 
i i i i i 

I srdJ. 
iii 

dsl2 

Encoding examples are shown using general addressing and parallel addres­
sing. The instruction pair for the parallel addressing example consists of 
INST1 and INST2. 

Instruction execution and its effect on the rest of the processor or memory con­
tents is described. Any constraints on the operands imposed by the processor 
or the assembler are discussed. The description parallels and supplements 
the information given by the operation block. 

1 

The digit specifies the number of cycles required to execute the instruction. 

LUF 

LV 

UF 

N 

Z 

V 

C 

Latched Floating-Point Underflow Condition Flag. 1 if a 
floating-point underflow occurs; unchanged otherwise. 

Latched Overflow Condition Flag. 1 if an integer or floating-point 
overflow occurs; unchanged otherwise. 

Floating-Point Underflow Condition Flag. 1 if a floating-point un­
derflow occurs; 0 otherwise. 

Negative Condition Flag. 1 if a negative result is generated; 0 other­
wise. In some instructions, this flag is the MSB of the output. 

Zero Condition Flag. 1 if a 0 result is generated; 0 otherwise. For log­
ical and shift instructions, 1 if a 0 output is generated; 0 otherwise. 

Overflow Condition Flag. 1 if an integer or floating-point overflow oc­
curs; 0 otherwise. 

Carry Flag. 1 if a carry or borrow occurs; 0 otherwise. For shift instruc­
tions, this flag is set to the value of the last bit shifted out; 0 for a shift 
count of O. 

The seven condition flags stored in the status register (ST) are modified by the 
majority of instructions only if the destination register is R7 -RO. The flags pro­
vide information about the properties of the result or the output of arithmetic 
or logical operations. 



Mode Bit 

Example 

Examplelnstruction EXAMPLE 

OVM Overflow Mode Flag. In general, integer operations are affected by the 
OVM bit value (described in Table 3-2 on page 3-6). 

INST @98AEh,R5 

Before Instruction: 

DP = 80h 
R5 = 0766900000h = 2.30562500e+02 
Memory at 8098AEh = 5CDFh = 1.000011 07e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R5 = 0066900000h = 1.80126953e + 00 
Memory at 8098AEh = 5CDFh = 1.000011 07e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

The sample code presented in the above format shows the effect of the code 
on system pointers (for example, DP or SP), registers (for example, R1 or R5), 
memory at specific locations, and the seven status bits. The values given for 
the registers include the leading Os to show the exponent in floating-point oper­
ations. Decimal conversions are provided for aU register and memory loca­
tions. The seven status bits are listed in the order in which they appear in the 
assembler and simulator (see Section 10.2 on page 10-10 and Table 10--9 on 
page 10-13 for further information on these seven status bits). 

Assembly Language Instructions 10-21 



ABSF Absolute Value of Floating-Point 

Syntax ABSF src, dst 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-22 

Isrcj - dst 

src general addressing modes (G): 
o 0 register (Rn, 0 s; n s; 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, s; 0 n s; 7) 

31 2423 

I ii Iii iii I OOOOOOOOOG 

1615 87 o 
i i 

i I sra 

The absolute value of the src operand is loaded into the dst register. The src 
and dst operands are assumed to be floating-point numbers. 

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result 
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 0 
N 0 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

ABSF R4,R7 

Before Instruction: 

R4 = 05C8000F971 h = -9.90337307e + 27 
R7 = 07D251100AEh = 5.48527255e + 37 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 05C8000F971 h = -9.90337307e + 27 
R7 = 05C7FFF068Fh = 9.90337307e + 27 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Parallel ABSF and STF ABSFIISTF 

ABSF src2, dst1 
II STF src3, dst2 

Isrc21 - dst1 
II src3 - dst2 

src2 indirect (disp = 0,1, IRO,IR1) 
dst1 register (Rn1, 0 =s; n1 =s; 7) 
src3 register (Rn2, 0 =s; n2 =s; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 87 o 

I • I • • • • I • • 10 ' O' 0 I 'S'.! I • ~ 1 0 0 1 0 0 dst1 _ _..... _ 

I i I . I I i I I · dst2. sr~ 

A floating-point absolute value and a floating-point store are performed in par­
allel. All registers are read at the beginning and loaded at the end of the ex­
ecute cycle. This means that if one ofthe parallel operations (STF) reads from 
a register and the operation being performed in parallel (ABSF) writes to the 
same register, STF accepts as input the contents of the register before it is mo­
dified by the ABSF. 

If src2 and dst2 point to the same location, src2is read before the write to dst2. 
If src3 and dst1 point to the same register, src3 is read before the write to dst1. 

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result 
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh. 

1 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

Unaffected 
1 if a floating-point overflow occurs; unchanged otherwise 
o 
o 
1 if a 0 result is generated; 0 otherwise 
1 if a floating-point overflow occurs; 0 otherwise 
Unaffected 

Operation is not affected by OVM bit value. 

ABSF *++AR3 ( IRl ) , R4 
II STF R4, *-AR7 ( 1) 

Assembly Language Instructions 10-23 



ABSFIISTF Parallel ABSF and STF 

10-24 

Before Instruction: 

AR3 = 809800h 
IR1 = OAFh 
R4 = 733COOOOOh = 1.79750e + 02 
AR7 = 8098C5h 
Data at 8098AFh = 58B4000h = - 6.118750e + 01 
Data at 8098C4h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 8098AFh 
IR1 = OAFh 
R4 = 574COOOOOh = 6.118750e + 01 
AR7 = 8098C5h 
Data at 8098AFh = 58B4000h = -6.118750e + 01 
Data at 8098C4h = 733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

Absolute Value of Integer ABSI 

ABSI sre, dst 

Isrcj- dst 

sre general addressing modes (G): 
00 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

31 2423 1615 87 0 
Iii Iii iii I ~ I i i i I i i i 

i I >oo~oo 000 < dst src 

The absolute value of the sre operand is loaded into the dst register. The src 
and dst operands are assumed to be signed integers. 

An overflow occurs if sre = 80000000h. If ST(OVM) = 1, the result is 
dst=7FFFFFFFh. If ST(OVM) = 0, the result is dst= 80000000h. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 0 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

ABSI RO,RO 
or 
ABSI RO 

Before Instruction: 

RO = OFFFFFFCBh = - 53 

After Instruction: 

RO = 035h = 53 

Assembly Language Instructions 10-25 



ABSI Absolute Value of Integer 

Example 2 

10·26 

ABSI *AR1,R3 

Before Instruction: 

AR1 = 20h 
R3=Oh 
Data at 20h = OFFFFFFCBh = - 53 

After Instruction: 

AR1 = 20h 
R3 = 35h = 53 
Data at 20h = OFFFFFFCBh = - 53 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Parallel ABSI and STI ABSIIiSTI 

ABSI src2, dst1 

II STI src3, dst2 

Isrc21 - dst1 
II src3- dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 :s; 1 :s; 7) 
src3 register (Rn2, 0 :s; n2 :s; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

I I I I I I I I I I I I I I 
1100101 dst1000 

87 o 
iii iii 

dst2 src2 

An integer absolute value and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute cycle. 
This means that, if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (ABSI) writes to the same regis­
ter, STI accepts as input the contents of the register before it is modified by the 
ABS!. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

An overflow occurs if src = 80000000h. If ST(OVM} = 1, the result is dst = 
7FFFFFFFh. If ST(OVM) = 0, the result is dst = 80000000h. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 0 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

Assembly Language Instructions 10-27 



ABSIIISTI Parallel ASSI and ST/ 

Example ABSI *-ARS ( 1 ) , RS 

10-28 

I I STI Rl,*AR2--(IR1) 

Before Instruction: 

AR5 = 8099E2h 
R5=Oh 
R1 = 42h = 66 
AR2 = 8098FFh 
IR1 = OFh 
Data at 8099E1 h = OFFFFFFCBh = - 53 
Data at 8098FFh = 2h = 2 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 8099E2h 
R5 = 35h = 53 
R1 = 42h = 66 
AR2 = 8098FOh 
IR1 = OFh 
Data at 8099E1 h = OFFFFFFCBh = - 53 
Data at 8098FFh = 42h = 66 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Add Integer With Cany ADDC 

ADDC sre, dst 

dst+ sre+ C - dst 

sre general addressing modes (G): 

00 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

31 2423 1615 87 0 I I I I i I I 0 11 i 0 I ~ I i i i I I I i i 
i I > 00: 00 ds' src 

The sum of the dst and sre operands and the carry (C) flag is loaded into the 
dst register. The dst and sre operands are assumed to be signed integers. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

ADDC Rl,R5 

Before Instruction: 

R1 = 00FFFF5C25h = - 41 ,947 
R5 = 00FFFF019Eh = - 65,122 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 00FFFF5C25h = - 41 ,947 
R5 = 00FFFE5DC4h = -107,068 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-29 



ADDC3 Add Integer With Carl}! 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-30 

ADDC3 src2, src1, dst 

src1 + src2 + C - dst 

src1 three-operand addressing modes (1): 
o 0 any CPU register 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2three-operand addressing modes (1): 
o 0 any CPU register 
o 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst any CPU register 

31 2423 1615 
i i i i I ii Iii iii I 001000000 T i I : dst • src1 

i i 
srdJ. 

The sum of the src1 and src2 operands and the carry (C) flag is loaded into 
the dstregister. The src1, src2, and dstoperands are assumed to be signed 
integers. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
U 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 



Example 1 

Example 2 

ADDCl *ARS++(IRO),RS,R2 
or 

ADDCl RS,*ARS++(IRO),R2 

Before Instruction: 

AR5 = 809908h 
IRO = 10h 
R5 = 066h = 102 
R2=Oh 

Add Integer With Cal'll! 3-0erand ADDC3 

Data at 809908h = OFFFFFFCBh = - 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

AR5 = 809918h 
IRO = 10h 
R5 = 066h = 102 
R2 = 032h = 50 
Data at 809908h = OFFFFFFCBh = - 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

ADDCl R2, R7, RO 

Before Instruction: 

R2 = 02BCh = 700 
R7 = OF82h = 3970 
RO=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

R2 = 02BCh = 700 
R7 = OF82h = 3970 
RO = 0123Fh = 4671 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-31 



ADDF Add Floating-Point 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-32 

ADDF sre, dst 

dst + sre - dst 

sre general addressing modes (G): 
o 0 register (Rn, 0 :s; n :s; 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s; n :s; 7) 

31 2423 

I i, I ' , , , , I G' I 
000000011 . 

1615 87 o 
i i , I src 

The sum of the dst and src operands is loaded into the dstregister. The dstand 
src operands are assumed to be floating-point numbers. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

ADDF *AR4++(IR1),R5 

Before Instruction: 

AR4 = 809800h 
IR1 = 12Bh 
R5 = 0579800000h = 6.23750e+01 
Data at 809800h = 86B2800h = 4.7031250e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 80992Bh 
IR1 = 12Bh 
R5 = 09052COOOOh = 5.3268750e+02 
Data at 809800h = 86B2800h = 4.7031250e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Blta 

Mode Bit 

Example 1 

Add Floating-Point, 3-0perand ADDF3 

ADDF3 src2, src 1, dst 

src 1 + src2 - dst 

src 1 three-operand addressing modes (T): 
o 0 register (Rn1, 0 $ n1 $ 7) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 $ n1 $ 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 $ n2 $ 7) 
o 1 register (Rn2, 0 $ n2 $ 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 $ n $ 7) 

31 2423 1615 87 0 
Iii Iii iii I 

i i i I i i i i I i i i i i I >0<00000< T dst src1 srt!J. 

The sum of the src1 and src20perands is loaded into the dstregister. The src1, 
src2, and dst operands are assumed to be floating-point numbers. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

ADDF3 R6,R5,Rl 
or 
ADDF3 R5,R6,Rl 

Before Instruction: 

R6 = 086B280000h = 4.7031250e + 02 
R5 = 0579800000h = 6.23750e+01 
R1 =Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-33 



ADDF3 Add Floating-Point, 3-0perand 

Example 2 

10-34 

After Instruction: 

R6 = 086B280000h = 4.7031250e + 02 
R5 = 0579800000h = 6.23750e + 01 
R1 = 09052COOOOh = 5.32687508 + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ADDF3 *+AR1(1),*AR7++(IRO),R4 

Before Instruction: 

AR1 = 809820h 
AR7 = 8099FOh 
IRO = 8h 
R4=Oh 
Data at 809821 h = 700FOOOh = 1.28940e + 02 
Data at 8099FOh = 34C2000h = 1.27590e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809820h 
AR7 = 8099F8h 
IRO = 8h 
R4 = 070DB20000h = 1.41695313e + 02 
Data at 809821 h = 700FOOOh = 1.28940e + 02 
Data at 8099FOh = 34C2000h = 1.27590e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Parallel ADDF3 and STF ADDF311STF 

ADDF3 
II STF 

src2, sre1, dst1 
src3, dst2 

sre1 + sre2- dst1 
II src3 - dst2 

sre1 register (Rn1, 0 s: n1 s: 7) 
src2 indirect (disp = 0, 1,IRO,IR1) 
dst1 register (Rn2, 0 s: n2 s: 7) 
src3 register (Rn3, 0 s: n3 s: 7) 
dst2 indirect (disp = 0, 1,IRO,IR1) 

31 2423 I iii iii Iii ~100110dSM 
i i 
src1 

1615 iii i 
src3 

87 o 
i I i i I i i I dst2. src2 

A floating-point addition and a floating-point store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STF) reads from a register 
and the operation being performed in parallel (ADDF3) writes to the same reg­
ister, STF accepts as input the contents of the register before it is modified by 
theADDF3. 

If src2 and dst2 pOint to the same location, src2 is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

ADDF3 *+AR3(IR1),R2,RS 
II STF R4,*AR2 

Assembly Language Instructions 10-35 



ADDF31lSTF Paraile/ADDF3 and STF 

10-36 

aefore Instruction: 

AR3 = 809800h 
IR1 = OASh 
R2 = 070C800000h = 1.4050e + 02 
R5=Oh 
R4 = 057B400000h = 6.281250e + 01 
AR2 = 8098F3h 
Data at 8098A5h = 733COOOh = 1.79750e + 02 
Data at 8098F3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809800h 
IR1 = OASh 
R2 = 070C800000h = 1.4050e+02 
R5 = 0820200000h = 3.20250e + 02 
R4 = 057B400000h = 6.281250e + 01 
AR2 = 8098F3h 
Data at 8098A5h = 733COOOh = 1.79750e + 02 
Data at 8098F3h = 57B4000h = 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Blta 

Mode Bit 

Example 

Add Integer ADDI 

ADDI sre, dst 

dst + src - dst 

src general addressing modes (G): 
00 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

31 2423 1615 87 0 I I I I I I I I I I ~ I I I I I I I I 
I I ~OOO~OOO100~ dst sre 

The sum of the dst and src operands is loaded into the the dst register. The 
dst and src operands are assumed to be signed integers. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 If a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

ADDI R3,R7 

Before Instruction: 

R3 = OFFFFFFCBh = - 53 
R7 = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = OFFFFFFCBh = - 53 
R7=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-37 



ADDI3 Add Int5,er, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Blta 

Mode Bit 

Example 1 

10-38 

ADDI3 <sre2 >,<sre1 >,<dst> 

src 1 + src2 - dst 

sre 1 three-operand addressing modes (T): 
o 0 any CPU register 
01 indirect (disp = 0,1, IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
o 0 any CPU register 
o 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst any CPU register 

31 2423 1615 87 0 
Iii Iii iii I 

i i i I i i i i I i i i i I ~OO<OOOO10~ T dst src1 s~ 

The sum ofthe sre1 and sre20perands is loaded into the dstregister. The sre1, 
sre2, and dst operands are assumed to be signed integers. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

ADDll R4,R7,R5 

Before Instruction: 

R4 = ODCh = 220 
R7 = OAOh = 160 
R5 = 10h = 16 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Example 2 

After Instruction: 

R4 = ODCh = 220 
R7 = OAOh = 160 
R5 = 017Ch = 380 

Add InteQer, 3-0perand ADDI3 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ADDI3 *-AR3(1),*AR6--(IRO),R2 

Before Instruction: 

AR3 = 809802h 
AR6 = 809930h 
IRO = 18h 
R2=10h=16 
Data at 809801 h = 2AF8h = 11,000 
Data at 809930h = 3A98h = 15,000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809802h 
AR6 = 809918h 
IRO = 18h 
R2 = 06598h = 26,000 
Data at 809801 h = 2AF8h = 11,000 
Data at 809930h = 3A98h = 15,000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-39 



ADDI311STI Parallel ADDI3 and STI 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-40 

ADDI3 src2, sre1, dst1 
II STI src3, dst2 

sre1 + src2- dst1 
II src3- dst2 

sre1 register (Rn1, 0 s: n1 s: 7) 
sre2 indirect (disp = 0,1, IRO, IR1) 
dst1 register (Rn2, 0 s: n2 s: 7) 
sre3 register (Rn3, 0 s: n3 s: 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 I iii iii Iii 
1100111dst1 

1615 
i i 

src1 

87 o 
iii 

i I iii I i dst2 

An integer addition and an integer store are performed in parallel. All registers 
are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (ADDI3) writes to the same register, STI 
accepts as input the contents of the register before it is modified by the ADDI3. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a carry occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 



Example 

ParaileiADDI3 and STI ADDI311STI 

ADDl3 *ARO--(lRO),RS,RO 
II STl R3,*AR7 

Before Instruction: 

ARO = 80992Ch 
IRO = OCh 
R5 = ODCh = 220 
RO=Oh 
R3=35h=53 
AR7 = 80983Bh 
Data at 80992Ch = 12Ch = 300 
Data at 80983Bh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 809920h 
IRO= OCh 
R5 = ODCh = 220 
RO = 208h = 520 
R3=35h=53 
AR7 = 80983Bh 
Data at 80992Ch = 12Ch = 300 
Data at 80983Bh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-41 



AND Bitwise Lopical-AND 

Syntax 

Operands 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-42 

AND src, dst 

dst AND src - dst 

src general addressing modes (G): 
o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst any CPU register 

31 2423 

I I I I I I I I I I G1 I 
000000101 _ 

87 o 

sra 
I i 

I I 
The bitwise logical-AND between the dst and src operands is loaded into the 
dst register. The dst and src operands are assumed to be unsigned integers. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

AND Rl,R2 

Before Instruction: 

R1 = 80h 
R2 =OAFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

R1 = 80h 
R2 = 80h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Bitwise Logical-AND, 3-0perand AND3 

AND3 src2, sre1, dst 

sre1 AND src2- dst 

sre1 three-operand addressing modes (1): 
o 0 any CPU register 
01 indirect (disp = 0, 1,IRO,IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2three-operand addressing modes (1): 
o 0 any CPU register 
o 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst any CPU register 

31 2423 1615 

I I I I I I I I I I 
?01 000011 T 

iii ~/ I II src1 

87 o 
I I i 

II I I srG2 

The bitwise logical-AND between the sre1 and sre2 operands is loaded into 
the destination register. The sre1, sre2, and dstoperands are assumed to be 
unsigned integers. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-43 



AND3 Bitwise Leu/cal-AND, 3-0perand 

Example 1 

Example 2 

10-44 

AND3 *ARO--(IRO),*+AR1,R4 

Before Instruction: 

ARO = 8098F4h 
IRO = 50h 
AR1 = 809951h 
R4=Oh 
Data at 8098F4h = 30h 
Data at 809952h = 123h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 8098A4h 
IRO = 50h 
AR1 = 809951 h 
R4 = 020h 
Data at 8098F4h = 30h 
Data at 809952h = 123h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

AND3 *-ARS,R7,R4 

Before Instruction: 

AR5 = 80985Ch 
R7=2h 
R4=Oh 
Data at 80985Bh = OAFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 80985Ch 
R7=2h 
R4=2h 
Data at 80985Bh = OAFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

ParallelAND3 and STI AND311STI 

AND3 sre2, sre1, dst1 
II STI sre3, dst2 

sre1 AND sre2- dst1 
II sre3 - dst2 

sre1 register (Rn1, 0 :so n1 :so 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, 0 :so n2 :so 7) 
sre3 register (Rn3, 0 :so n3 :so 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 I iii iii Iii 
1101000 dsH 

i I 
src1 

1615 iii i 
src3 

87 o 
i I iii I i i I dst2 srd2. 

A bitwise logical-AND and an integer store are performed in parallel. All regis­
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (AND3) writes to the same register, STI 
accepts as input the contents of the register before it is modified by the AND3. 

If sre2 and dst2 point to the same location, sre2 is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-45 



AND311STI Parallel AND3 and STI 

Exampla 

10-46 

AND3 *+AR1(IRO),R4,R7 
I I STI R3,*AR2 

Baforalnstructlon: 

AR1 = 8099F1 h 
IRO = 8h 
R4=OA323h 
R7=Oh 
R3=35h=53 
AR2 = 80983Fh 
Data at 8099F9h = 5C53h 
Data at 80983Fh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 8099F1h 
RO=8h 
R4 = OA323h 
R7 = 03h 
R3 = 35h = 53 
AR2 = 80983Fh 
Data at 8099F9h = 5C53h 
Data at 80983Fh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Bitwise Logical-AND With Complement ANON 

ANON sre, dst 

dst AND -sre - dst 

sre general addressing modes (G): 
o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst any CPU register 

31 2423 1615 87 o 
I ii Iii iii I 000000110 G 

I i 
i I src 

The bitwise logical-AND between the dstoperand and the bitwise logical com­
plement (-) of the sre operand is loaded into the dst register. The dst and sre 
operands are assumed to be unsigned integers. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

ANON @980Ch,R2 

Before Instruction: 

DP = 80h 
R2 =OC2Fh 
Data at 80980Ch = OA02h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R2 = 042Dh 
Data at 80980Ch = OA02h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-47 



ANDN3 Bitwise Lf!iical-ANDN, 3-0p!!,rand 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

10·48 

31 

ANON3 src2, sre1, dst 

src1 AND -src2- dst 

sre1 three-operand addressing modes (T): 
o 0 any CPU register 
01 indirect (disp = 0,1, IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1,IRO, IR1) 

src2three-operand addressing modes (T): 
o 0 any CPU register 
o 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, 100, IR1) 

dst register (Rn, 0 :!iii n :!iii 27) 

2423 1615 87 0 I I I I I I I I I I I I I I 
I I I I 

I 
I I I I I >0<00010< T dst src1 src!l 

The bitwise logical-AND between the sre1 operand and the bitwise logical 
complement H of the sre2 operand is loaded into the dst register. The sre1, 
src2, and dst operands are assumed to be unsigned integers. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

ANON3 RS,R3,R7 

Before Instruction: 

R5=OA02h 
R3=OC2Fh 
R7=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Example 2 

After Instruction: 

RS =OA02h 
R3 =OC2Fh 
R7 = 042Dh 

Bitwise Lopical-ANDN, 3-0perand ANDN3 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ANDN3 Rl,*ARS++(IRO),RO 

Before Instruction: 

R1 = OCFh 
ARS = 80982Sh 
IRO = Sh 
RO=Oh 
Data at 80982Sh = OFFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OCFh 
ARS = 80982Ah 
IRO = Sh 
RO = OF30h 
Data at 80982Sh = OFFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 O· 

Note: Cycle Count 

See subsection 9.S.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-49 



ASH Arithmetic Shift 

Syntax 

Operation 

Operands 

Encoding 

ASH count, dst 

If (count ~ 0): 
dst« count - dst 

Else: 
dst» 1 count 1- dst 

count general addressing modes (G): 
o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

31 2423 1615 87 o 

Description 

Cycles 

10-50 

i i 
i I count 

The seven least significant bits of the count operand are used to generate the 
two's complement shift count of up to 32 bits. 

If the count operand is greater than 0, the dst operand is left-shifted by the 
value ofthe count operand. Low-order bits shifted in are O-filled, and high-ord­
er bits are shifted out through the carry (C) bit. 

Arithmetic left-shift: 

C-dst-O 

If the count operand is less than 0, the dstoperand is right-shifted by the abso­
lute value ofthe count operand. The high-order bits of the dstoperand are sign­
extended as it is right-shifted. Low-order bits are shifted out through the C bit. 

Arithmetic right-shift: 

sign of dst - dst - C 

If the count operand is 0, no shift is performed, and the C bit is set to O. The 
count and dst operands are assumed to be signed integers. 

1 



Status Bits 

Mode Bit 

Example 1 

Example 2 

Arithmetic Shift ASH 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

OVM Operation is not affected by OVM bit value. 

ASH Rl,R3 

Before Instruction: 

R1 = 10h = 16 
R3 =OAEOOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 10h 
R3 = OEOOOOOOOh 
LUF LV UF N Z V C = 0 1 0 1 0 1 0 

ASH @98C3h,R5 

Before Instruction: 

DP = 80h 
RS = OAEC00001 h 
Data at 8098C3h = OFFE8 = - 24 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP =80h 
RS = OFFFFFFAEh 
Data at 8098C3h = OFFE8 = - 24 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 

Assembly Language Instructions 10-51 



ASH3 Arithmetic Shift, 3-0Pf!rand 

Syntax 

Operation 

Operands 

Encoding 

Description 

10-52 

31 

ASH3 count, src, dst 

If (count'il: 0): 
src« count - dst 

Else: 
src» Icount 1- dst 

count three-operand addressing modes (11: 
o 0 register (Rn2, 0 ~ n2 ~ 27) 
o 1 register (Rn2, 0 ~ n2 ~ 27) 
1 0 indirect (disp = 0,1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src three-operand addressing modes (11: 
o 0 register (Rn1, 0 ~ n1 ~ 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 ~ n1 ~ 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 ~ n ~ 27) 

2423 1615 87 0 I I I I I I I I I I I I I I I I i 

I 
I i I I I I >0<00010< T dst src count 

The seven least significant bits of the count operand are used to generate the 
two's complement shift count of up to 32 bits. 

If the count operand is greater than 0, the src operand is left-shifted by the 
value ofthe count operand. low-order bits shifted in are O-filled, and high-ord­
er bits are shifted out through the status register's 0 bit. 

Arithmetic left-shift: 

O-src-O 

l1the count operand is less than 0, the srcoperand is right-shifted by the abso­
lute value of the count operand. The high-order bits ofthe srcoperand are sign­
extended as they are right-shifted. low-order bits are shifted out through the 
o (carry) bit. 

Arithmetic right-shift: 

sign of src - src - 0 

If the count operand is 0, no shift is performed, and the 0 bit is set to O. The 
count, src, and dst operands are assumed to be signed integers. 



Cycles 

Status Bits 

Mode Bit 

Example 

Arithmetic Shift, 3-0perand ASH3 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N MSB of the output. 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

OVM Operation is not affected by OVM bit value. 

ASH3 *AR3--(1),RS,RO 

Before Instruction: 

AR3 = 809921 h 
RS = 02BOh 
RO=Oh 
Data at 809921h = 10h = 16 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809920h 
RS = 000002BOh 
RO = 02BOOOOOh 
Data at 809921h = 10h = 16 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Example ASH3 R1,R3,RS 

Before Instruction: 

Ri = OFFFFFFF8h = - 8 
R3 = OFFFFCBOOh 
RS=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

Ri = OFFFFFFF8h = - 8 
R3 = OFFFFCBOOh 
RS = OFFFFFFCBh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

Note: Cycle Count 

See subsection 9.S.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-53 



ASH311STI Parallel ASH3 and ST/ 

Syntax 

Operation 

Operands 

Encoding 

Description 

10-54 

ASH3 count, src2, dst1 
II STI src3, dst2 

If (count:.: 0): 
src2« count - dst1 

Else: 
src2» Icoun~ - dst1 

II src3 - dst2 

count register (Rn1, o:s; n1 :s; 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, ° :s; n2 :s; 7) 
src3 register (Rn3, 0 :s; n3 :s; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 I iii iii Iii 
1101001dst1 

i i 
count 

1615 iii i 
src3 

87 o 
i I i i iii I i dsl2 srd2. 

The seven least significant bits of the count operand register are used to gen­
erate the two's complement shift count of up to 32 bits. 

If the count operand is greater than 0, the src2 operand is left-shifted by the 
value of the count operand. Low-order bits shifted in are O-filled, and high-ord­
er bits are shifted out through the C bit. 

Arithmetic left-shift: 

C-src2-0 

If the count operand is less than 0, the src2 operand is right-shifted by the ab­
solute value of the count operand. The high-order bits of the src20perand are 
sign-extended as it is right-shifted. Low-order bits are shifted out through the 
C bit. 

Arithmetic right-shift: 

sign of src2 - src2 - C 

If the count operand is 0, no shift is performed, and the C bit is set to 0. The 
count and dst operands are assumed to be signed integers. 

All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that. if one of the parallel operations (STI) reads from a reg­
ister and the operation being performed in parallel (ASH3) writes to the same 
register, STI accepts as input the contents of the register before it is modified 
by the ASH3. 



Cycles 

Status Bits 

Mode Bit 

Example 

Parallel ASH3 and STI ASH311STI 

If src2 and dst2 point to the same location, src2is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Set to the value of the last bit shifted out. 0 for a shift count of o. 
OVM Operation is not affected by OVM bit value. 

ASH3 Rl,*AR6++(IR1),RO 
I I STI R5,*AR2 

Before Instruction: 

AR6 = 809900h 
IR1 = 8Ch 
R1 = OFFE8h = - 24 
RO= Oh 
R5=35h=53 
AR2 = 8098A2h 
Data at 809900h = OAEOOOOOOh 
Data at 8098A2h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR6 = 80998Ch 
IR1 = 8Ch 
R1 = OFFE8h = - 24 
RO = OFFFFFFAEh 
R5 = 35h = 53 
AR2 = 8098A2h 
Data at 809900h = OAEOOOOOOh 
Data at 8098A2h = 35h = 53 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-55 



Bcond Branch Conditionafly (Standard) 

Syntax 

Operation 

Operands 

Encoding 

31 

Bcond src 

If cond is true: 
If src is in register-addressing mode (Rn, O:s: n :s: 27), 
src- PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 1 - PC. 

Else, continue. 

src conditional-branch addressing modes (S): 
o register 
1 PC-relative 

87 

o 1 1 0 register or displacement 

o 

Description Scondsignifies a standard branch that executes in four cycles. A branch is per­
formed ifthe condition is true (since a pipeline flush also occurs on a true condi­
tion; see Section 9.2 on page 9-4). If the srcoperand is expressed in register 
addressing mode, the contents of the specified register are loaded into the PC. 
If the src operand is expressed in PC-relative mode, the assembler generates 
a displacement: displacement = label- (PC of branch instruction + 1). This dis­
placement is stored as a 16-bit signed integer in the 16 least significant bits 
of the branch instruction word. This displacement is added to the PC of the 
branch instruction plus 1 to generate the new PC. 

Cycles 

Status Bits 

Mode Bit 

10-56 

The TMS320C3x provides 20 condition codes that you can use with this in­
struction (see Table 10-9 on page -13 for a list of condition mnemonics, condi­
tion codes and flags). Condition flags are set on a previous instruction only 
when the destination register is one of the extended-precision registers (R7-
RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, 
TSTS, or TSTS3) is executed. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 



Example 

Branch Conditionally (Standard) Bcond 

BZ RO 

Before Instruction: 

PC = 2BOOh 
RO = 0003FFOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 3FFOOh 
RO = 0003FFOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: 

If a BZ instruction is executed immediately following a RND instruction with 
a 0 operand, the branch is not performed, because the 0 flag is not set. To 
circumvent this problem, execute a BZUF instead of a BZ instruction. 

Assembly Language Instructions 10-57 



BcondD Branch Conditionally (De/aK,ed) 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-58 

31 

BcondD src 

If cond is true: 
If src is in register-addressing mode (An, 0 :s; n :s; 27), 
src- PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 3 - PC. 

Else, continue. 

src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

o 

o 1 1 0 1 0 

Bcond 0 signifies a delayed branch that allows the three instructions after the 
delayed branch to be fetched before the PC is modified. The effect is a single­
cycle branch, and the three instructions following Bcond 0 will not affect the 
condo 

A branch is performed if the condition is true. If the src operand is expressed 
in register-addressing mode, the contents of the specified register are loaded 
into the PC. If the srcoperand is expressed in PC-relative mode, the assembler 
generates a displacement: displacement = label - (PC of branch instruction 
+ 3). This displacement is stored as a 16-bit signed integer in the 16 least sig­
nificant bits of the branch instruction. This displacement is added to the PC of 
the branch instruction plus 3 to generate the new PC. The TMS320C3x pro­
vides 20 condition codes that you can use with this instruction (see Table 10-9 
on page -13 for a list of condition mnemonics, condition codes, and flags). Con­
dition flags are set on a previous instruction only when the destination register 
is one of the extended-precision registers (A7-AO) or when one of the com­
pare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is ex­
ecuted. 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Branch Conditionally (pelayed) BcondD 

Example BNZD 36 (36 = 24h) 

Before Instruction: 

PC = SOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 77h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-59 



BR Branch Unconditionall't, (StandardJ 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-60 

BR src 

src - PC or PC + disp - PC, where disp = src - (PC + 1) 

src long-immediate addressing mode 

31 2423 Iii iii i I I i 
01100000 

1615 
I I I 

87 
i i I i 

disp 

o 
i I 

BR performs a PC-relative branch that executes in four cycles, since a pipeline 
flush also occurs upon execution of the branch; see Section 9.2 on page 9-4. 
An unconditional branch is performed. The src operand is assumed to be a 
24-bit unsigned integer. Note that bit 24 = 0 for a standard branch. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

BR 80SCh 

Before Instruction: 

PC = 80h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 80SCh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Branch Unconditionally (Delayed) BRD 

BRD src 

src- PC 

src long-immediate addressing mode 

31 2423 Iii iii i I I i 
011 oooo~ 

1615 
iii 

87 o 
i I 

i I i i 
src 

BRD signifies a delayed branch that allows the three instructions after the 
delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch. 

An unconditional branch is performed. The src operand is assumed to be a 
24-bit unsigned integer. Note that bit 24 = 1 for a delayed branch. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

BRD 2Ch 

Before Instruction: 

PC = 1Bh 
!-UF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC =2Ch 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-61 



CALL Call Subroutine 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-62 

CALL src 

Next PC - *++SP 
src- PC 

src long-immediate addressing mode 

31 2423 Iii iii i I I i 
01100010 

1615 
iii 

87 
i i i i 

src 

A call is performed. The next PC value is pushed onto the system stack. The 
src operand is loaded into the PC. The src operand is assumed to be a 24-bit 
unsigned immediate operand. 

4 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

CALL 123456h 

Before Instruction: 

PC=5h 
SP = 809801h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 123456h 
SP = 809802h 
Data at 809802h = 6h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Call Subroutine Conditionally CALLcond 

CALLcond src 

If cond is true: 
Next PC - *++SP 
If src is in register addressing mode (Rn, 0 :s: n :s: 27), 
src- PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 1 - PC. 

Else, continue. 

src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

31 87 

o 1 1 1 register or displacement 

Description A call is performed if the condition is true. If the condition is true, the next PC 
value is pushed onto the system stack. Ifthe srcoperand is expressed in regis­
ter addressing mode, the contents of the specified register are loaded into the 
PC. If the srcoperand is expressed in PC-relative mode, the assembler gener­
ates a displacement: displacement = label- (PC of call instruction + 1). This 
displacement is stored as a 16-bit signed integer in the 16 least significant bits 
of the call instruction word. This displacement is added to the PC of the call 
instruction plus 1 to generate the new PC. 

Cycles 

Status Bits 

Mode Bit 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Table 10-9 on page -13 for a list of condition mnemonics, condi­
tion codes, and flags). Condition flags are set on a previous instruction only 
when the destination register is one of the extended-precision registers (R7-
RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, 
TSTB, or TSTB3) is executed. 

5 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-63 



CALLcond Call Subroutine Conditionally 

Example CALLNZ R5 

10-64 

Before Instruction: 

PC = 123h 
SP = 809835h 
R5 = 789h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 789h 
SP = 809836h 
R5 = 789h 
Data at 809836h = 124h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Compare Floating-Point CMPF 

CMPF sre, dst 

dst-sre 

sre general addressing modes (G): 
00 register (Rn, 0 :$ n :$ 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :$ n :$ 7) 

31 2423 1615 87 0 
Iii Iii iii I ~ I i i i I i i i i I >00:001000: dst src 

The sre operand is subtracted from the dst operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The dst and sre 
operands are assumed to be floating-point numbers. 

1 

These condition flags are modified for all destination registers (R27 - RO). 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

CMPF *+AR4,R6 

Before Instruction: 

AR4 = 8098F2h 
R6 = 070C800000h = 1.4050e+02 
Data at 8098F3h = 070C8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8098F2h 
R6 = 070C800000h = 1.4050e + 02 
Data at 8098F3h = 070C8000h = 1.40508 + 02 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

Assembly Language Instructions 10-65 



CMPF3 Compare Floating-Paint, 3-0perand 

Syntax CMPF3 src2, src1 

Operation src1 - src2 

Operands src1 three-operand addressing modes (T): 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-66 

00 register (Rn1. o !Ii: n1 !Ii: 7) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, o !Ii: n1 !Ii: 7) 
1 1 indirect (disp = O. 1, IRO. IR1) 

src2three-operand addressing modes (T): 
o 0 register (Rn2, 0 !Ii: n2 !Ii: 7) 
o 1 register (Rn2, 0 !Ii: n2 !Ii: 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

src1 
Iii 

srtfJ. I ii Iii , iii T I 0' 0' 0' 0 ' 0 I ' 
?01000110 _ _ 

iii 

The src20perand is subtracted from the src1 operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The src1 and 
src2 operands are assumed to be floating-point numbers. Although this in­
struction has only two operands, it is designated as a three-operand instruc­
tion because operands are specified in the three-operand format. 

1 

These condition flags are modified for all destination registers (R27-RO). 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example CMPF3 *AR2,*AR3--(1) 

Before Instruction: 

AR2 = 809831 h 
AR3 = 809852h 

Compare Floating-Point, 3-0perand CMPF3 

Data at 809831 h = n A7000h = 2.5044e + 02 
Data at 809852h = 57A2000h = 6.253125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809831 h 
AR3 = 809851 h 
Data at 809831h = nA7000h = 2.5044e + 02 
Data at 809852h = 57A2000h = 6.253125e + 01 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-67 



CMPI Comere Integer 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-68 

CMPI sre, dst 

dst-sre 

src general addressing modes (G): 
o 0 register (Rn, 0 is n is 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 is n is 27) 

31 2423 I I I I I I I I I I 
000001001 

1615 

I II 
87 
i i 
sra 

The sre operand is subtracted from the dst operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The dst and src 
operands are assumed to be signed integers. 

1 

These condition flags are modified for all destination registers (R27-RO). 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is not affected by OVM bit value. 

CMPI R3,R7 

Before Instruction: 

R3 = 898h = 2200 
R7 = 3E8h = 1000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 898h = 2200 
R7 = 3E8h = 1000 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Compare Integer, 3-0perand CMPI3 

CMPI3 src2, src1 

src1-src2 

srct three-operand addressing modes (1): 
o 0 register (Rn1 , 0 :is n1 :is 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 :is n1 :is 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (1): 
o 0 register (Rn2, 0 :is n2 :is 27) 
o 1 register (Rn2, 0 :is n2 :is 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 87 o 
Iii i i 

src1 

The src20perand is subtracted from the src1 operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The src1 and 
src2 operands are assumed to be signed integers. Although this instruction 
has only two operands, it is designated as a three-operand instruction be­
cause operands are specified in the three-operand format. 

1 

These condition flags are modified for all destination registers (R27-RO). 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-69 



CMPI3 Compare Integer, 3-0perand 

Example 

10-70 

CMPI3 R7,R4 

Before Instruction: 

R7 = 03E8h = 1000 
R4 = 0898h = 2200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 03E8h = 1000 
R4 = 0898h = 2200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

31 

o 1 1 

Decrement and Branch Conditionallr, (Standard} DBcond 

DBcond ARn, src 

ARn-1-ARn 
If cond is true and ARn ~ 0 : 

If src is in register addressing mode (Rn, 0 s n s 27), 
src- PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 1 - PC. 

Else, continue. 

src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

ARn register (O s n :s: 7) 

87 

register or displacement 

DBcond signifies a standard branch that executes in four cycles because the 
pipeline must be flushed if cond is true. The specified auxiliary register is de­
cremented and a branch is performed if the condition is true and the specified 
auxiliary register is greater than or equal to O. The condition flags are those set 
by the last previous instruction that affects the status bits. 

The auxiliary register is treated as a 24-bit signed integer. The most significant 
eight bits are unmodified by the decrement operation. The comparison of the 
auxiliary register uses only the 24 least significant bits of the auxiliary register. 
Note that the branch condition does not depend on the auxiliary register decre­
ment. 

If the src operand is expressed in register addressing mode, the contents of 
the specified register are loaded into the PC. If the src operand is expressed 
in PC-relative addressing mode, the assembler generates a displacement: 
displacement = label- (PC of branch instruction + 1). This integer is stored as 
a 16-bit signed integer in the 16 least significant bits of the branch instruction 
word. This displacement is added to the PC of the branch instruction plus 1 to 
generate the new PC. 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Table 10-9 on page -13 for a list of condition mnemonics, condi­
tion codes, and flags). Condition flags are set on a previous instruction only 
when the destination register is one of the extended-precision registers 
(Ro-R7) or when one of the compare instructions (CMPF, CMPF3, CMPI, 
CMPI3, TSTB, or TSTB3) is executed. 

Assembly Language Instructions 10-71 



DBcond Decrement and Branch Conditionally (Standard) 

Cycles 4 

Status Bits 

Mode Bit 

Example 

10-72 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

eMP! 200,R3 
DBLT AR3,R2 

Before Instruction: 

PC = 5Fh 
AR3 = 12h 
R2 = 9Fh 
R3 = BOh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

After Instruction: 

PC = 9Fh 
AR3 = 11h 
R2 = 9Fh 
R3 = BOh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

31 

o 1 

Description 

Decrement and Branch Conditionally (Delayed) DBcondD 

DBcondD ARn, src 

ARn-1-ARn 
If cond is true and ARN :it 0: 

If src is in register addressing mode (Rn, 0 :s: n :s: 27) 
src- PC 

If src is in PC-relative mode (label or address) 
displacement + PC + 3 - PC. 

Else, continue. 

src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

ARn register (0 :s: n :s: 7) 

87 

register or displacement 

DBcond 0 signifies a delayed branch that allows the three instructions after 
the delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch. The specified auxiliary register is decremented, and a 
branch is performed if the condition is true and the specified auxiliary register 
is greater than or equal to O. The condition flags are those set by the last pre­
vious instruction that affects the status bits. The three instructions following the 
DBcondD do not affect the condo 

The auxiliary register is treated as a 24-bit signed integer. The most significant 
eight bits are unmodified by the decrement operation. The comparison of the 
auxiliary register uses only the 24 least significant bits of the auxiliary register. 
Note that the branch condition does not depend on the auxiliary register decre­
ment. 

If the src operand is expressed in register-addressing mode, the contents of 
the specified register are loaded into the PC. If the src is expressed in PC-rela­
tive addressing, the assembler generates a displacement: displacement = la­
bel- (PC of branch instruction + 3). This displacement is added to the PC of 
the branch instruction plus 3 to generate the new PC. Note that bit 21 = 1 for 
a delayed branch. 

Assembly Language Instructions 10-73 



DBcondD Decrement and Branch Conditionally (Delayed) 

Cycles 

Status Bits 

Mode Bit 

Example 

10-74 

The TMS320C3x provides 20 condition codes that you can use with this in­
struction (see Table 10-9 on page 10-13 for a list of condition mnemonics, 
condition codes, and flags). Condition flags are set on a previous instruction 
only when the destination register is one of the extended-precision registers 
(R7-RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, 
CMPI3, TSTB, or TSTB3) is executed. 

1 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

CMPI 
DBZD 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

26h,R2 
AR5, $+llOh 

Before Instruction: 

PC = 100h 
R2 = 26h 
AR5 = 67h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 210h 
R2 = 26h 
AR5 =66h 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Floating-Point-to-Integer Conversion FIX 

FIX src, dst 

fix(src) - dst 

src general addressing modes (G): 
o 0 register (Rn, 0 :s n :s 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

31 2423 

I ii Iii iii I 000001010 G 

1615 
I I iii 

dst 

87 
i i 

src 

The floating-point operand src is converted to the nearest integer less than or 
equal to it in value, and the result is loaded into the dst register. The src oper­
and is assumed to be a floating-point number and the dst operand a signed 
integer. 

The exponent field of the result register (if it has one) is not modified. 

Integer overflow occurs when the floating-point number is too large to be rep­
resented as a 32-bit two's complement integer. I n the case of integer overflow, 
the result will be saturated in the direction of overflow. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-75 



FIX Floating-Point-to-Integer Conversion 

Example 

10-76 

FIX Rl,R2 

Before Instruction: 

R1 = 0A28200000h = 1.3454e + 3 
R2=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R 1 = 0A28200000h = 13454e + 3 
R2 = 541h = 1345 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



-_ .. _----------------------

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Parallel FIX and STI FIXIJSTI 

FIX src2, dst1 
II STI src3. dst2 

fix(src2) - dst1 
II src3 - dst2 

src2 indirect (disp = 0, 1, IRO, IRi) 
dst1 register (Rni, 0 s ni s 7) 
src3 register (Rn2, 0 s n2 s 7) 
dst2 indirect (disp = 0, 1, IRO, IRi) 

31 2423 

1 ' 1 ' , , , I ' , 10' 0' 01 1101010dSt1 .. 
1615 

I I I 

ds/2 

87 o 

srd2. 
iii I ' , I 

A floating-point to integer conversion is performed. All registers are read at the 
beginning and loaded at the end of the execute cycle. This means that, if one 
of the parallel operations (STI) reads from a register, and the operation being 
performed in parallel (FIX) writes to the same register, STI accepts as input the 
contents of the register before it is modified by FIX. 

If src2 and dst2 point to the same location, src2is read before the write to dst2. 

Integer overflow occurs when the floating-point number is too large to be rep­
resented as a 32-bit two's complement integer. In the case of integer overflow, 
the result will be saturated in the direction of overflow. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-77 



FIXIISTI Parallel FIX and STI 

Example 

10·78 

FIX 
II STI 

*++AR4 ( 1 ) , Rl 
RO,*AR2 

Before Instruction: 

AR4 = 8098A2h 
R1 = Oh 
RO = ODCh = 220 
AR2 = 80983Ch 
Data at 8098A3h = 733COOOh = 1.7950e + 02 
Data at 80983Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8098A3h 
R1 = OB3h = 179 
RO = ODCh = 220 
AR2 = 80983Ch 
Data at 8098A3h = 733COOOh = 1.79750e + 02 
Data at 80983Ch = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9·24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Inteqer-to-Floatinq-Point Conversion FLOAT 

FLOAT src, dst 

float (src) - dst 

src general addressing modes (G): 
o 0 register (Rn, 0 :s: n :s: 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s: n :s: 7) 

31 2423 

I ii Iii iii I 000001011 G 

87 
i i 

src 

The integer operand src is converted to the floating-point value equal to it, and 
the result loaded into the dst register. The src operand is assumed to be a 
signed integer, and the dst operand a floating-point number. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

FLOAT *++AR2(2),R5 

Before Instruction: 

AR2 = 809800h 
R5 = 034C2000h = 1.27578125e + 01 
Data at 809802h = OAEh = 174 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809802h 
R5 = 072EOOOOOh = 1.7 4e + 02 
Data at 809802h = OAEh = 174 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-79 



FLOATIISTF Parallel FLOAT and STF 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-80 

FLOAT src2, dst1 
II STF src3, dst2 

float (src2 ) - dst1 
II src3 - dst2 

src2 indirect (disp = 0,1, IRO, IR1) 
dst1 register (Rn1, 0 s n1 s 7) 
src3 register (Rn2, 0 s n2 3 7) 
dst2 register (disp = 0, 1, IRO, IR1) 

31 2423 1615 

I I I I I I I I I I I I I I I I I I 
1101011 dst1000 src3 

o 

src2 
iii iii 

I I dst2 

An integer to floating-point conversion is performed. All registers are read at 
the beginning and loaded at the end of the execute cycle. This means that if 
one of the parallel operations (STF) reads from a register and the operation 
being performed in parallel (FLOAT) writes to the same register, then STF ac­
cepts as input the contents of the register before it is modified by FLOAT. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is affected by OVM bit value. 



Example FLOAT *+AR2(IRO),R6 
I I STF R7,*ARl 

Before Instruction: 

AR2 = 8098C5h 
IRO = 8h 
R6=Oh 

Parallel FLOAT and STF FLOATIISTF 

R7 = 034C200000h = 1.27578125e + 01 
AR1 = 809933h 
Data at 8098CDh = OAEh = 174 
Data at 809933h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8098C5h 
IRO = 8h 
R6 = 072EOOOOOOh = 1.7 40e + 02 
R7 = 034C200000h = 1.27578125e + 01 
AR1 = 809933h 
Data at 8098CDh = OAEh = 174 
Data at 809933h = 034C2000h = 1.27578125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-81 



lACK Interrupt Acknowledge 

Syntax lACK src 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-82 

Perform a dummy read operation with lACK = O. 
At end of dummy read, set lACK to 1. 

src general addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 1615 

I ' , I ' , , , 'I I 0' 0' 0' 0' 0 I ' 
000110110G. . 

87 o 
i i , I src 

A dummy read operation is performed. If off-chip memory is specified, lACK 
is set to 0 at half Hi cycle after the beginning of the decode phase of the lACK 
instruction. At the first half of the Hi cycle of the dummy read, lACK is set to 
1. Because of a multicycle read, the lACK signal will not be extended. This in­
struction can be used to generate an external interrupt acknowledge. The 
lACK Signal and the address can be used to signal interrupt acknowledge to 
external devices. The data read by the processor is unused. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

lACK *AR5 

Before Instruction: 

lACK = 1 
PC = 300h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

lACK = 1 
PC = 301h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

IDLE 

1 - ST(GIE) 
Next PC - PC 
Idle until interrupt. 

None 

IdlB UntillntBrrupt IDLE 

31 2423 16 15 87 0 

1 0 I 0 10 1 0' 0' l' l' 0 ' 0 1 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0 I 0' 0' 0 i 0 i 0 i 0 i 0 i 0 i 0' 0' 0' 11 

The global interrupt enable bit is set, the next PC value is loaded into the PC, 
and the CPU idles until an interrupt is received. When the interrupt is received, 
the contents of the PC are pushed onto the active system stack. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

IDLE The processor idles until a reset 
or unmasked interrupt occurs. 

AssBmbly LanguagB Instructions 10-83 



IDLE2 Low-Power Idle 

Syntax 

Operation 

Operands 

Encoding 

Description 

10-84 

IDLE2 (TMS320LC31 Only) 

1 - ST(GIE) 
Next PC - PC 
Idle until interrupt. 

None 

31 2423 1615 87 0 

10
1 

0
1
0 I 0 1

0
1 

11 110 101 0
1

0
1 

0
1 

0
1 

0
1 

0
1

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1

0
1 

0
1 

0
1 

0
1 

0
1 

0
1

0
1 

0
1 

0
1

11 

The IDLE2 instruction serves the same function as IDLE, except that it re­
moves the functional clock input from the internal device. This allows for ex­
tremely low power mode. The PC is incremented once, and the device remains 
in an idle state until one of the external interrupts (INT0-3) is asserted. 

In IDLE2 mode, the 'C31 will behave as follows: 

o The CPU, peripherals, and memory will retain their previous states. 

o When the device is in the functional (nonemulation) mode, the clocks will 
stop with H1 high and H310w. 

o The 'LC31 will remain in IDLE2 until one of the four external interrupts 
(INT3-INTO) is asserted for at least two H1 cycles. When one of the four 
interrupts is asserted, the clocks start after a delay of one H1 cycle. The 
clocks can start up in the phase opposite that in which they were stopped 
(that is, H1 might start high when H3 was high before stopping, and H3 
might start high when H1 was high before stopping.) However, the H1 and 
H3 clocks remain 1800 out of phase with each other. 

o During I DLE2 operation, for one of the four external interrupts to be recog­
nized by the CPU and serviced, it must be asserted for at least two H1 
cycles. For the processor to recognize only one interrupt when it restarts 
operation, the interrupt must be asserted for less than three cycles. 

o When the 'LC31 is in emulation mode, the H1 and H3 clocks will continue 
to run normally, and the CPU will operate as if an IDLE instruction had been 
executed. The clocks continue to run for correct operation of the emulator. 



-- ----

Low-Power Idle IDLE2 

Cycles 1 

Status Bits LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example IDLE2 The processor idles until a reset 
or unmasked interrupt occurs. 

Assembly Language Instructions 10-85 



LDE Load Floating-Point Exponent 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-86 

LDE sre, dst 

sre(exp) - dst(exp) 

src general addressing modes (G): 
o 0 register (Rn, 0 s; n s; 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s; n s; 7) 

31 2423 1615 

I I I I I I I I I I 
~00001101 G 

87 o 
I I 

I I src 

The exponent field of the sre operand is loaded into the exponent field of the 
dst register. No modification of the dst register mantissa field is made unless 
the value of the exponent loaded is the reserved value of the exponent for 0 
as determined by the precision of the sre operand. Then the mantissa field of 
the dst register is set to O. The sre and dst operands are assumed to be float­
ing-point numbers. Immediate values are evaluated in the short floating-point 
format. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

LDE RO,RS 

Before Instruction: 

RO = 0200056F30h = 4.00066337e + 00 
R5 = OA056FE332h = 1.06749648e + 03 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 0200056F30h = 4.00066337e + 00 
R5 = 02056FE332h = 4.16990814e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Load Floating-Point LDF 

LDF src, dst 

src- dst 

src general addressing modes (G): 
00 register (Rn, 0 :s; n :s; 7) 
01 direct 
10 indirect 
1 1 immediate 

dst register (Rn, 0 :s; n :s; 7) 

31 2423 1615 87 0 I I I I I I I I I I I I I 

I 
I I I I 

I G dst sra .000.001110. 

The src operand is loaded into the dst register. The dst and src operands are 
assumed to be floating-point numbers. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

LDF @9800h,R2 

Before Instruction: 

DP = 80h 
R2=Oh 
Data at 809800h = 10C52A00h = 2.19254303e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R2 = 010C52A00h = 2.19254303e + 00 
Data at 809800h = 10C52A00h = 2.19254303e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-87 



LDFcond Load Floating-Point Conditionally 

Syntax LDFcond src, dst 

Operation If cond is true: 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-88 

31 I I I I I o 1 0 0 

src- dst. 

Else: 
dst is unchanged. 

src general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 7) 

I 12~231 
cond G src 

87 o 
I I 

I I 
If the condition is true, the srcoperand is loaded into the dstregister. otherwise, 
the dst register is unchanged. The dst and src operands are assumed to be 
floating-point numbers. 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Table 10-9 on page 10-13 for a list of condition mnemonics, 
condition codes, and flags). Note that an LDFU (load floating-point uncondi­
tionally) instruction is useful for loading R7-RO without affecting condition 
flags. Condition flags are set on a previous instruction only when the destina­
tion register is one of the extended-precision registers (R7-RO) or when one 
of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) 
is executed. 

1 

LUF 
LV 
UF 
N 
Z 
V 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected C 

OVM Operation is not affected by OVM bit value. 



Example 

Load Floating-Point Conditionally LDFcond 

LDFZ R3,R5 

Before Instruction: 

R3 = 2CFF2CD500h = 1.77055560e +13 
R5 = 5F0000003Eh = 3.96140824e + 28 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

After Instruction: 

R3 = 2CFF2CD500h = 1.77055560e +13 
R5 = 2CFF2CD500h = 1.77055560e +13 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

Assembly Language Instructions 10-89 



LDFI Load Floating-Point, Interlocked 

Syntax LDFI src, dst 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-90 

Signal interlocked operation 
src- dst 

src general addressing modes (G): 
01 direct 
1 0 indirect 

dst register (Rn, 0 :s; n :s; 7) 

000001111 G 

87 o 
I I 

i I src 

The srcoperand is loaded into the dstregister. An interlocked operation is sig­
naled over XFO and XF1. The src and dstoperands are assumed to be floating­
point numbers. Note that only direct and indirect modes are allowed. Refer to 
Section 6.4 on page 6-12 for detailed description. 

1 if XF1 = 0 (See Section 6.4 on page 6-12) 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

LDFI *+AR2,R7 

Before Instruction: 

AR2 = 8098F1h 
R7=Oh 
Data at 8098F2h = 584COOOh = - 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8098F1 h 
R7 = 0584COOOOOh = - 6.28125e + 01 
Data at 8098F2h = 584COOOh = - 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

LDF src2, dst2 
II LDF srct, dstt 

src2- dst2 
II srct - dstt 

srct indirect (disp = 0, 1, IRO, IR1) 
dstt register (Rn1, O:s; n1 :s; 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst2 register (Rn2, 0 :s; n2 :s; 7) 

31 2423 I iii iii Iii 
1100010 dsl2 

1615 
I i 

dst1 

Parallel LDF and LDF LDFIILDF 

87 o 
iii I i I I I 

i I src1 srcfJ. 

Two floating-point loads are performed in parallel. If the LDFs load the same 
register, the assembler issues a warning. The result is that of LDF src2. dst2. 

1 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-91 



LDFJlLDF Parallel LDF and LDF 

Example LDF *-- ARl ( IRO ) ,R 7 

10-92 

II LDF *AR7++( 1) ,R3 

Before Instruction: 

AR1 = 80985Fh 
IRO = 8h 
R7=Oh 
AR7 = 80988Ah 
R3=Oh 
Data at 809857h = 70C8000h = 1.4050e + 02 
Data at 80988Ah = 57B4000h = 6.281250e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR 1 = 809857h 
RO=8h 
R7 = 070C800000h = 1.4050e + 02 
AR7 = 80988Bh 
R3 = 057B400000h = 6.281250e + 01 
Data at 809857h = 70C8000h = 1.4050e + 02 
Data at 80988Ah = 57B4000h = 6.281250e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Blta 

Mode Bit 

Parallel LDF and STF LDFIISTF 

LDF src2, dst1 
II STF src3, dst2 

src2- dst1 
II src3- dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1 , ° ~ n1 ~ 7) 
src3 register (Rn2, ° ~ n2 ~ 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

11 ' 1 1 0 ' 1 ' 1 ' 0 ' 0 1 ~s~ I 0' 0' 0 I 's~ I ' 87 
I I I i , , 

dsl2. I ' 
A floating-point load and a floating-point store are performed in parallel. 

o 

If src2 and dst2 point to the same location, src2is read before the write to dst2. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-93 



LDFIISTF Parallel LDF and STF 

Example LDF * AR2-- ( 1) , Rl 

10-94 

II STF R3, *AR4++( IR1) 

Before Instruction: 

AR2 = 8098E7h 
R1 =Oh 
R3 = 057B400000h = 6.28125e + 01 
AR4 = 809900h 
IR1 = 10h 
Data at 8098E7h = 70C8000h = 1.4050e + 02 
Data at 809900h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8098E6h 
R1 = 070C800000h = 1.4050e + 02 
R3 = 057B400000h = 6.28125e + 01 
AR4 = 80991 Oh 
IR1 = 10h 
Data at 8098E7h = 70C8000h = 1.4050e + 02 
Data at 809900h = 57B4000h = 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Load Integer LDI 

LDI src, dst 

src- dst 

src general addressing modes (G): 
o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

1311 1 1 1 1 1 1 2~ 23
1 

87 o 
1 1 

1 I 000010000G src 

The src operand is loaded into the dst register. The dst and src operands are 
assumed to be signed integers. An alternate form of LOI. LOP. is used to load 
the data page pointer register (OP). See the LOP instruction and subsec­
tion 10.3.2 on page 10-16. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

LDI *-ARl(IRO),RS 

Before Instruction: 

AR1 = 2Ch 
IRO = 5h 
R5 = 3C5h = 965 
Data at 27h = 26h = 38 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-95 



LDI Load Inte~er 

10-96 

After Instruction: 

AR1 = 2Ch 
IRO = 5h 
R5 = 26h = 38 
Data at 27h = 26h = 38 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

31 

LDlcond sre, dst 

If eond is true: 
sre- dst, 

Else: 
dst is unchanged. 

sre general addressing modes (G): 

o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

2423 1615 

Load Integer Conditionally LDlcond 

87 o I I I I I o 1 0 1 
i I 

~~ I I G I I sra 

Ifthe condition is true, the sreoperand is loaded into the dstregister. otherwise, 
the dst register is unchanged. Regardless of the condition, the read of the sre 
takes place. The dst and sre operands are assumed to be signed integers. 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Table 10-9 on page 10-13 for a list of condition mnemonics, 
condition codes, and flags). Note that an LDIU (load integer unconditionally) 
instruction is useful for loading R7-RO without affecting the condition flags. 
Condition flags are set on a previous instruction only when the destination reg­
ister is one of the extended-precision registers (R7-RO) or when one of the 
compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is ex­
ecuted. 

1 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-97 



LDlcond Load Integer Conditionally 

Example LDIZ *ARO++,R6 

10-98 

Before Instruction: 

ARO = 8098FO 
Data at 8098FOh = 027Ch = 636 
R6 = OFE2h = 4,066 

LUF LV UF N Z V C = ° ° ° ° ° ° ° 
After Instruction: 

ARO = 8098F1 h 
Data at 8098FOh = 027Ch = 636 
R6 = OFE2h = 4,066 
LUF LV UF N Z V C = 0 0 0 ° ° 0 0 

, 

Note: Auxiliary Register Arithmetic 

The test condition does not affect the auxiliary register arithmetic. (AR 
modification will always occur.) 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Load Integer, Interlocked LOll 

LOll src, dst 

Signal interlocked operation 
src- dst 

src general addressing modes (G): 
01 direct 
10 indirect 

dst any CPU register 

31 2423 1615 87 0 
Iii Iii iii I 

i i i 

I 
i i i i 

I G dst sra .000.010001. 

The src operand is loaded into the dst register. An interlocked operation is sig­
naled over XFO and XF1. The src and dstoperands are assumed to be signed 
integers. Note that only the direct and indirect modes are allowed. Refer to 
Section 6.4 on page 6-12 for detailed description. 

1 if XF = 0 (See Section 6.4 on page 6-12) 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

LOII @985Fh,R3 

Before Instruction: 

DP=80 
R3= Oh 
Data at 80985Fh = ODCh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP=80 
R3 = ODCH 
Data at 80985Fh = ODCh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-99 



LDIIiLDI Parallel LDI and LDI 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-100 

LDI src2, dst2 
II LD. sre1, dst1 

sre2- dst2 
II sre1 - dst1 

sre1 indirect (disp = 0,1, IRO, IR1) 
dst1 register (Rn1, 0 :so n1 :so 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dst2 register (Rn2, 0 :so n2 :so 7) 

31 2423 I I I I I i I I I I 
1100011dst2 

o 
src1 

iii iii 
i I src'J. 

Two integer loads are performed in parallel. A warning is issued by the assem­
bler if the LDls load the same register. The result is that of LDI sre2, dst2. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example LDI *-AR1(1),R7 
II LDI *AR7++ (IRO) , Rl 

eeforelnstruction: 

AR1 = 809826h 
R7=Oh 
AR7 = 8098C8h 
IRO = 10h 
R1 =Oh 
Data at 809825h = OFAh = 250 
Data at 8098C8h = 2EEh = 750 

Parallel LDI and LDI LDIIILDI 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809826h 
R7 = OFAh = 250 
AR7 = 8098D8h 
IRO = 10h 
R1 = 02EEh = 750 
Data at 809825h = OFAh = 250 
Data at 8098C8h = 2EEh = 750 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-101 



LDIIlSTI Parallel LDI and STI 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-102 

LDI src2, dst1 
II STI src3, dst2 

src2- dst1 
II src3- dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 :s; n1 :s; 7) 
src3 register (Rn2, 0 :s; n2 :s; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

I I I r I I I I I I I r I I 
1101101 dst1000 

87 o 
src2 

I I I iii II I I dst2. 

An integer load and an integer store are performed in parallel. If src2 and dst2 
point to the same location, src2 is read before the write to dst2. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example 

Parallel LDI and STI LDIIISTI 

LOI *-AR1(1),R2 
I I STI R7,*ARS++(IRO) 

aefore Instruction: 

AR1 = 8098E7h 
R2=Oh 
R7 = 3Sh = 53 
ARS = 80982Ch 
IRO = 8h 
Data at 8098E6h = ODCh = 220 
Data at 80982Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 o 0 

After Instruction: 

AR1 = 8098E7h 
R2 = ODCh = 220 
R7=3Sh=S3 
ARS = 809834h 
IRO = 8h 
Data at 8098E6h = ODCh = 220 
Data at 80982Ch = 3Sh = 53 
LUF LV UF N Z V C = 0 0 0 0 0 o 0 

Note: Cycle Count 

See subsection 9.S.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-103 



LDM Load Floating-Point Mantissa 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-104 

LDM sre, dst 

sre (man) - dst (man) 

sre general addressing modes (G): 
o 0 register (Rn, 0 :s n :IS: 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :IS: n :IS: 7) 

31 2423 

I I I I ' , , , I I 
~00010010G 

87 o 

src 
i i 

I I 
The mantissa field of the sre operand is loaded into the mantissa field of the 
dst register. The dst exponent field is not modified. The sre and dst operands 
are assumed to be floating-point numbers. If the sre operand is from memory, 
the entire memory contents are loaded as the mantissa. If immediate address­
ing mode is used, bits 15-12 of the instruction word are forced to 0 by the as­
sembler. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

LDM 156.75,R2 (156.75 - 071CCOOOOOh) 

Before Instruction: 

R2=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 001 CCOOOOOh = 1.22460938e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operand. 

Encoding 

Description 

Cycle. 

Status Bits 

Mode Bit 

Example 

Load Data Page Pointer LDP 

LOP sre,OP 

sre - data page pointer 

sre is the 8 MSBs of the absolute 24-bit source address (src). 
The·, OP" in the operand is optional. 

31 2423 1615 87 o 
10'0'01 0'1'0'0'0'01 1'11 1'0'0'0'01 0'0'0'0'0'0'0'01 • •• . I src 

This pseudo-op is an alternate form of the LOUI instruction, except that LOP 
is always in the immediate addressing mode. The sre operand field contains 
the eight MSBs of the absolute 24-bit sre address (essentially, only 
bits 23-16 of sre are used). These eight bits are loaded into the eight LSBs 
of the data page pointer. 

The eight LSBs of the pointer are used in direct addressing as a pointer to the 
page of data being addressed. There is a total of 256 pages, each page 64K 
words long. Bits 31-8 of the pointer are reserved and should be kept set to O. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

LOP @809900h, OP 
or 
LOP @809900h 

Before Instruction: 

OP = 65h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

OP = 80h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-105 



LOPOWER Divide Clock by 16 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-106 

LOPOWER (TMS320lC31 Only) 

H1/16- H1 

None 

31 23 0 

I
ii Iii iii Iii iii iii iii iii Iii iii iii 

00010000100000000000000000000001 

Device continues to execute instructions, but at the reduced rate of the ClKIN 
frequency divided by 16 (that is, in lOPOWER mode, an 'lC31 with a ClKIN 
frequency of 32 MHz will perform in the same way as a 2-MHz 'LC31 , which 
has an instruction cycle time of 1000 ns). This allows for low-power operation. 

The'lC31 CPU slows down during the read phase ofthe lOPOWER instruc­
tion. To exit the lOPOWER power-down mode, invoke the MAXSPEED 
instruction (opcode = 10800000 h). The 'lC31 resumes full-speed operation 
during the read phase of the MAXSPEED instruction. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

LOPOWER The processor slows down operation to 
~ 1/16th of the HI clock. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Log/cal Shift LSH 

LSH count, dst 

If countOt 0: 
dst« count - dst 

Else: 
dst» I count I - dst 

count general addressing modes (G): 
o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

31 2423 

I ii Iii iii I 000010011G 

1615 87 
i i 

count 

The seven least significant bits of the count operand are used to generate the 
two's complement shift count. If the count operand is greater than 0, the dst 
operand is left-shifted by the value of the count operand. Low-order bits shifted 
in are O-filled, and high-order bits are shifted out through the carry (C) bit. 

Logical left-shift: 

C- dst-O 

If the count operand is less than 0, the dstis right-shifted by the absolute value 
of the count operand. The high-order bits of the dstoperand are O-filled as they 
are shifted to the right. Low-order bits are shifted out through the C bit. 

Logical right-shift: 

O-dst-C 

If the count operand is 0, no shift is performed, and the C bit is set to O. The 
count operand is assumed to be a signed integer, and the dst operand is as­
sumed to be an unsigned integer. 

Assembly Language Instructions 10-107 



LSH LOfilcal Shift 

Cycles 

Status Blta 

Mode Bit 

Example 1 

Example 2 

10·108 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 If a 0 output is generated; 0 otherwise 
V 0 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

OVM Operation is not affected by OVM bit value. 

LSH R4,R7 

Before Instruction: 

R4 = 018h = 24 
R7=02ACh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 018h = 24 
R7 = OACOOOOOOh 
LUF LV UF N Z V C = 0 0 0 1 0 1 0 

LSH *-ARS(IR1),RS 

Before Instruction: 

AR5 = 809908h 
IRO = 4h 
R5 = 0012COOOOOh 
Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 809908h 
IRO = 4h 
RS = 0000012COOh 
Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

31 

LSH3 count, src, dst 

If count :it 0: 
src« count - dst 

Else: 
src» 1 count 1- dst 

srcthree-operand addressing modes (T): 
o 0 any CPU register 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

count three-operand addressing modes (T): 
o 0 any CPU register 
o 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 :s n :s 27) 

2423 1615 

Logical Shift, 3-0perand LSH3 

87 0 
Iii Iii iii I 

i i i 

I 
i i i i 

I 
i i i i 

I T dst sra count .001.001000. 

The seven least significant bits of the count operand are used to generate the 
two's complement shift count. 

If the count operand is greater than 0, a copy of the src operand is left-shifted 
by the value of the count operand, and the result is written to the dst. (The src 
is not changed.) Low-order bits shifted in are O-filled, and high-order bits are 
shifted out through the C (carry) bit. 

Logical left-shift: 

C-src-O 

Ifthe count operand is less than 0, the srcoperand is right-shifted by the abso­
lute value of the count operand. The high-order bits of the dst operand are 0-
filled as they are shifted to the right. Low-order bits are shifted out through the 
C bit. 

Logical right-shift: 

O-src-C 

If the count operand is 0, no shift is performed, and the C bit is set to O. The 
count operand is assumed to be a signed integer. The src and dst operands 
are assumed to be unsigned integers. 

Assembly Language Instructions 10-109 



LSH3 L0g.ical Shift, 3-0perand 

Cycles 

Status Bits 

Mode Bit 

Example 1 

Example 2 

10-110 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

Unaffected if dst is not R7-RO. 

OVM Operation is not affected by OVM bit value. 

LSH3 R4,R7,R2 

Before Instruction: 

R4 = 018h = 24 
R7 = 02ACh 
R2=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4=018h=24 
R7 = 02ACh 
R2 = OACOOOOOOh 
LUF LV UF N Z V C = 0 0 0 1 0 1 0 

LSH3 *-AR4(IRl),R5,R3 

Before Instruction: 

AR4 = 809908h 
IR1 = 4h 
RS = 012COOOOOh 
R3 =Oh 
Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



After Instruction: 

AR4 = 809908h 
IR1 = 4h 
RS = 012COOOOOh 
R3 = 0000012COOh 

Logical Shift, 3-0eerand LSH3 

Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.S.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-111 



LSH31\STI Parallel LSH3 and STI 

Syntax 

Operation 

Operands 

Encoding 

Description 

10-112 

LSH3 count, src2, dst1 
II STI src3, dst2 

If count it 0: 
src2« count - dst1 

Else: 
src2» Icount I - dst1 

II src3 - dst2 

count register (Rn 1, 0 s n 1 s 7) 
src1 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn3, 0 s n3 s 7) 
src2 register (Rn4, 0 s n4 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 I iii iii Iii 
~101110dSt1 

i i 

count 

87 o 

src2 
I I i Iii 

i I I i dst2. 

The seven least significant bits of the count operand are used to generate the 
two's complement shift count. 

Ifthe count operand is greater than 0, a copy ofthe src20perand is left-shifted 
by the value of the count operand, and the result is written to the dst1. (The 
src2 is not changed.) Low-order bits shifted in are O-filled, and high-order bits 
are shifted out through the C (carry) bit. 

Logical left-shift: 

C-src2-0 

If the count operand is less than 0, the src20perand is right-shifted by the ab­
solute value of the count operand. The high-order bits of the dst operand are 
O-filled as they are shifted to the right. Low-order bits are shifted out through 
the C (carry bit). 

Logical right-shift: 

0-src2-C 

If the count operand is 0, no shift is performed, and the carry bit is set to O. 

The count operand is assumed to be a seven-bit signed integer, and the src2 
and dst1 operands are assumed to be unsigned integers. All registers are read 
at the beginning and loaded at the end of the execute cycle. This means that 
if one of the parallel operations (STI) reads from a register and the operation 
being performed in parallel (LSH3) writes to the same register, STI accepts as 
input the contents of the register before it is modified by the LSH3. 



Cycles 

Status Bits 

Mode Bit 

Example 1 

Parallel LSH3 and STI LSH311STI 

If src2 and dst2 point to the same location, src2is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output. 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

OVM Operation is affected by OVM bit value. 

LSH3 R2,*++AR3(1),RO 
I I STI R4, *-AR5 

Before Instruction: 

R2 = 18h = 24 
AR3 = 8098C2h 
RO=Oh 
R4 = ODCh = 220 
AR5 = 8098A3h 
Data at 8098C3h = OACh 
Data at 8098A2h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 18h = 24 
AR3 = 8098C3h 
RO = OACOOOOOOh 
R4 = ODCh = 220 
AR5 = 8098A3h 
Data at 8098C3h = OACh 
Data at 8098A2h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 1 0 1 0 

Assembly Language Instructions 10-113 



LSH3J1STI Parallel LSH3 and STI 

Example 2 LSH3 R 7 , * AR2-- ( 1 ) , R2 

10-114 

II STl RO, *+ARO ( 1 ) 

Before Instruction: 

R7 = OFFFFFFF4h = -12 
AR2 = 809863h 
R2=Oh 
RO = 12Ch = 300 
ARO = 8098B7h 
Data at 809863h = 2COOOOOOh 
Data at 8098B8h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = OFFFFFFF4h = -12 
AR2 = 809862h 
R2 = 2COOOh 

RO = 12Ch = 300 
ARO = 8098B7h 
Data at 809863h = 2COOOOOOh 
Data at 809888h = 12Ch = 300 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

MAXSPEED 

H1/16- H1 

None 

Restore Clock to Regular Se,eed MAXSPEED 

Exits LOPOWER power-down mode (invoked by LOPOWER instruction with 
opcode 10800001 h). The 'LC31 resumes full-speed operation during the read 
phase of the MAXSPEED instruction. 

1 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

MAXSPEED ~ The processor resumes full-speed operation. 

Assembly Language Instructions 10-115 



M PYF MultiP'X. Floating Point 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-116 

MPYF src, dst 

dst x src -+ dst 

srcgeneral addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 7) 

13\ I 1 I I I I 2~ 231 sra 

87 
I i 

000010100 G 

The product ofthe dstand srcoperands is loaded into the dstregister. The src 
operand is assumed to be a single-precision floating-point number, and the dst 
operand is an extended-precision floating-point number. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

MPYF RO,R2 

Before Instruction: 

RO = 070C800000h = 1.4050e + 02 
R2 = 034C200000h = 1.27578125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 070C800000h = 1.4050e + 02 
R2 = OA600F2000h = 1.79247266e + 03 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Multie'r: Floating, Point, 3-0perand MPYF3 

MPYF3 sre2, sre1, dst 

sre 1 x sre2 - dst 

sre1 three-operand addressing modes (T): 
00 register (Rn1. 0 :s n1 :s 7) 
o 1 indirect (disp = O. 1. IRO. IR1) 
1 0 register (Rn1. 0 :s n1 :s 7) 
1 1 indirect (disp = O. 1. IRO. IR1) 

sre2three-operand addressing modes (T): 
o 0 register (Rn2. 0 :s n2 :s 7) 
o 1 register (Rn2. 0 :s n2 :s 7) 
1 0 indirect (disp = O. 1. IRO. IR1) 
1 1 indirect (disp = O. 1. IRO. IR1) 

dst register (Rn. O:s n :s 7) 

31 2423 

I ii I I Iii I I 
001001001T 

iii 

src1 

87 
I I i I I src2 

The product of the sre 1 and sre2 operands is loaded into the dst register. The 
sre1 and sre2 operands are assumed to be single-precision floating-point 
numbers. and the dstoperand is an extended-precision floating-paint number. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-117 



M PYF3 Multie.'r. Floating Point, 3-0eerand 

Example 1 

Example 2 

10-118 

MPYF3 RO,R7,Rl 

Before Instruction: 

RO = 057B400000h = 6.281250e + 01 
R7 = 0733COOOOOh = 1.79750e + 02 
R1 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 057B400000h = 6.281250e + 01 
R7 = 0733COOOOOh = 1 .79750e + 02 
R1 = OD306A3000h = 1.1290546ge + 04 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

MPYF3 *+AR2(IRO),R7,R2 
or 
MPYF3 R7,*+AR2(IRO),R2 

Before Instruction: 

AR2 = 809800h 
IRO = 12Ah 
R7 = 057B400000h = 6.281250e + 01 
R2=Oh 
Data at 80992Ah = 70C8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809800h 
IRO = 12Ah 
R7 = 057B400000h = 6.281250e + 01 
R2 = OD09E4AOOOh = 8.82515625e + 03 
Data at 80992Ah = 70C8000h = 1 .4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Parallel MPYF3 and ADDF3 MPYF311ADDF3 

MPYF3 sreA, sreB, dstl 
1/ ADDF3 sreG, sreD, dst2 

sreA x sreB - dstl 
1/ sreG + sreD - dst2 

sreAu sreB 
sreG 
sreD 

Any two indirect (disp = 0,1,IRO,IR1) 
Any two register (0 =' Rn =' 7) 

dstl register (dl): 
0= RO 
1 = R1 

dst2 register (d2): 
0= R2 
1 = R3 

(Rn, 0 =' n =' 7) 
(Rn, 0 =' n =' 7) 

sre1 
sre2 
src3 
sre4 

register 
register 
indirect 
indirect 

(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 =' P =' 3) 

Operation (P Field) 

00 src3 x sre4, srel + sre2 
01 src3 x srel, sre4 + sre2 
10 sre 1 x src2, src3 + sre4 
11 sre3 x srel, sre2 + sre4 

31 2423 
iii 

src3 
iii 

sr04 

A floating-point multiplication and a floating-point addition are performed in 
parallel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one ofthe parallel operations (MPYF3) reads 
from a register and the operation being performed in parallel (ADDF3) writes 
to the same register, then MPYF3 accepts as input the contents of the register 
before it is modified by the ADDF3. 

Assembly Language Instructions 10-119 



MPYF31lADDF3 Parallel MPYF3 and ADDF3 

Cycles 

Status Bits 

Mode Bit 

Example 

10-120 

Any combination of addressing modes can be coded for the four possible 
source operands as long as two are coded as indirect and two are register. The 
assignment of the source operands srcA - srcD to the src1 - src4 fields 
varies, depending on the combination of addressing modes used, and the P 
field is encoded accordingly. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 0 
Z 0 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

MPYF3 *AR5++ ( 1) , *--ARl (IRO) , RO 

II ADDF3 R5,R7,R3 

Before Instruction: 

ARS = 8098CSh 
AR1 = 8098A8h 
IRO = 4h 
RO=Oh 
RS = 0733COOOOOh = 1.797S0e + 02 
R7 = 070C800000h = 1 .40S0e + 02 
R3 =Oh 
Data at 8098CSh = 34COOOOh = 1.27S0e + 01 
Data at 8098A4h = 111 OOOOh = 2.26S62Se + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.S.2 on page 9-24 for operand ordering effects on cycle 
count. 



After Instruction: 

AR5 = 8098C6h 
AR1 = 8098A4h 
IRO = 4h 

Parallel MPYF3 and ADDF3 MPYF31!ADDF3 

RO = 0467180000h = 2.88867188e + 01 
R5 = 0733COOOOOh = 1.79750e + 02 
R7 = 070C800000h = 1.405Oe + 02 
R3 = 0820200000h = 3.20250e + 02 
Data at 8098C5h = 34COOOOh = 1.2750e + 01 
Data at 8098A4h = 111 OOOOh = 2.265625e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-121 



MPYF3!1STF Parallel MPYF3 and STF 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-122 

MPVF3 sre2, srel, dst 
II STF src3, dst2 

srel x sre2 - dst1 
II sre3- dst2 

srel register (Rn1, 0 s; n1 s; 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dstl register (Rn3, 0 s; n3 s; 7) 
sre3 register (Rn4, 0 s; n4 s; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 

I iii iii Iii 
1101111dst1 

i i 

src1 

1615 
iii 

dst2. 

iii 

sr~ 

A floating-point multiplication and a floating-point store are performed in paral­
lel. All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (MPVF3) writes to a reg­
ister and the operation being performed in parallel (STF) reads from the same 
register, the STF accepts as input the contents of the register before it is modi­
fied by the MPYF3. 

If sre2 and dst2 point to the same location, sre2 is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF 1 if a floating-point underflow occurs; 0 unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example 

Parallel MPYF3 and STF MPYF3!1STF 

MPYF3 *-AR2(1),R7,RO 
I I STF R3,*ARO--(IRO) 

Before Instruction: 

AR2 = 80982Bh 
R7 = 057B400000h = 6.281250e + 01 
RO= Oh 
R3 = 086B280000h = 4.7031250e + 02 
ARO = 809860h 
IRO = 8h 
Data at 80982Ah = 70C8000h = 1.4050e + 02 
Data at 809860h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 80982Bh 
R7 = 057B400000h = 6.281250e + 01 
RO = OD09E4AOOOh = 8.82515625e + 03 
R3 = 086B280000h = 4.7031250e + 02 
ARO = 809858h 
IRO = 8h 
Data at 80982Ah = 70C8000h = 1.4050e + 02 
Data at 809860h = 868280000h = 4.7031250e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-123 



MPYF311SUBF3 Parallel MPYF3 and SUBF3 

Syntax 

Operation 

Operands 

Encoding 

Description 

10-124 

MPYF3 srcA, src8, dst1 
II SUBF3 srcC, srcD, dst2 

srcA x src8 - dst1 
II srcD - srcC - dst2 

srcAU src8 
srcC 
srcD 

Any two indirect (disp = 0,1 ,IRO,IR1) 
Any two register (0 ~ Rn ~ 7) 

dst1 register (d1): 
0= RO 
1 = R1 

dst2 register (d2): 
0= R2 
1 = R3 

(Rn, 0 ~ n ~ 7) 
(Rn, 0 ~ n ~ 7) 

src1 
src2 
src3 
src4 

register 
register 
indirect 
indirect 

(disp = 0, 1, IRO, IR1) 
(disp = 0,1, IRO, IR1) 

P parallel addressing modes (0 ~ P ~ 3) 

Operation (P Field) 

00 src3 x src4, src 1 - src2 
01 src3 x src1, src4 - src2 
10 src 1 x src2, src3 - src4 
11 src3 x src 1, src2 - src4 

31 2423 
I I I I I 

src1 src3 

87 o I I i I I 
I I sr04 

A floating-point multiplication and a floating-point subtraction are performed 
in parallel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (MPYF3) reads 
from a register and the operation being performed in parallel (SUBF3) writes 
to the same register, MPYF3 accepts as input the contents of the register be­
fore it is modified by the SUBF3. 



Cycles 

Status Bits 

Mode Bit 

Example 

Parallel MPYF3 and SUBF3 MPYF31!SUBF3 

Any combination of addressing modes can be coded for the four possible 
source operands as long as two are coded as indirect and two are coded regis­
ter. The assignment of the source operands srcA - sreD to the sre1 - sre4 
fields varies, depending on the combination of addressing modes used, and 
the P field is encoded accordingly. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 0 
Z 0 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

MPYF3 R5,*++AR7(IR1),RO 

II SUBF3 R 7, * AR3-- ( 1 ) , R2 
or 

MPYF3 *++AR7(IR1), R5,RO 

II SUBF3 R7, *AR3-- (1) ,R2 

Before Instruction: 

R5 = 034COOOOOOh = 1.2750e + 01 
AR7 = 809904h 
IR1 = 8h 
RO=Oh 
R7 = 0733COOOOOh = 1.79750e + 02 
AR3 = 8098B2h 
R2=Oh 
Data at 80990Ch = 111 OOOOh = 2.250e + 00 
Data at 8098B2h = 70C8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-125 



MPYF311SUBF3 Parallel MPYF3 and SUBF3 

10-126 

After Instruction: 

R5 = 034COOOOOOh = 1.2750e + 01 
AR7 = 80990Ch 
IR1 = 8h 
RO = 0467180000h = 2.88867188e + 01 
R7 = 0733COOOOOh = 1.79750e + 02 
AR3 = 809881 h 
R2 = 05E3000000h = - 3.9250e + 01 
Data at 80990Ch = 111 OOOOh = 2.250e + 00 
Data at 809882h = 70C8000h = 1 .4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Multiply Integer MPYI 

MPYI sre, dst 

dst x sre - dst 

sre general addressing modes (G): 
o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

31 2423 

I I I I I I I I I I 
000010101 G 

87 
I i 

src 

The product of the dst and sre operands is loaded into the dst register. The sre 
and dstoperands, when read, are assumed to be 24-bit signed integers. The 
result is assumed to be a 48-bit signed integer. The output to the dst register 
is the 32 least significant bits of the result. 

I nteger overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

MPYI Rl,R5 

Before Instruction: 

R1 = 000033C251 h = 3,392,081 
R5 = 000078B600h = 7,910,912 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 000033C251 h = 3,392,081 
R5 = 00E21 D9600h = -501,377,536 
LUF LV UF N Z V C = 0 1 0 1 0 1 0 

Assembly Language Instructions 10-127 



M PYI3 Multiply Integer, 3-0perand 

Syntax MPYI3 src2, src1, dst 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-128 

31 

src1 x src2 - dst 

src1 three-operand addressing modes (T): 
o 0 any CPU register 
01 indirect (disp = 0,1, IRO, IR1) 
1 0 any CPU register 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2three-operand addressing modes (T): 
o 0 any CPU register 
o 1 any CPU register 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 $ n $ 27) 

2423 1615 87 0 Iii Iii iii I i i i 
I 
i I I 

I 
I I I I 

I >0<00101 < T dst src1 srd2. 

The product of the src 1 and src2 operands is loaded into the dst register. The 
src1 and src2 operands are assumed to be 24-bit signed integers. The result 
is assumed to be a signed 48-bit integer. The output to the dst register is the 
32 least significant bits of the result. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 



Example 1 

Example 2 

MPYI3 *AR4,*-AR1(1),R2 

Before Instruction: 

AR4 = 809850h 
AR1 = 8098F3h 
R2=Oh 
Data at 809850h = OADh = 173 
Data at 8098F2h = ODCh = 220 

Multiply Int!ger, 3-0e,erand MPYI3 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 809850h 
AR1 = 8098F3h 
R2 = 094ACh = 38,060 
Data at 809850h = OADh = 173 
Data at 8098F2h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

MPYI3 *--AR4(IRO),R2,R7 

Before Instruction: 

AR4 = 8099F8h 
IRO = 8h 
R2 = OC8h = 200 
R7=Oh 
Data at 8099FOh = 32h = 50 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8099FOh 
IRO = 8h 
R2 = OC8h = 200 
R7 = 02710h = 10,000 
Data at 8099FOh = 32h = 50 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-129 



MPYI31!ADDI3 Parallel MPYI3 and ADDI3 

Syntax MPVI3 srcA, srcB, dst1 
II ADDI3 srcC, srcD, dst2 

Operation srcA x srcB - dst1 

Operands 

Encoding 

Description 

10-130 

II srcD + srcC - dst2 

srcAU srcB 
srcC 
srcD 

Any two indirect (disp = O,1,IRO,IR1) 
Any two register (0 :s; Rn:s; 7) 

dst1 register (d1): 
0= RO 
1 = R1 

dst2 register (d2): 
0=R2 

src1 
src2 
src3 
src4 

1 = R3 

register 
register 
indirect 
indirect 

(Rn, O:s; n:s; 7) 
(Rn, O:s; n:s; 7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 :Si P :Si 3) 

Operation (P Field) 

00 src3 x src4, src1 + src2 
01 src3 x src1, src4 + src2 
10 src1 x src2, src3 + src4 
11 src3 x src1, src2 + src4 

31 2423 1615 

I I I 
srrfJ. 

I I 

src3 

87 o II I i I 
sro4 I I 

An integer multiplication and an integer addition are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (MPVI3) reads from a register 
and the operation being performed in parallel (ADDI3) writes to the same reg­
ister, then MPYI3 accepts as input the contents of the register before it is modi­
fied by the ADDI3. 



Cycles 

Status Bits 

Mode Bit 

Example 

Parallel MPYI3 and ADDI3 MPYI31!ADDI3 

Any combination of addressing modes can be coded for the four possible 
source operands as long as two are coded as indirect and two are coded as 
register. The assignment of the source operands srcA - sreD to the 
sre1 - src4 fields varies, depending on the combination of addressing modes 
used, and the P field is encoded accordingly. To simplify processing when the 
order is not significant, the assembler may change the order of operands in 
commutative operations. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 0 
Z 0 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

MPYIJ R7,R4,RO 
I I ADDlJ *-AR3,*ARS--(1),R3 

Before Instruction: 

R7 = 14h = 20 
R4 = 64h = 100 
RO=Oh 
AR3 = 80981 Fh 
AR5 = 80996Eh 
R3=Oh 
Data at 80981 Eh = OFFFFFFCBh = - 53 
Data at 80996Eh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-131 



MPYI3!!ADDI3 Parallel MPYI3 and ADDI3 

10-132 

Aftar Instruction: 

R7 = 14h = 20 
R4 = 64h = 100 
RO = 07DOh = 2000 
AR3 = 80981 Fh 
ARS = 80996Dh 
R3=Oh 
Data at 80981 Eh = OFFFFFFCBh = - 53 
Data at 80996Eh = 3Sh = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Nota: Cycle Count 

See subsection 9.S.2 on page 9-24 for operand ordering effects on cycle 
count. 



Parallel MPYI3 and STI MPYI311STI 

Syntax MPYI3 sre2, sret, dstt 
II STI sre3, dst2 

Operation sret x sre2 - dstt 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

II sre3- dst2 

sret register (Rn1, O:!i: n1 :!i: 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dstt register (Rn3, 0 :!i: n3 :!i: 7) 
src3 register (Rn4, 0 :!i: n4 :!i: 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 I I I I I I I I I I 
1110000 dst1 

I I 

src1 
I I I 

dst2 

87 o 

src2 
i I I 

I I II 

An integer multiplication and an integer store are performed in parallel. All reg­
isters are read atthe beginning and loaded atthe end ofthe execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (MPYI3) writes to the same register, STI 
accepts as inputthe contents ofthe register before it is modified by the MPYI3. 

If src2 and dst2 point to the same location, sre2is read before the write to dst2. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differ from the most significant bit of the 32-bit output value. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

Assembly Language Instructions 10-133 



MPYI311STI Parallel MPYI3 and ST/ 

Example MPYI3 *++ARO ( 1) , R5, R7 

10-134 

I I STI R2, *-AR3 ( 1 ) 

Before Instruction: 

ARO = 80995Ah 
R5 = 32h = 50 
R7=Oh 
R2 = ODCh = 220 
AR3 = 80982Fh 
Data at 80995Bh = OC8h = 200 
Data at 80982Eh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 80995Bh 
R5 = 32h = 50 
R7 = 2710h = 10000 
R2 = ODCh = 220 
AR3 = 80982Fh 
Data at 80995Bh = OC8h = 200 
Data at 80982Eh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Parallel MPYI3 and SUBI3 MPYI311SUBI3 

MPYI3 sreA, sreB, dst1 
II SUBI3 sreC, sreD, dst2 

srcA )( sreB - dst1 
II sreD - sreC - dst2 

srcAU sreB 
sreC 
sreD 

Any two indirect (disp = 0,1 ,IRO,IR1) 
Any two register (0 :$ Rn :$ 7) 

dst1 register (d1): 
0= RO 
1 = R1 

dst2 register (d2): 
0= R2 
1 = R3 

(Rn, 0 :$ n :$ 7) 
(Rn, 0 s n s 7) 

sre1 
sre2 
sre3 
sre4 

register 
register 
indirect 
indirect 

(disp = 0,1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 :$ P :$ 3) 

Operation (P Field) 

00 sre3 )( sre4, sre1 - sre2 
01 src3)( sre1, sre4 - sre2 
10 sre 1 )( sre2, sre3 - sre4 
11 sre3 )( sre 1, sre2 - sre4 

31 2423 
i i 

src1 

1615 iii 
srd2. 

i i 

src3 

87 o 
I I I I i i I sr04 

An integer multiplication and an integer subtraction are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (MPYI3) reads from a 
register and the operation being performed in parallel (SUBI3) writes to the 
same register, MPYI3 accepts as input the contents of the register before it is 
modified by the SUBI3. 

Assembly Language Instructions 10-135 



MPYI311SUBI3 Parallel MPYI3 and SUBI3 

Cycles 

Status Bits 

Mode Bit 

Example 

10-136 

Any combination of addressing modes can be coded for the four possible 
source operands as long as two are coded as indirect and two are coded as reg­
ister. The assignment of the source operands sraA - sreD to the sre1 - src4 
fields varies, depending on the combination of addressing modes used, and the 
P field is encoded accordingly. To simplify processing when the order is not sig­
nificant, the assembler may change the order of operands in commutative op­
erations. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 1 if an integer underflow occurs; 0 otherwise 
N 0 
Z 0 
V 1 if an integer overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

MPYI3 R2, *++ARO ( 1 ) , RO 
II SUBI3 *AR5--(IR1) ,R4,R2 
or 

MPYI3 *++ARO ( 1) , R2, RO 
II SUBI3 *AR5--( IR1) ,R4 ,R2 

Before Instruction: 

R2=32h=50 
ARO = 8098E3h 
RO=Oh 
AR5 = 8099FCh 
IR1 = OCh 
R4 = 07DOh = 2000 
Data at 8098E4h = 62h = 98 
Data at 8099FCh = 4BOh = 1200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



After Instruction: 

R2 = 320h = 800 
ARO = 8098E4h 
RO = 01324h = 4900 
AR5 = 8099FOh 
IR1 = OCh 
R4 = 07DOh = 2000 
Data at 8098E4h = 62h = 98 
Data at 8099FCh = 4BOh = 1200 

Parallel MPYI3 and SUBI3 MPYI31!SUBI3 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cYcle 
count. 

Assembly Language Instructions 10-137 



NEGB Negative Integer With Borrow 

Syntax NEGB sre, dst 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-138 

O-sre-C- dst 

sre general addressing modes (G): 
o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

31 2423 

I ii Iii iii I ?00010110G 

87 
I I 

sra 

The difference of the 0, sre, and C operands is loaded into the dst register. The 
dst and sre are assumed to be signed integers. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

NEGB RS,R7 

Before Instruction: 

R5 = OFFFFFFCBh = - 53 
R7=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

R5 = OFFFFFFCBh = - 53 
R7 = 34h = 52 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 



Negate Floating Point NEGF 

Syntax NEGF src, dst 

Operation 0- src- dst 

Operands src general addressing modes (G): 
00 register (Rn, 0 s n s 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 7) 

Encoding 

31 2423 1615 87 0 
. [0 1010 101

11 01 
111 111 

1 1 1 

I 
1 1 1 1 

I G dst src 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

The difference of the 0 and src operands is loaded into the dst register. The 
dst and src operands are assumed to be floating-point numbers. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

NEGF *++AR3(2),Rl 

Before Instruction: 

AR3 = 809800h 
R1 = 0578400025h = 6.28125006e + 01 
Data at 809802h = 70C8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809802h 
R1 = 07F3800000h = -1.4050e + 02 
Data at 809802h = 70C8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-139 



NEGFIISTF Parallel NEGF and STF 

Syntax NEGF src2, dst1 
II STF src3, dst2 

Operation 0 - src2 - dst1 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-140 

II src3- dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 s; n1 s; 7) 
src3 register (Rn2, 0 s; n2 s; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

I • I • • • • I • • 10' O' 01 1110001dSI1 .. 

87 
iii 

dst2 I i • i i 

sr(fJ, 

o 
i I 

A floating-point negation and a floating-point store are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one ofthe parallel operations (STF) reads from a reg­
ister and the operation being performed in parallel (NEGF) writes to the same 
register, STF accepts as input the contents of the register before it is modified 
by the NEGF. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF 1 if a floating-point underflow occurs; 0 unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example NEGF *AR4--(1),R7 
I I STF R2,*++AR5(1) 

Before Instruction: 

AR4 = S09SE1h 
R7=Oh 
R2 = 0733COOOOOh = 1.79750e + 02 
AR5 = S09S03h 

Parallel NEFG and STF NEGFIISTF 

Data at S09SE1h = 57B400000h = 6.2S1250e + 01 
Data at S09S04h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = S09SEOh 
R7 = 0584COOOOOh = - 6.2S1250e + 01 
R2 = 0733COOOOOh = 1.79750e + 02 
AR5 = S09S04h 
Data at S09SE1 h = 57B4000h = 6.2S1250e + 01 
Data at S09S04h = 733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-141 



NEGI Negate Integer 

Syntax 

Operation 

Operands 

Encoding 

NEGI src, dst 

O-src- dst 

src general addressing modes (G): 
o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

1615 87 
I I 

000011000 G src 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-142 

The difference of the 0 and src operands is loaded into the dst register. The 
dst and src operands are assumed to be signed integers. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

NEG! 174,R5 (174 '" OAEh) 

Before Instruction: 

R5 = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = OFFFFFF52 = -174 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 



Parallel NEGI and STI NEGIIISTI 

Syntax NEGI src2, dst1 
II STI src3, dst2 

Operation 0 - src2 - dst1 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

II src3- dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 so n1 so 7) 
src3 register (Rn2, 0 so n2 so 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 

I ii iii iii iii i I 1110010 dst1000 

i I I iii 
dst2 srd2. 

An integer negation and an integer store are performed in parallel. All registers 
are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (NEGI) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by the 
NEGI. 

If src2 and dst2 point to the same location, src2is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

Assembly Language Instructions 10-143 



NEGIIiSTI Parallel NEGI and STI 

Example NEGI *-AR3 , R2 

10-144 

I I STI R2,*AR1++ 

Before Instruction: 

AR3 = 80982Fh 
R2 = 19h = 25 
AR1 = 8098A5h 
Data at 80982Eh = ODCh = 220 
Data at 8098A5h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 80982Fh 
R2 = OFFFFFF24h = - 220 
AR1 = 8098A6h 
Data at 80982Eh = ODCh = 220 
Data at 8098A5h = 19h = 25 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

Example 2 

No Operation NOP 

NOP sre 

No ALU or multiplier operations. 
ARn is modified if sre is specified in indirect mode. 

sre general addressing modes (G): 
o 0 register (no operation) 
1 0 indirect (modify ARn, 0 s n s 7) 

31 2423 1615 87 o 

I ' , I ' , , , , I G 10 ' 0 ' 0' 0' 0 I ' 
000011001. _ 

i I , I src: 

If the sre operand is specified in the indirect mode, the specified addressing 
operation is performed, and a dummy memory read occurs. If the sre operand 
is omitted, no operation is performed. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

NOP 

Before Instruction: 

PC = 3Ah 

After Instruction: 

PC = 3Bh 

NOP *AR3--(1) 

Before Instruction: 

PC = 5h 
AR3 = 809900h 

After Instruction: 

PC = 6h 
AR3 = 8098FFh 

Assembly Language Instructions 10-145 



NORM Normalize 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-146 

NORM sre, dst 

norm (sre) - dst 

sre general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
01 direct 
1 0 indirect 
1 1 immediate 

31 2423 

I I I I I I I I I I 
000011010G 

1615 87 o 
I I 

I I sra 

The sreoperand is assumed to be an unnormalized floating-point number; that 
is, the implied bit is set equal to the sign bit. The dst is set equal to the normal­
ized sre operand with the implied bit removed. The dst operand exponent is 
set to the sre operand exponent minus the size of the left-shift necessary to 
normalize the sre. The dst operand is assumed to be a normalized floating­
point number. 

If sre (exp) = -128 and sre (man) = 0, then dst= 0, Z = 1, and UF = O.lf sre (exp) 
= -128 and sre (man) " 0, then dst = 0, Z = 0, and UF = 1. For all other cases 
of the sre, if a floating-point underflow occurs, then dst (man) is forced to 0 and 
dst (exp) = -128. If sre (man) = 0, then dst (man) = 0 and dst (exp) = -128. Re­
fer to Section 4.6 on page 4-18 for more information. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV Unaffected 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example NORM Rl,R2 

aefore Instruction: 

R1 = 0400003AF5h 
R2 = 070C800000h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 0400003AF5h 
R2 = F26BD40000h = 1.12451613e - 04 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Normalize NORM 

Assembly Language Instructions 10-147 



NOT Bitwise Logical-Complement 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-148 

NOT src, dst 

-src- dst 

src general addressing modes (G): 
o 0 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate 

dst any CPU register 

31 2423 

I ' , I ' iii i I 
000011011G 

87 o 
i i , I src 

The bitwise logical-complement ofthe srcoperand is loaded into the dstregis­
ter. The complement is formed by a logical-NOT of each bit ofthe srcoperand. 
The dst and src operands are assumed to be unsigned integers. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is affected by OVM bit value. 

NOT @982Ch,R4 

Before Instruction: 

DP = 80h 
R4=Oh 
Data at 80982Ch = 5E2Fh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R4 = OFFFFA 1 DOh 
Data at 80982Ch = 5E2Fh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Parallel NOT and STI NOTIISTI 

NOT 
II STI 

src2, dst1 
src3, dst2 

-src2- dst1 
II src3 - dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 s; n1 s; 7) 
src3 register (Rn2, 0 s; n2 s; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

1
31

• 1 · · · · 12)2~ 10'0'01 1110011 dSt1 .. 

1615 
i I I Iii 

dst2 src2. 

A bitwise logical-NOT and an integer store are performed in parallel. All regis­
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (NOT) writes to the same register, STI 
accepts as input the contents of the register before it is modified by the NOT. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-149 



NOTIISTI Parallel NOT and STI 

Example 

10-150 

NOT *+AR2,R3 
I I STI R7,*--AR4 (IR1) 

Before Instruction: 

AR2 = 8099CBh 
R3=Oh 
R7 = ODCh = 220 
AR4 = 809850h 
IR1 = 10h 
Data at 8099CCh = OC2Fh 
Data at 809840h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8099CBh 
R3 = OFFFFF3DOh 
R7 = ODCh = 220 
AR4 = 809840h 
IR1 = 10h 
Data at 8099CCh = OC2Fh 
Data at 809840h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Bitwise Logical-OR OR 

OR sre, dst 

dst OR sre - dst 

sre general addressing modes (G): 
00 any CPU register 
01 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst any CPU register 

31 2423 1615 87 0 I I I I I I I I I I I I I 

I 
I I I I 

I G dst src .000,100000, 

The bitwise logical OR between the sre and dstoperands is loaded into the dst 
register. The dst and sre operands are assumed to be unsigned integers, 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

OR *++AR1(IR1},R2 

Before Instruction: 

AR1 = 809800h 
IR1 = 4h 
R2 = 012560000h 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR 1 = 809804h 
IR1 = 4h 
R2 = 012562BCDh 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-151 



OR3 Bitwise Logical-OR, 3-0perand 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-152 

OR3 sre2, sre1, dst 

sre1 OR sre2 - dst 

sre1 three-operand addressing modes (T): 
o 0 register (Rn1 ,0 n1 ~ 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 ~ n1 ~ 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 ~ n2 ~ 27) 
o 1 register (Rn2, 0 ~ n2 ~ 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0,1, IRO, IR1) 

dst register (Rn, 0 ~ n ~ 27) 

31 2423 87 , I i , ,16, lS, 

dst . 

iii iii I' sr~ I ' , I ' , , , , I 001001011 T src1 

The bitwise logical-OR between the sre1 and sre20perands is loaded into the 
dstregister. The sre1, sre2, and dstoperands are assumed to be unsigned in­
tegers. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example 

Bitwise Logical-OR, 3-0perand OR3 

OR3 *++ARl(IRl),R2,R7 

Before Instruction: 

AR1 = 809800h 
IR1 = 4h 
R2 = 012560000h 
R7=Oh 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809804h 
IR1 = 4h 
R2 = 012560000h 
R7 = 012562BCDh 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10·153 



OR311STI Parallel OR3 and STI 

Syntax 

Operation 

Operands 

Encoding 

Cycles 

Status Bits 

Mode Bit 

10-154 

OR3 src2, src1, dst1 
II STI src3, dst2 

src1 OR src2 - dst1 
src3- dst2 

src1 register (Rn1, 0 ~ n1 ~ 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, 0 s; n2 s; 7) 
src3 register (Rn3, 0 ~ n3 ~ 7) 
dst2indirect (disp = 0, 1,IRO,IR1) 

I I 

1110100 dst1 src1 
I "j 15, 
src3 

I I I 

dst2 
I I I 

srdJ. 

A bitwise logical-OR and an integer store are performed in parallel. All regis­
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (OR3) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by the 
OR3. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example OR3 *++AR2,RS,R2 
I I STI R6,*ARl--

Before Instruction: 

AR2 = 809830h 
RS = 800000h 
R2=Oh 
RS = ODCh = 220 
AR 1 = 809883h 
Data at 809831 h = 9800h 
Data at 809883h = Oh 

Parallel OR3 and STI OR311STI 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809831h 
RS = 800000h 
R2 = 809800h 
RS = ODCh = 220 
AR 1 = 809882h 
Data at 809831 h = 9800h 
Data at 809883h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-155 



POP Pop Integer 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-156 

POP dst 

*SP--- dst 

dst register (Rn, 0 ~ n ~ 27) 

31 2423 1615 87 0 Iii Iii iii I i I 
00001110001 

The top of the current system stack is popped and loaded into the dst register 
(32 LSBs). The top of the stack is assumed to be a signed integer. The POP 
is performed with a postdecrement of the stack pointer. The exponent bits of 
an extended precision register (R7-RO) are left unmodified. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

POP R3 

Before Instruction: 

SP = 809856h 
R3 = 012DAh = 4,826 
Data at 809856h = FFFFODA4h = - 62,044 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 809855h 
R3 = OFFFFODA4h = -62,044 
Data at 809856h = FFFFODA4h = - 62,044 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Poe Floating Point POPF 

POPF dst 

*SP--- dst1 

dst register (Rn, 0 s; n s; 7) 

31 2423 1615 87 0 I I I I I I I I I I I I 
00001110101 

The top of the current system stack is popped and loaded into the dst register 
(32 MSBs). The top of the stack is assumed to be a floating-point number. The 
POP is performed with a postdecrement of the stack pointer. The eight LSBs 
of an extended precision register (R7-RO) are 0 filled. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
UF 0 
LV Unaffected 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

POPF R4 

Before Instruction: 

SP = 80984Ah 
R4 = 025D2E0123h = 6.91186578e + 00 
Data at 80984Ah = 5F2C1302h = 5.32544007e + 28 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 809849h 
R4 = 5F2C130200h = 5.32544007e + 28 
Data at 80984Ah = 5F2C1302h = 5.32544007e + 28 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-157 



PUSH PUSH Integer 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-158 

PUSH src 

src-*++SP 

src register (Rn, 0 :os; n :s; 27) 

31 2423 1615 87 0 I I I I I I I I I I I I 
00001111001 

The contents of the src register (32 LSBs) are pushed on the current system 
stack. The src is assumed to be a signed integer. The PUSH is performed with 
a preincrement of the stack pointer. The integer or mantissa portion of an ex­
tended precision register (R7-RO) is saved with this instruction. 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

PUSH R6 

Before Instruction: 

SP = 8098AEh 
R6 = 025C128081h = 633,415,688 
Data at 8098AFh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 8098AFh 
R6 = 025C128081h = 633,415,688 
Data at 8098AFh = 5C128081h = 1,544,716,417 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

PUSH Floating Point PUSHF 

PUSHF src 

src-*++SP 

src register (Rn, 0 =' n =' 7) 

31 2423 1615 87 0 Iii Iii iii I i I 
00001111101 

The contents of the src register (32 MSBs) are pushed on the current system 
stack. The src is assumed to be a floating-point number. The PUSH is per­
formed with a preincrement of the stack pOinter. The eight LSBs of the mantis­
sa are not saved. (Note the difference in R2 and the value on the stack in the 
example below.) 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

PUSHF R2 

Before Instruction: 

SP = 809801h 
R2 = 025C128081 h = 6.87725854e + 00 
Data at 809802h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 809802h 
R2 = 025C128081h = 6.87725854e + 00 
Data at 809802h = 025C1280h = 6.87725830e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-159 



RETlcond Return From Interrupt Conditionally 

Syntax RETlcond 

Operation If conals true: 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-160 

*SP--- PC 
1 - ST (GIE). 

Else, continue. 

None 

31 2423 I I I I I I I I I I I I 
011110000 00 

1615 a 7 0 

A conditional return is performed. If the condition is true, the top of the biack 
is poppea to the PC, and a 1 Is written to the global interrupt enaole (GIE) bit 
of the status register. This has the effect of enabling all interrupts for which the 
corresponding interrupt enaole bit is a 1. 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Table 1~9 on page 10-13 for a list of condition mnemonics, 
condition codes, and flags). Condition flags are set on a previous instruction 
only when the destination register is one of the extended-precision registers 
(R7-RO) or When one of the compare instructions (CMPF, CMPF3, CMPI, 
CMPI3, TSTB, or TSTB3) is executed. 

4 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example RETINZ 

Before Instruction: 

PC = 456h 
SP = 809830h 
ST=Oh 
Data at 809830h = 123h 

Return From Interrupt Conditionally RETlcond 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 123h 
SP = 80982Fh 
ST = 2000h 
Data at 809830h = 123h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-161 



RETScond Return From Subroutine Conditionally" 

Syntax RETScond 

Operation If cond is true: 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-162 

*SP--- PC. 
Else, continue. 

None 

,3\ iii , i i 2~ 23, i , 

01111000100 

1615 87 0 

A conditional return is performed. If the condition is true, the top of the stack 
is popped to the PC. 

The TMS320C3x provides 20 condition codes that you can use with this in­
struction (see Table 10-9 on page -13 for a list of condition mnemonics, condi­
tion codes, and flags). Condition flags are set on a previous instruction only 
when the destination register is one of the extended-precision registers (R7-
RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, 
TSTB, or TSTB3) is executed. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

RETSGE 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

Before Instruction: 

PC = 123h 
SP = 80983Ch 
Data at 80983Ch = 456h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 456h 
SP = 80983Bh 
Data at 80983Ch = 456h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Round Floating Point RND 

RND src, dst 

rnd{src} - dst 

src general addressing modes {G}: 
00 register {Rn, 0 =' n =' 7} 
01 direct 
1 0 indirect 
1 1 immediate 

dst register {Rn, 0 =' n =' 7} 

31 2423 1615 87 0 

1010101110101011101 
1 1 1 

1 

1 1 1 1 

1 
G dst src 

The result of rounding the src operand is loaded into the dst register. The src 
operand is rounded to the nearest single-precision floating-point value. If the 
src operand is exactly half-way between two single-precision values, it is 
rounded to the most positive value. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs or the src operand is 0; 

o otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z Unaffected 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is affected by OVM bit value. 

RND R5,R2 

Before Instruction: 

R5 = 0733C16EEFh = 1.7975559ge + 02 
R2=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-163 



RND Round Floating Point 

10-164 

After Instruction: 

R5 = 0733C16EEFh = 1.7975559ge + 02 
R2 = 0733C16FOOh = 1.79755600e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: BZUF Instruction 

If a BZ instruction is executed immediately following an RND instruction with 
a 0 operand, the branch is not performed because the zero flag is not set. 
To circumvent this problem, execute a BZUF instruction instead of a BZ 
instruction. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Rotate Left ROL 

ROL cist 

dst left-rotated 1 bit - dst 

cist register (Rn, 0 $ n $ 27) 

31 2423 1615 87 0 I I I I I I I I I I I I 
00010001111 

The contents of the dstoperand are left-rotated one bit and loaded into the dst 
register. This is a circular rotation, with the MSB transferred into the LSB. 

Rotate left: 

C Ldst;J 
1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Set to the value of the bit rotated out of the high-order bit. Unaffected 

if dst is not R7 - RO. 

OVM Operation is not affected by OVM bit value. 

ROL R3 

Before Instruction: 

R3 = 80025CD4h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 0004B9A9h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

Assembly Language Instructions 10-165 



ROLe Rotate Left Through Ca"x 

Syntax ROLC dst 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

10-166 

dst left-rotated one bit through carry bit - dst 

dst register (Rn, 0 s; n s; 27) 

31 2423 Iii Iii iii I i I 
00010010011 

1615 87 0 

The contents of the dst operand are left-rotated one bit through the carry bit 
and loaded into the dstregister. The MSB is rotated to the carry bit at the same 
time the carry bit is transferred to the LSB. 

Rotate left through carry bit: 

cc () dst:J 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Set to the value of the bit rotated out of the high-order bit. If dst is not 

R7-RO, then C is shifted into the dst but not changed. 

OVM Operation is not affected by OVM bit value. 

ROLe R3 

Before Instruction: 

R3 = 00000420h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

R3 = 000000841 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Rotate Left Through Car!y ROLe 

Example 2 ROLe R3 

Before Instruction: 

R3 = 80004281 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 00008502h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

Assembly Language Instructions 10-167 



ROR Rotate Right 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-168 

ROR dst 

dst right-rotated one bit through carry bit - dst 

dst register (Rn, 0 :s; n :s; 27) 

31 2423 1615 87 0 Iii Iii iii I i I 
00010010111 

The contents of the dst operand are right-rotated one bit and loaded into the 
dst register. The LSB is rotated into the carry bit and also transferred into the 
MSB. 

Rotate right: 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Set to the value of the bit rotated out of the high-order bit. Unaffected 

if dstis not R7-RO. 

OVM Operation is not affected by OVM bit value. 

ROR R7 

Before Instruction: 

R7 = 00000421 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 80000210h 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 



Syntax 

0pfuatlon 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Rotate Right Through Carty RORe 

RORC dst 

dst right-rotated one bit through carry bit - dst 

dst register (Rn, 0 s n s 27) 

31 2423 1615 87 0 

The contents of the dst operand are right-rotated one bit through the status 
register's carry bit. This could be viewed as a 33-bit shift. The carry bit value 
is rotated into the MSB of the dst, while at the same time the dstLSB is rotated 
into the carry bit. 

Rotate right through carry bit: 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Set to the value of the bit rotated out of the high-order bit. If dst is not 

R7 - RO. then C is shifted in but not changed. 

OVM Operation is not affected by OVM bit value. 

RORe R4 

Before Instruction: 

R4 = 80000081 h 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

After Instruction: 

R4 = 40000040h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

Assembly Language Instructions 10-169 



RPTB RBPf!!Jt Block 

Syntax RPTB src 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-170 

src- RE 
1 -ST (RM) 
Next PC- RS 

src long-immediate addressing mode 

31 2423 1615 
Iii 

87 o 
i i i i 

i I src 

RPTB allows a block of instructions to be repeated a number of times without 
any penalty for looping. This instruction activates the block repeat mode of up­
dating the PC. The src operand is a 24-bit unsigned immediate value that is 
loaded Into the repeat end address (RE) register. A 1 is written into the repeat 
mode bit of status register ST (RM) to indicate that the PC is being updated 
in the repeat mode. The address of the next instruction is loaded into the repeat 
start address (RS) register. 

4 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

RPTB 127h 

Before Instruction: 

PC = 123h 
ST=Oh 
RE=Oh 
RS=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 124h 
ST= 100h 
RE = 127h 
RS = 124h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

RPTS src 

src- RC 
1 - ST (RM) 
1-S 
Next PC- RS 
Next PC- RE 

src general addressing modes (G): 
00 register 
01 direct 
1 0 indirect 
1 1 immediate 

31 2423 1615 

I ' , I' , , , 'I 1 1 '1'0'1'11 ' 000100111G. . 

Repeat Single RPTS 

87 o , , , I src 

The RPTS instruction allows you to repeat a single instruction a number of 
times without any penalty for looping. Fetches can also be made from the in­
struction register (IR). thus avoiding repeated memory access. 

The src operand is loaded into the repeat counter (RC). A 1 is written into the 
repeat mode bit of the status register ST (RM). A 1 is also written into the re­
peat single bit (S). This indicates that the program fetches are to be performed 
only from the instruction register. The next PC is loaded into the repeat end 
address (RE) register and the repeat start address (RS) register. 

For the immediate mode. the src operand is assumed to be an unsigned inte­
ger and is not sign-extended. 

4 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-171 



RPTS Rep!st Single 

Example 

10-172 

RPTS AR5 

Before Instruction: 

PC = 123h 
ST=Oh 
RS=Oh 
RE=Oh 
RC = Oh 
AR5= OFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 124h 
ST= 100h 
RS = 124h 
RE = 124h 
RC = OFFh 
AR5= OFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Signal, Interlocked SIGI 

SIGI 

Signal interlocked operation. 
Wait for interlock acknowledge. 
Clear interlock. 

None 

An interlocked operation is signaled over XFO and XF1. After the intarlor.kad 
operation is acknowledged, the interlocked operation ends. SIGI ignoraR the 
external ready signals. Refer to Section 6.4 on page 6-12 for demila" InformA­
tion. 

1 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

SIGI 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

The processor sets XFO to 0, idles 
until XF1 is set to 0, and then 
sets XFO to 1. 

Assembly Language Instructions 10-173 



STF Store Floatinfl, Point 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-174 

STF src, dst 

src- dst 

src register (Rn, 0 :s n :s 7) 

dst general addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 

I I I I I I I I I I 
000101000 G 

87 
I I 

dst 

The src register is loaded into the dst memory location. The src and dst oper­
ands are assumed to be floating-point numbers. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

STF R2,@98Alh 

Before Instruction: 

DP = 80h 
R2 = 052C501900h = 4.30782204e + 01 
Data at 8098A 1 h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R2 = 052C501900h = 4.30782204e + 01 
Data at 8098A 1 h = 52C5019h = 4.30782204e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Store Floating, Point, Interlocked STFI 

STFI src, dst 

src- dst 
Signal end of interlocked operation. 

src register (Rn, 0 $ n $ 7) 

dstgeneral addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 1615 

I ii Iii iii I 000101001 G 

87 o 
I I 

dst 

The src register is loaded into the dst memory location. An interlocked opera­
tion is signaled over pins XFO and XF1. The src and dstoperands are assumed 
to be floating-point numbers. Refer to Section 6.4 on page 6-12 for detailed 
information. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

STFI R3,*-AR4 

Before Instruction: 

R3 = 0733COOOOOh = 1.79750e + 02 
AR4 = 80993Ch 
Data at 80993Bh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 0733COOOOOh = 1.79750e + 02 
AR4 = 80993Ch 
Data at 80993Bh = 733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-175 



STFIISTF Parallel Store Floating Point 

Syntax 

Operation 

Operands 

Enc:orfing 

Description 

StatuR Bits 

Mod~ Bit 

Example 

10-176 

STF src2, dst2 
II STF src1, dst1 

src2- dst2 
II src1- dst1 

src1 register (Rn1, Os n1 s 7) 
dst1 indirect (disp = 0, 1, IRO, IR1) 
src2 register (Rn2, ° s n2 s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 16

1
15, 

src1 _ 

iii 

dst1 

87 
Iii 

dsl2 

Two STF instructions are executed in parallel. Both src1 and src2are assumed 
to be floating-point numbers. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

STF R4,*AR3-­
I I STF R3,*++ARS 

Before Instruction: 

R4 = 070C800000h = 1 .4050e + 02 
AR3 = 809835h 
R3 = 0733COOOOOh = 1 .79750e + 02 
AR5 = 8099D2h 
Data at 809835h = Oh 
Data at 8099D3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



After Instruction: 

R4 = 070C800000h = 1.4050e + 02 
AR3 = 809834h 
R3 = 0733COOOOOh = 1.79750e + 02 
AR5 = 8099D3h 

Parallel Store Floating Point STFIISTF 

Data at 809835h = 070C8000h = 1.4050e + 02 
Data at 8099D3h = 0733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-177 



STI Store Integer 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-178 

STI src, dst 

src- dst 

src register (Rn, 0 ~ n ~ 27) 

dstgeneral addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 1615 

I ii Iii iii I ~00101010 G 
iii I i 
src _ 

87 o 
i i 

i I dst 

The src register is loaded into the dst memory location. The src and dst oper­
ands are assumed to be signed integers. 

1 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

STl R4,@982Bh 

Before Instruction: 

DP = 80h 
R4 = 42BD7h = 273,367 
Data at 80982Bh = OE5FCh = 58,876 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R4 = 42BD7h = 273,367 
Data at 80982Bh = 42BD7h = 273,367 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Store Integer, Interlocked STU 

STII src, dst 

src- dst 
Signal end of interlocked operation 

src register (Rn, 0 s n s 27) 

dstgeneral addressing modes (G): 
01 direct 
1 0 indirect 

31 2423 1615 87 0 I I , I ' , , , , I , , , 
I 

, , , , 
I G src dst ,000,101011, 

The src register is loaded into the dst memory location. An interlocked opera­
tion is signaled over pins XFO and XF1. The src and dstoperands are assumed 
to be signed integers. Refer to Section 6.4 on page 6-12 for detailed informa­
tion. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

OVM Operation is not affected by OVM bit value. 

STII Rl,@98AEh 

Before Instruction: 

DP = 80h 
R1 = 78Dh 
Data at 8098AEh = 25Ch 

After Instruction: 

DP = 80h 
R1 = 78Dh 
Data at 8098AEh = 78Dh 

Assembly Language Instructions 10-179 



STIIISTI Parallel STI and STI 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-180 

STI src2, dst2 
II STI src1, dst1 

src2- dst2 
II src1 - dst1 

src1 register (Rn1 , 0 ~ n1 ~ 7) 
dst1 indirect (disp = 0,1, IRO, IR1) 
src2 register (Rn2, 0 ~ n2 ~ 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

I ii iii iii iii iii iii ~ 1 00001 src2000 src1 

iii 
dst1 

iii 

dst2. 

o 
i I 

Two integer stores are performed in parallel. If both stores are executed to the 
same address, the value written is that of STI src2, dst2. 

1 

LUF Unaffected 
LV Unaffected 
U F Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

STl RO,*++AR2(lRO) 
I I STl R5,*ARO 

Before Instruction: 

RO = ODCh = 220 
AR2 = 809830h 
IRO = 8h 
R5 = 35h = 53 
ARO = 8098D3h 
Data at 809838h = Oh 
Data at 8098D3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



After Instruction: 

RO = ODCh = 220 
AR2 = 809838h 
IRO = 8h 
R5=35h=53 
ARO = 8098D3h 
Data at 809838h = ODCh = 220 
Data at 8098D3h = 35h = 53 

Parallel STI and STI STIII STI 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-181 



SUBB Subtract Integer With Borrow 

Syntax SUBB src, dst 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-182 

dst- src- C - dst 

src general addressing modes (G): 
o 0 register (Rn, 0 :s: n :s: 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s: n :s: 27) 

31 2423 

I ii Iii iii I 000101101G 

87 
i i 

sra 

The difference of the dst, src, and C operands is loaded into the dst register. 
The dst and src operands are assumed to be signed integers. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

SUBB *ARS++(4),RS 

Before Instruction: 

AR5 = 809800h 
R5 = OFAh = 250 
Data at 809800h = OC7h = 199 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

AR5 = 809804h 
R5 = 032h = 50 
Data at 809800h = OC7h = 199 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

31 

Subtract Integer With Borrow, 3-0perand SUBB3 

SUBB3 src2, src1, dst 

src1 - src2 - C - dst 

src1 three-operand addressing modes (T): 
00 register (Rn1, 0 s n1 s 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1 ,Os n1 s 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 s n2 s 27) 
o 1 register (Rn2, 0 s n2 s 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 s n s 27) 

2423 1615 87 0 Iii Iii iii I i i i 

I 
i i i 

I 
i i i i 

I :0 0<001100: T dst src1 srdJ. 

The difference of the src1 and src2 operands and the C flag is loaded into the 
dstregister. The src1, src2, and dstoperands are assumed to be signed inte­
gers. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

Assembly Language Instructions 10-183 



SUBB3 Subtract Integer With Borrow, 3-0perand 

Example 

10-184 

SUBB3 RS,*ARS++(IRO),RO 

Before Instruction: 

AR5 = 809800h 
IRO = 4h 
R5 = OC7h = 199 
RO=Oh 
Data at 809800h = OFAh = 250 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

AR5 = 809804h 
IRO = 4h 
R5 = OC7h = 199 
RO = 32h = 50 
Data at 809800h = OFAh = 250 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Subtract Integer Condtttoflalfy suac 

suac sre, dst 

If (dst- sre O!: 0): 
(dst- sre« 1) OR 1 - dst 
Else: 
dst« 1 - dst 

sre general adaressing modes (G): 
o 0 register (Rn, 0 $ n $ 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 $ n $ 27) 

r1, I Iii i i 2~ 2j 
000101110 G 

81 
I I 

SIC 

The srcoperand is subtracted from the dstoperand. Tna asroparand Is loaaed 
with a value dependent on the result of the subtraction. If (dst- src) IS greater 
than or equal to 0, then (dst- src) is left-shiftea one Dit, the ieast significant 
bit is set to 1, and the result is loaded into the dst register. If (ast - src) Is less 
than 0, dst is left-shifted one bit and loaded into the dst register. The ast and 
sre operands are assumed to be unsignea integers. 

You can use SUBC to perform a single step of a multi bit integer aivision. See 
subsection 11.3.4 on page 11-26 for a detailed description. 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 

Assembly Language instrucrions 10-185 



SU Be Subtract Integ,er Conditionally 

Example 1 

Example 2 

10-186 

SUBC @9SCSh,Rl 

Before Instruction: 

DP = 80h 
R1 = 04F6h = 1270 
Data at 8098C5h = 492h = 1170 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R1 = OC9h = 201 
Data at 8098C5h = 492h = 1170 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

SUBC 3000,RO (3000 = OBBSh) 

Before Instruction: 

RO = 07DOh = 2000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = OFAOh = 4000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Subtract Floating, Point SUBF 

SUBF sre, dst 

dst - sre - dst 

sre general addressing modes (G): 
o 0 register (Rn, 0 :s; n :s; 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s; n :s; 7) 

31 2423 

I I I I I I I I I I 
000101111G 

I I 1161'5, 
dst . 

87 
I I 

src 

The difference of the dst operand minus the sre operand is loaded into the 
dst register. The dst and sre operands are assumed to be floating-point num­
bers. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

SUBF *ARO--(IRO),R5 

Before Instruction: 

ARO = 809888h 
IRO = 80h 
R5 = 0733COOOOOh = 1.79750000e + 02 
Data at 809888h = 70C8000h = 1 .4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 809808h 
IRO = 80h 
R5 = 051 DOOOOOOh = 3.9250e + 01 
Data at 809888h = 70C8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-187 



SUBF3 Subtract Floating Point, 3-0perand 

SYIi'taJ( SUBF3 src2, src1, dst 

O.,&tatiol' 

Openmds 

Encoding 

Dascrlptlon 

(,'ycles 

Sta'tus Bits 

Mode Bit 

10-188 

src1 - src2 - dst 

src1 three-operand addressing modes (1): 
00 register (Rn1, :s; n1 :s; 7) 
01 indirect (disp = 0,1, IRO, IR1) 
1 0 register (Rn1, :s; n1 :s; 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2three-operand addressing modes (1): 
o 0 register (Rn2, :s; n2 :s; 7) 
o 1 register (Rn2, :s; n2 :s; 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 :s; n :s; 7) 

31 2423 1615 87 0 
Iii Iii iii I 

i i i 

I 
i i i 

I 
i i : i i 

I :0 0 <00110< T dst src1 s~~ 

The difference of the src1 and src2 operands is loaded into the dst register. 
The src1, src2, and dst operands are assumed to be floating-point numbers. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example 1 

Example 2 

Subtract Floating Point, 3-0perand SUBF3 

SUBF3 *ARO--(IRO),*ARl,R4 

Before Instruction: 

ARO = 809888h 
IRO = 80h 
AR1 = 809851h 
R4=Oh 
Data at 809888h = 70C8000h = 1.4050e + 02 
Data at 809851 h = 733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 809808h 
IRO = 80h 
AR1 = 809851 h 
R4 = 51 DOOOOOOh = 3.9250e + 01 
Data at 809888h = 70C8000h = 1.4050e + 02 
Data at 809851 h = 733COOOh = 1 .79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

SUBF3 R7,RO,R6 

Before Instruction: 

R7 = 578400000h = 6.281250e + 01 
RO = 34C200000h = 1.27578125e + 01 
R6=Oh 
LUF LV UF N Z V C ::; 0 0 0 0 0 0 0 

After Instruction: 

R7 = 578400000h = 6.281250e + 01 
RO = 34C200000h = 1.27578125e + 01 
R6 = 587C80000h = -5.00546875e + 01 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-189 



SUBF311STF Parallel SUBF3 and STF 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-190 

SUBF3 src1, src2, dst1 
II STF src3, dst2 

src2- src1- dst1 
II src3- dst2 

src1 register (Rn1, 0 ~ n1 ~ 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, 0 ~ n2 ~ 7) 
src3 register (RnS, 0 ~ nS ~ 7) 
dst2 indirect (disp = 0, 1, IRO. IR1) 

(11 I I 1 1 1 12~ 231 I 1 1 
1110101 dst1 src1 

I i 1 1 1 

dsl2 srd2. 

A floating-point subtraction and a floating-point store are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STF) reads from a reg­
ister and the operation being performed in parallel (SUBF3) writes to the same 
register, STF accepts as input the contents of the register before it is modified 
by the SUBF3. 

If src3 and dst1 point to the same location, src3 is read before the write to dst1. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example SUBF3 Rl,*-AR4(IR1),RO 
I I STF R7,*+AR5(IRO) 

Before Instruction: 

R1 = 057B400000h = 6.28125e + 01 
AR4 = 8098B8h 
IR1 = 8h 
RO=Oh 

Parallel SUBF3 and STF SUBF31!STF 

R7 = 0733COOOOOh = 1.79750e + 02 
AR5 = 809850h 
IRO = 10h 
Data at 8098BOh = 70C8000h = 1.405Oe + 02 
Data at 809860h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 057B400000h = 6.28125e + 01 
AR4 = 8098B8h 
IR1 = 8h 
RO = 061 B600000h = 7.768750e + 01 
R7 = 0733COOOOOh = 1.79750e + 02 
AR5 = 809850h 
IRO = 10h 
Data at 8098BOh = 70C8000h = 1.4050e + 02 
Data at 809860h = 733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-191 



SUBI Subtract InteFJ.er 

Syntax 

Operation 

Operands 

Encoding 

SUBI src, dst 

dst - src - dst 

src general addressing modes (G): 
o 0 register (Rn, 0 s n s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s n s 27) 

87 o 
i i 

000110000 G src i I 
Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-192 

The difference of the dst operand minus the src operand is loaded into the dst 
register. The dst and src operands are assumed to be signed integers. 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

SUBI 220,R7 

Before Instruction: 

R7 = 226h = 550 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 14Ah = 330 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Subtract Integer, 3-0perand SUBI3 

SUBI3 sre2, sre1, dst 

sre 1 - sre2 - dst 

sre1 three-operand addressing modes (T): 
00 register (Rn1, 0 s n1 s 27) 
01 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 s n1 s 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 s n2 s 27) 
o 1 register (Rn2, 0 s n2 s 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, ° s n s 27) 

31 2423 1615 87 0 
Iii Iii iii I 

i i i 

I 
i i i 

I 
i i i i i 

I :0 0 < 001 110: T dst src1 src2 

The difference of the sre t operand minus the sre2 operand is loaded into the 
dstregister. The sret, sre2, and dstoperands are assumed to be signed inte­
gers. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

Assembly Language Instructions 10-193 



SUBI3 Subtract Inteu.er, 3-0perand 

Example 1 

Example 2 

10-194 

SUBI3 R7,R2,RO 

Before Instruction: 

R2 = 0866h = 2150 
R7 = 0834h = 2100 
RO=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 0866h = 2150 
R7 = 0834h = 2100 
RO = 032h = 50 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

SUBI3 *-AR2(1),R4,R3 

Before Instruction: 

AR2 = 80985Eh 
R4 = 0226h = 550 
R3 =Oh 
Data at 80985Dh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 80985Eh 
R4 = 0226h = 550 
R3 = 014Ah = 330 
Data at 80985Dh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Parallel SUBI3 and STI SUBI31!STI 

SUBI3 sre1, sre2, dst1 
II STI sre3, dst2 

src2-sre1- dst1 
II src3 - dst2 

sre1 register (Rn1, 0 :s n1 :s 7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, 0 :s n2 :s 7) 
src3 register (Rn3, 0 :s n3 :s 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 I iii iii Iii 
1110110dsM 

i i 

src1 

87 o 
i i iii I i i I dst2. src2 

An integer subtraction and an integer store are performed in parallel. All regis­
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (SUBI3) writes to the same register, STI 
accepts as input the contents of the register before it is modified by the SU B13. 

If src3 and dst1 point to the same location, src3 is read before the write to dst1. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

Assembly Language Instructions 10-195 



SUBI3!1STI Parallel SUBIS and STI 

Example SUBI3 R7, *+AR2 (IRO) , Rl 

10-196 

I I STI R3,*++AR7 

Before Instruction: 

R7 = 14h = 20 
AR2 = 80982Fh 
IRO = 10h 
R1 = Oh 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80983Fh = ODCh = 220 
Data at 80983Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 14h = 20 
AR2 = 80982Fh 
IRO = 10h 
R1 = OC8h = 200 
R3 = 35h = 53 
AR7 = 80983Ch 
Data at 80983Fh = ODCh = 220 
Data at 80983Ch = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Subtract Reverse Integer With Borrow SUBRB 

SUBRB src, dst 

src-dst- C - dst 

src general addressing modes (G): 
o 0 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 27) 

31 2423 1615 87 o 
I ii Iii iii I 000110001 G 

I i 
src 

The difference of the src, dst, and C operands is loaded into the dst register. 
The dst and src operands are assumed to be signed integers. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value. 

SUBRB R4,R6 

Before Instruction: 

R4 = 03CBh = 971 
R6 = 0258h = 600 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

R4 = 03CBh = 971 
R6 = 0172h = 370 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-197 



SUBRF Subtract Reverse Floating Point 

Syntax SUBRF sre, dst 

Operation sre - dst - dst 

Operands sregeneral addressing modes (G): 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-198 

o 0 register (Rn, 0 s; n s; 7) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s; n s; 7) 

I I (\ I I I I I 12~231 I I 1161'5, 

dst . 

87 

000110010G src 

The difference of the sre operand minus the dst operand is loaded into the dst 
register. The dst and sre operands are assumed to be floating-point numbers. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF 1 if a floating-point underflow occurs; unchanged otherwise 
LV 1 if a floating-point overflow occurs; unchanged otherwise 
UF 1 if a floating-point underflow occurs; 0 otherwise 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if a floating-point overflow occurs; 0 otherwise 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

SUBRF @9905h,R5 

Before Instruction: 

DP = 80h 
RS = OS7B400000h = 6.2812S0e + 01 
Data at 80990Sh = 733COOOh = 1.797S0e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
RS = 0669EOOOOOh = 1.16937S00e + 02 
Data at 80990Sh = 733COOOh = 1.797S0e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Subtract Reverse Integer SUBRI 

SUBRI src, dst 

src - dst - dst 

src general addressing modes (G): 
00 register (Rn, 0 :Ii n :Ii 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :Ii n :Ii 27) 

31 2423 1615 87 0 

Iii Iii iii I 
i i i I i 

i i i 

I G dst sra ,000,110011, 

The difference of the src operand minus the dstoperand is loaded into the dst 
register, The dst and src operands are assumed to be signed integers, 

1 

These condition flags are modified only if the destination register is R7 -RO, 
LUF Unaffected 
LV 1 if an integer overflow occurs; unchanged otherwise 
UF 0 
N 1 if a negative result is generated; 0 otherwise 
Z 1 if a 0 result is generated; 0 otherwise 
V 1 if an integer overflow occurs; 0 otherwise 
C 1 if a borrow occurs; 0 otherwise 

OVM Operation is affected by OVM bit value, 

SUBRI *AR5++(IRO),R3 

Before Instruction: 

AR5 = 809900h 
IRO = 8h 
R3 = ODCh = 220 
Data at 809900h = 226h = 550 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 809908h 
IRO = 8h 
R3 = 014Ah = 330 
Data at 809900h = 226h = 550 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 10-199 



SWI Software Interruet 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-200 

SWI 

Performs an emulation interrupt 

None 

31 2423 1615 87 0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
01100110000000000000000000000000 

The SWI instruction performs an emulator interrupt. This is a reserved instruc­
tion and should not be used in normal programming. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

OVM 

Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 
Unaffected 

Operation is not affected by OVM bit value. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

TRAPcond N 

0- ST(GIE) 
If cond is true: 

Next PC - *++SP, 
Trap vector N - PC. 

Else: 

Set ST(GIE) to original state. 
Continue. 

N(0s:Ns:31) 

31 2423 Iii iii iii I j I 
01110100000 

Trae Conditionallr. TRAPcond 

1615 87 o 

Interrupts are disabled globally when 0 is written to ST(GIE). If the condition 
is true, the contents of the PC are pushed onto the system stack, and the PC 
is loaded with the contents of the specified trap vector (N). If the condition is 
not true, ST(GIE) is set to its value before the TRAPcond instruction changes 
it. 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Table 10-9 on page 10-13 for a list of condition mnemonics, 
condition codes, and flags). Condition flags are set on a previous instruction 
only when the destination register is one of the extended-precision registers 
(R7-RO) or when one of the compare instructions (CMPF, CMPF3, CMPI, 
CMPI3, TSTB, or TSTB3) is executed. 

5 

LUF Unaffected 
LV Unaffected 
UF Unaffected 
N Unaffected 
Z Unaffected 
V Unaffected 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-201 



TRAPcond Trap Conditionally 

Example TRAPZ 16 

10·202 

Before Instruction: 

PC = 123h 
SP = 809870h 
ST=Oh 
Trap Vector 16 = 10h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 10h 
SP = 809871h 
Data at 809871 h = 124h 
ST=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

TSTB src, dst 

dstAND src 

src general addressing modes (G): 
o 0 register (Rn, 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :s n :s 27) 

1
3\ I 1 I I I I 2~ 23

1 000110100 G 

Test Bit Fields TSTB 

87 o 
i I 

I I src 

The bitwise logical-AND of the dst and src operands is formed, but the result 
is not loaded in any register. This allows for nondestructive compares. The dst 
and src operands are assumed to be unsigned integers. 

1 

These condition flags are modified for all destination registers (R27-RO). 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

TSTB *-AR4(1),R5 

Before Instruction: 

AR4 = 8099C5h 
R5 = 898h = 2200 
Data at 8099C4h = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8099C5h 
R5 = 898h = 2200 
Data at 8099C4h = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

Assembly Language Instructions 10-203 



TSTB3 Test Bit Fields, 3-0perand 

Syntax TSTB3 sre2, sre1 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-204 

sre1 AND sre2 

sre1 three-operand addressing modes (T): 
o 0 register (Rn1 , 0 :so n1 :so 27) 
01 indirect (disp = O. 1. IRO. IR1) 
1 0 register (Rn1. 0 :so n1 :so 27) 
1 1 indirect (disp = O. 1. IRO. IR1) 

sre2three-operand addressing modes (T): 
o 0 register (Rn2. 0 :so n2 :so 27) 
o 1 register (Rn2. 0 :so n2 :so 127) 
10 indirect (disp = O. 1.IRO.IR1) 
11 indirect (disp = O. 1.IRO.IR1) 

31 2423 1615 o 
src!J. I ii 1 iii i • 1 1 O' 0 i O' O' 01 • 001001111T. . 

I I 
i I i I I 

src1 

The bitwise logical-AND between the sre1 and sre20perands is formed but is 
not loaded into any register. This allows for nondestructive compares. The 
sre1 and src2 operands are assumed to be unsigned integers. Although this 
instruction has only two operands. it is designated as a three-operand instruc­
tion because operands are specified in the three-operand format. 

1 

These condition flags are modified for all destination registers (R27-RO). 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 



Example 1 

Example 2 

TSTB3 *AR5--(IRO),*+ARO(1) 

Before Instruction: 

AR5 = 809885h 
IRO = 80h 
ARO = 80992Ch 
Data at 809885h = 898h = 2200 
Data at 80992Dh = 767h = 1895 

Test Bit Fields. 3-0perands TST83 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 809805h 
IRO = 80h 
ARO = 80992Ch 
Data at 809885h = 898h = 2200 
Data at 80992Dh = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

TSTB3 R4,*AR6--(IRO) 

Before Instruction: 

R4=OFBC4h 
AR6 = 8099F8h 
IRO = 8h 
Data at 8099F8h = 1568h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 =OFBC4h 
AR6 = 8099FOh 
IRO = 8h 
Data at 8099F8h = 1568h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 

Assembly Language Instructions 10-205 



XOR Bitwise Exclusive-OR 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-206 

XOR src, dst 

dst XOR src - dst 

src general addressing modes (G): 
o 0 register (Rn. 0 :s n :s 27) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn. 0 :s n :s 27) 

31 2423 1615 87 

I I I I I I I I I I 
000110101 G 

I I 

src 

The bitwise exclusive-OR of the src and dst operands is loaded into the dst 
register. The dst and src operands are assumed to be unsigned integers. 

1 

These condition flags are modified only if the destination register is R7 -RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

XOR Rl,R2 

Before Instruction: 

R1 = OFFA32h 
R2 = OFF5C1h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OFF412h 
R2 = OOOFF3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Bitwise exclusive-OR, 3-0e,erand XOR3 

XOR3 src2, src1, dst 

src1 XOR src2 - dst 

src1 three-operand addressing modes (T): 
00 register (Rn1. O:s; n1 :s; 27) 
o 1 indirect (disp = O. 1. IRO. IR1) 
1 0 register (Rn1. O:s; n1 :s; 27) 
1 1 indirect (disp = 0, 1. IRO.IR1) 

src2three-operand addressing modes (T): 
o 0 register (Rn2. 0 :s; n2 :s; 27) 
o 1 register (Rn2. 0 :s; n2 :s; 27) 
1 0 indirect (disp = O. 1. IRO. IR1) 
1 1 indirect (disp = O. 1. IRO. IR1) 

dst register (Rn. 0 :s; n :s; 27) 

31 2423 16 15 87 o 

I I I I I I I I I I 
001010000 T 

I i I 
I I iii I I src1 srcfJ. 

The bitwise exclusive-OR between the src1 and src2 operands is loaded into 
the dstregister. The src1, src2, and dstoperands are assumed to be unsigned 
integers. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-207 



XOR3 Bitwise Exclusive-OR, 3-0perand 

Example 1 

Example 2 

10-208 

XOR3 *AR3++(IRO),R7,R4 

Before Instruction: 

AR3 = 809800h 
IRO = 10h 
R7 = OFFFFh 
R4=Oh 
Data at 809800h = 5AC3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 80981 Oh 
IRO = 10h 
R7 = OFFFFh 
R4 = OA53Ch 
Data at 809800h = 5AC3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

XOR3 RS,*-AR1(1),Rl 

Before Instruction: 

R5 = OFFA32h 
AR1 = 809826h 
R1 = Oh 
Data at 809825h = OFF5C1 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = OFFA32h 
AR 1 = 809826h 
R1 = 000F33h 
Data at 809825h = OFF5C1 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Parallel XOR3 and STI XOR31!STI 

XOR3 
1/ STI 

sre2, sret, dst1 
sre3, dst2 

sre1 XOR sre2 - dst1 
II src3 - dst2 

sre1 register (Rn1, 0 s n1 :so 7) 
sre2 indirect (disp = 0, 1, IRa, IR1) 
dst1 register (Rn2, 0 s n2 s 7) 
src3 register (Rn3, 0 :so n3 :so 7) 
dst2 indirect (disp = 0, 1, IRa, IR1) 

1615 
i i 

1110111 dst src1 

87 
iii I I i I i dst2 srcfJ. 

A bitwise exclusive-XOR and an integer store are performed in parallel. All reg­
isters are read at the beginning and loaded at the end of the execute cycle. This 
means that, if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (XOR3) writes to the same register, STI 
accepts as input the contents of the register before it is modified by the XOR3. 

If sre2 and dst2 point to the same location, src2is read before the write to dst2. 

1 

These condition flags are modified only if the destination register is R7-RO. 
LUF Unaffected 
LV Unaffected 
UF 0 
N MSB of the output 
Z 1 if a 0 output is generated; 0 otherwise 
V 0 
C Unaffected 

OVM Operation is not affected by OVM bit value. 

Assembly Language Instructions 10-209 



XOR311STI Parallel XOR3 and STI 

Example XOR3 * ARI ++ I R3 I R3 

10-210 

I I STI R6 I *-AR2 ( IRO ) 

Before Instruction: 

AR1 = 80987Eh 
R3 = 85h 
R6 = ODCh = 220 
AR2 = 8098B4h 
IRO = 8h 
Data at 80987Eh = 85h 
Data at 8098ACh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

A ,..... '·III'\.nn..,r- .... 
I"\n I = OU~OI rll 
R3=Oh 
R6 = ODCh = 220 
AR2 = 8098B4h 
IRO = 8h 
Data at 80987Eh = 85h 
Data at 8098ACh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Note: Cycle Count 

See subsection 9.5.2 on page 9-24 for operand ordering effects on cycle 
count. 



III 

Chapter 11 

Software Applications 
I! .l1li1 I II I lIIfR iiilRiR WI II ._1 1_ 1 I 11 1 I i liiil Ii ij Ii . if 1 

The TMS320C3x is a powerful digital signal processor with an architecture and 
instruction set designed to find simple solutions to DSP problems. There are 
instructions specifically designed for efficient implementation of DSP algo­
rithms as well as general-purpose instructions that make the device suitable 
for more general tasks, like any microprocessor. The floating-point and integer 
arithmetic supported by the device let you concentrate on the algorithm and 
pay less attention to scaling, dynamic range, and overflows. 

The purpose of this chapter is to explain how to use the instruction set, the ar­
chitecture, and the interface of the TMS320C3x processor. It presents coding 
examples for frequently used applications and discusses more involved exam­
ples and applications. This chapter defines the principles involved in the ap­
plications and provides the corresponding assembly-language code for in­
structional purposes and for immediate use. Whenever the detailed explana­
tion of the underlying theory is too extensive to be included in this manual, ap­
propriate references are given for further information. 

Major topics discussed in this chapter are listed below. 

Topic Page 

···.1··1·j1 .·····p~~d~~~b·f··,h·itj~ijz~iI~h.:.··~l·r.··;·~ •• ~···: .• ··~·.dj···.·.·.··· •• ·;: •• ·~·.][:·.;:.··~···J~.·;.~~( .....• 

~~:~ ·.o·.i .... ·g·· •••• ~I·.·.C~aa ••. \.· •. I·.m.· •. · •• a·.· •• · •. ·.n~d··~.nA·.··.···.t .•• rr.··lo .• t· •. · ••• h! .•• ·.·m;·e·.· •. ·.·t··IC .. ·.·.·.·.·.·o ... ··.t .•. p:ii 1;:~.· ... 
•· •• 11: · .•.. ti·~ifd~ti~~i~a~J~~d~~~~~iidri~. 
·'1.s.·· .·~.rb~t~~*ih~·.·Ti~;.·.··U~···:.~.·.~·.~;i.I.~,;;~·.:;~ .• ·:i:···~ ..... 

11-1 



Processor Initialization 

11.1 Processor Initialization 

11-2 

Before you execute a digital signal processing algorithm, you must initialize 
the processor. Initialization usually occurs any time the processor is reset. 

You can reset the processor by applying a low level to the RESET input for sev­
eral cycles. At this time, the TMS320C3x terminates execution and puts the 
reset vector (that is, the contents of memory location 0) in the program counter. 
The reset vector normally contains the address of the system-initialization rou­
tine. The hardware reset also initializes various registers and status bits. 

After reset, you can further initialize the processor by executing instructions 
that set up operational modes, memory pointers, interrupts, and the remaining 
functions needed to meet system requirements. 

To configure the processor at reset. you should initialize the following internal 
functions: 

o Memory-mapped registers 
o Interrupt structure 

In addition to the initialization performed during the hardware reset (for condi­
tions after hardware reset, see Chapter 12), Example 11-1 shows coding for 
initializing the TMS320C3x to the following machine state: 

o All interrupts are enabled. 
o The overflow mode is disabled. 
o The data memory page pointer is set to O. 
o The internal memory is filled with Os. 

Note that all constants larger than 16 bits should be placed in memory and ac­
cessed through direct or indirect addressing. 



Example 11-1. TMS320C3x Processor Initialization 

* 
* TITLE PROCESSOR INITIALIZATION 

* 
• global 
• global 
• global 

RESET,INIT,BEGIN 
INTO,INTI,INT2,INT3 
ISRO,ISRI,ISR2,ISR3 

• global 
• global 
.global 
• global 

DINT,DMA 
TINTO,TINTI,XINTO,RINTO,XINTI,RINTI 
TIMEO,TIMEI,XMTO,RCVO,XMTI,RCVI 
TRAPO,TRAPI,TRAP2,TRPO,TRPI,TRP2 

* * PROCESSOR INITIALIZATION FOR THE TMS320C3x 
* * RESET AND INTERRUPT VECTOR SPECIFICATION. THIS 
* ARRANGEMENT ASSUMES THAT DURING LINKING, THE FOLLOWING 
* TEXT SEGMENT WILL BE PLACED TO START AT MEMORY 
* LOCATION O. 

* 
• sect " ini t " 

RESET • word INIT 
INTO .word ISRO 
INTI .word ISRI 
INT2 .word ISR2 
INT3 .word ISR3 
* 

Named section 
RS- load address IN IT to PC 
INTO- loads address ISRO to PC 
INTI- loads address ISRI to PC 
INT2- loads address ISR2 to PC 
INT3- loads address ISR3 to PC 

Processor Initialization 

* XINTO • word XMTO 
* RINTO • word RCVO 
* XINTI • word XMTI 
* RINTI .word RCVI 
TINTO .word TIMEO 
TINTI .word TIMEI 
DINT .word DMA 

Serial port 0 transmit interrupt processing 
Serial port 0 receive interrupt processing 
Serial port I transmit interrupt processing 

TRAP 0 
TRAP I 
TRAP2 

.space 20 

.word TRPO 

.word TRPI 

.word TRP2 

.space 29 

; Serial port I receive interrupt processing 
Timer 0 interrupt processing 
Timer I interrupt processing 
DMA interrupt processing 
Reserved space 
Trap 0 vector processing begins 
Trap I vector processing begins 
Trap 2 vector processing begins 
Leave space for the other 29 traps 

* IN THE FOLLOWING SECTION, CONSTANTS THAT CANNOT BE REPRESENTED 
* IN THE SHORT FORMAT ARE INITIALIZED. THE NUMBERS IN PARENTHESIS 
* AT THE END OF THE COMMENTS REPRESENT THE OFFSET OF A 
* PARTICULAR CONTROL REGISTER FROM 
* CTRL (808000H) 

Software Applications 11·3 



Processor Initialization 

• data 
MASK • word OFFFFFFFFH 
BLKO .word 0809800H Beginning address of RAM block 0 
BLKl • word 0809COOH Beginning address of RAM block 1 
STCK • word 0809FOOH Beginning of stack 
CTRL • word 0808000H Pointer for peripheral-bus memory map 
DMACTL • word OOOOOOOH Init for DMA control (0) 
TIMOCTL • word OOOOOOOH Init of timer 0 control (32) 
TIM1CTL • word OOOOOOOH Init of timer 1 control (48) 
SERGLOBO • word OOOOOOOH Init of serial 0 glbl control (64) 
SERPRTXO • word OOOOOOOH Init of serial o xmt port control (66) 
SERPRTRO • word OOOOOOOH Init of serial o rcv port control (67) 
SERTIMO • word OOOOOOOH Init of serial o timer control (68) 
SERGLOB1 • word OOOOOOOH Init of serial 1 glbl control (80) 
SERPRTX1 • word OOOOOOOH Init of serial 1 xmt port control (82) 
SERPRTR1 • word OOOOOOOH Init of serial 1 rcv port control (83) 
SERTIM1 • word OOOOOOOH Init of serial 1 timer control (84) 
PARINT .word OOOOOOOH Init of parallel interface control (100) 
IOINT • word OOOOOOOH Init of I/O interface control (96 ) 
* 

.text 

* THE ADDRESS AT MEMORY LOCATION 0 DIRECTS EXECUTION TO BEGIN HERE 
* FOR RESET PROCESSING THAT INITIALIZES THE PROCESSOR. WHEN RESET 
* IS APPLIED, THE FOLLOWING REGISTERS ARE INITIALIZED TO 0: .. 
* .. ST CPU STATUS REGISTER 

* .. 
IE 
IF 
IOF--

CPU/DMA INTERRUPT ENABLE FLAGS 
CPU INTERRUPT FLAGS 
I/O FLAGS .. 

* THE STATUS REGISTER HAS THE FOLLOWING ARRANGEMENT: 

* BITS: 31-14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

* FUNCTION: RESRV GIE CC CE CF RESRV RM OVM LUF LV UF N Z V C 
* 

IN IT LDP 
LDI 
LDI 

O,DP 
1800H,ST 
@MASK,IE 

Point the DP register to page 0 
Clear and enable cache, and disable OVM 
Unmask all interrupts 

INTERNAL DATA MEMORY INITIALIZATION TO FLOATING POINT 0 

LDI @BLKO,ARO 
LDI @BLK1,AR1 
LDF 0.0 ,RO 
RPTS 1023 
STF RO, *ARO++ (1) 

II STF RO, *ARl++( 1) 

11-4 

ARO points to block 0 
AR1 points to block 1 
o register RO 
Repeat 1024 times 
Zero out location in RAM block 0 and ••• 
Zero out location in RAM block 1 



* 
* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION-
* DEPENDENT PART OF THE SYSTEM (BOTH ON- AND OFF-CHIP) SHOULD 
* NOW BE INITIALIZED. 
* 
* FIRST, INITIALIZE THE CONTROL REGISTERS. IN THIS EXAMPLE, 

Processor Initialization 

* EVERYTHING IS INITIALIZED TO 0, SINCE THE ACTUAL INITIALIZATION IS 
* APPLICATION-DEPENDENT. 
* 

LDI@CTRL,ARO 
* 

LDI @DMACTL,RO 

STI RO, *+ARO ( 0 ) 

LDI @TIMOCTL,RO 
STI RO, *+ARO (32) 
LDI @TIM1CTL,RO 
STI RO, *+ARO (48) 
LDI@SERGLOBO,RO 
STI RO, *+ARO ( 64 ) 
LOI @SERPRTXO,RO 
STI RO, *+ARO (66) 
LOI @SERPRTRO,RO 
STI RO, *+ARO (67) 
LOI @SERTIMO,RO 
STI RO, *+ARO (68) 
LOI @SERGLOB1,RO 
STI RO, *+ARO (80) 
LOI@SERPRTX1,RO 
STI RO, *+ARO ( 82 ) 
LOI @SERPRTR1,RO 
STI RO, *+ARO (83) 
LOI @SERTIM1,RO 
STI RO, *+ARO ( 84 ) 
LDI @PARINT , RO 
STI RO, *+ARO (100) 
LOI@IOINT,RO 
STI RO, *+ARO (96) 

* 
LOI @STCK,SP 
OR 2000H,ST 

* 
BR BEGIN 

• end 

Load in ARO the pointer to control 
registers 

Init OMA control 

Init timer 0 control 

Init timer 1 control 

Init serial 0 global control 

Init serial 0 xmt control 

Init serial 0 rcv control 

Init serial 0 timer control 

Init serial 1 global control 

Init serial 1 xmt control 

Init serial 1 rcv control 

Init serial 1 timer control 

Init parallel interface control (C30 only) 

Init I/O interface control 

Init the stack pointer 
Global interrupt enable 

Branch to the beginning of application 

Software Applications 11·5 



Program Control 

11.2 Program Control 

11.2.1 Subroutines 

11-6 

One group of TMS320C3x instructions provides program control and facili­
tates all types of high-speed processing. These instructions directly handle: 

o subroutine calls 
o software stack 
o interrupts 
o zero-overhead branches 
o single- and mUltiple-instruction loops without any overhead 

The TMS320C3x has a 24-bit program counter (PC) and a practically unlimited 
software stack. The CALL and CALLcond subroutine calls cause the stack 
pointer to increment and store the contents of the next value of the PC counter 
on the stack. At the end of the subroutine, RETScond performs a conditional 
return. 

Example 11-2 illustrates the use of a subroutine to determine the dot product 
between two vectors. Given two vectors of length N, represented by the arrays 
a [a], a [1], ... , a [N -1] and b [a], b [1], ... , b [N -1], the dot product is computed 
from the expression 

d = a [0] b [0] + a [1] b [1] + ... + a [N -1] b [N -1] 

Processing proceeds in the main routine to the point where the dot product is 
to be computed. It is assumed that the arguments of the subroutine have been 
appropriately initialized. At this point, a CALL is made to the subroutine, 
transferring control to that section of the program memory for execution, then 
returning to the calling routine via the RETS instruction when execution has 
completed. Note that for this particular example, it would suffice to save the 
register R2. However, a larger number of registers are saved for demonstra­
tion purposes. The saved registers are stored on the system stack. This stack 
should be large enough to accommodate the maximum anticipated storage re­
quirements. You could use other methods of saving registers equally well. 



Example 11-2. Subroutine Call (Dot Product) 

* * TITLE SUBROUTINE CALL (DOT PRODUCT) 
* 
* * MAIN ROUTINE THAT CALLS THE SUBROUTINE 'DOT' TO COMPUTE THE 
* DOT PRODUCT OF TWO VECTORS 

* 
* 
* 
* 
* 
* 

LDI 
LDI 
LDI 

@blkO,ARO 
@blkl,ARl 
N,RC 

ARO points to vector a 
ARl points to vector b 
RC contains the number of elements 

* CALL DOT 
* 
* 
* 
* 
* SUBROUTINE DOT 
* 
* 
* EQUATION: d = a(O) * b(O) + a(l) * b(l) + ••• + a(N-l) * b(N-l) 
* 
* 
* 
* 

THE DOT PRODUCT OF a AND b,IS PLACED IN REGISTER RO. N MUST 
BE GREATER THAN OR EQUAL TO 2. 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* 
* ARO ADDRESS OF a(O) 
* ARl ADDRESS OF b(O) 
* RC LENGTH OF VECTORS (N) 
* 
* REGISTERS USED AS INPUT: ARO, ARl, RC 
* REGISTER MODIFIED: RO 
* REGISTER CONTAINING RESULT: RO 
* 
* 
* 

* 
DOT 

• global DOT 

PUSH ST 
PUSH R2 
PUSHF R2 
PUSH ARO 
PUSH ARl 
PUSH RC 

Save status register 
Use the stack to save 
Lower 32 and upper 32 
Save ARO 
Save ARl 
Save RC 

R2's 
bits 

Program Control 

Software Applications 11·7 



Program Control 

* 

* 

MPYF3 *ARO,*AR1,RO 
LDF O.O,R2 
SUBI 2,RC 

Initialize RO: 
a(O) * b(O) -> RO 
Initialize R2 
Set RC ... N-2 

* DOT PRODUCT (1 <- i < N) 

* 

II 
* 

* 
* 
* 

* 
* 

* 

RPTS RC 

MPYF3 *++ARO(1),*++AR1(1),RO 
ADDF3 RO,R2,R2 

ADDF3 RO ,R2 ,RO 

RETURN SEQUENCE 

... " ... ,.,,.. 
rvr ... "" 
POP ARl 
POP ARO 
POPF R2 
POPR2 
POPST 
RETS 

end 

.end 

Setup the repeat single 

a(i) * b(i) -> RO 
a(i-l)*b(i-l) + R2 -> R2 

a(N-l)*b(N-l) + R2 -> RO 

Restore FtC 
Restore ARl 
Restore ARO 
Restore top 32 bits of R2 
Restore bottom 32 bits of R2 
Restore ST 
Return 

11.2.2 Software Stack 

11-8 

The TMS320C3x has a software stack whose location is determined by the 
contents of the stack pointer register (SP). The stack pointer increments from 
low to high values, and provisions should be made to accommodate the antici­
pated storage requirements. The stack can be used not only during the sub­
routines CALL and RETS, but also inside the subroutine as a place of tempo­
rary storage of the registers, as shown in Example 11-2. SP always points to 
the last value pushed on the stack. 



Program Control 

The CALL and CALLcond instructions and the interrupt routines push the 
value of the PC onto the stack. RETScond and RETI cond then pop the stack 
and place the value in the program counter. You can also use the PUSH and 
POP instructions to maneuver the integer value of any register onto and off the 
stack, respectively. There are two additional instructions, PUSHF and POPF, 
for floating point numbers. You can push and pop floating point numbers to reg­
isters R7-RO. This feature makes it easy to save all 40 bits of the extended 
precision registers (see Example 11-2). Using PUSH and PUSHF on the 
same register saves the lower 32 and upper 32 bits. PUSH saves the lower 
32; PUSHF, the upper 32. POPF, followed by POP, will recover this extended 
precision number. It is important to perform the integer and floating-point 
PUSH and POP in the order given above. POPF forces the least significant 
eight bits of the extended-precision registers to 0 and therefore must be per­
formed first. 

You can easily read and write to the SP to create multiple stacks for different 
program segments. SP is not initialized by the hardware during reset. It is 
therefore important to remember to initialize its value so that SP pOints to a pre­
determined memory location. This avoids the problem of SP attempting to 
write into ROM or otherwise write over useful data. 

11.2.3 Interrupt Service Routines 

Interrupts on the TMS320C3x are prioritized and vectored. When an interrupt 
occurs, the corresponding flag is set in the interrupt flag register IF. If the corre­
sponding bit in the interrupt enable register (IE) is set, and interrupts are en­
abled by having the GIE bit in the status register set to 1, interrupt processing 
begins. You can also write to the interrupt flag register, allowing you to force 
an interrupt by software or to clear interrupts without processing them. 

Even when the interrupt is disabled, you can read the interruptflag register (IF) 
and take appropriate action, depending on whether the interrupt has occurred. 
This is true even when the interrupt is disabled. This can be useful when an 
interrupt-driven interface is not implemented. Example 11-3 shows the case 
in which a subroutine is called when interrupt 1 has not occurred. 

Example 11-3. Use of Interrupts for Software Polling 

* TITLE INTERRUPT POLLING 

. 
TSTB 2,IF 
CALLZ SUBROUTINE 

Test if interrupt 1 has occurred 
If not, call subroutine 

Software Applications 11-9 



Program Control 

11-10 

When interrupt processing begins, the PC is pushed onto the stack, and the 
interrupt vector is loaded in the PC. Interrupts are then disabled by setting the 
GIE = 0, and the program continues from the address loaded in the PC. Since 
all interrupts are disabled, interrupt processing can proceed without further in­
terruption, unless the interrupt service routine re-enables interrupts. 

Except for very simple interrupt service routines, it is important to ensure that 
the processor context is saved during execution of this routine. You must save 
the context before you execute the routine itself and restore it after the routine 
is finished. The procedure is called context switching. Context switching is also 
useful for subroutine caliS, especially during extensive use of the auxiliary and 
the extended precision registers. This section contains code examples of con­
text switching and an interrupt service routine. 



Program Control 

11.2.3.1 Context Switching 

Context switching is commonly required during the processing of subroutine 
calls or interrupts. It might be quite extensive or it might be simple, depending 
on system requirements. On the TMS320C3x, the program counter is auto­
matically pushed onto the stack. Important information in other TMS320C3x 
registers, such as the status, auxiliary, or extended-precision registers, must 
be saved by special commands. In order to preserve the state of the status reg­
ister, you should push it first and pop it last. This keeps the restoration of the 
extended precision registers from affecting the status register. 

Example 11-4 and Example 11-5 show saving and restoring of the 
TMS320C3x state. In both examples, the stack is used for saving the registers, 
and it expands towards higher addresses. If you don't want to use the stack 
pOinted at by SP, you can create a separate stack by using an auxiliary register 
as the stack pointer. Registers saved in these examples are: 

o Extended-precision registers R7 through RO 
o Auxiliary registers AR7 through ARO 
o Data-page pOinter DP 
o Index registers IRO and IR1 
o Block-size register BK 
o Status register ST 
o Interrupt-related registers IE and IF 
o I/O flag 10F 
o Repeat-related registers RS, RE, and RC 

Software Applications 11-11 



Program Control 

Example 11-4. Context Save for the TMS320C3x 

11-12 

* TITLE CONTEXT SAVE FOR THE TMS320C3x 

* 
* 

* 
.global SAVE 

* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT 
* 
SAVE: 

PUSH ST Save status register 
* 
* SAVE THE EXTENDED PRECISION REGISTERS 

* 
PUSH RO Save the lower 32 bits 
PUSHF RO and the upper 32 bits 
PUSH Rl Save the lower 32 bits 
PUSHF Rl and the upper 32 bits 
PUSH R2 Save the lower 32 bits 
PUSHF R2 and the upper 32 bits 
PUSH R3 Save the lower 32 bits 
PUSHF R3 and the upper 32 bits 
PUSH R4 Save the lower 32 bits 
PUSHF R4 and the upper 32 bits 
PUSH R5 Save the lower 32 bits 
PUSHF R5 and the upper 32 bits 
PUSH R6 Save the lower 32 bits 
PUSHF R6 and the upper 32 bits 
PUSH R7 Save the lower 32 bits 
PUSHF R7 and the upper 32 bits 

* 
* SAVE THE AUXILIARY REGISTERS 

* 
PUSH ARO Save ARO 
PUSH ARl Save ARl 
PUSH AR2 Save AR2 
PUSH AR3 Save AR3 
PUSH AR4 Save AR4 
PUSH AR5 Save AR5 
PUSH AR6 Save AR6 
PUSH AR7 Save AR7 

* 

of RO 

of Rl 

of R2 

of R3 

of R4 

of R5 

of R6 

of R7 



PUSH DP 
PUSH IRO 
PUSH IRl 
PUSH BK 
PUSH IE 
PUSH IF 
PUSH IOF 
PUSH RS 
PUSH RE 
PUSH RC 

* 
* SAVE IS COMPLETE 
* 

* 
* 

Program Control 

SAVE THE REST REGISTERS FROM THE REGISTER FILE 

Save data page pointer 
Save index register IRO 
Save index register IRl 
Save block-size register 
Save interrupt enable register 
Save interrupt flag register 
Save I/O flag register 
Save repeat start address 
Save repeat end address 
Save repeat counter 

Software Applications 11-13 



Program Control 

Example 11-5. Context Restore for the TMS320C3x 

11-14 

* 
* TITLE CONTEXT RESTORE FOR THE TMS320C3x 

* 
.global RESTR 

* 
* CONTEXT RESTORE AT THE END OF A SUBROUTINE CALL OR INTERRUPT 
* 
RESTR: 
* 
* RESTORE THE REST REGISTERS FROM THE REGISTER FILE 

* 
POPRC Restore repeat counter 
POPRE Restore repeat end address 
on,...."" nl"" rvrn.;;) Restore _"'_o.~~ 

.~J:"'~-"'" start address 
POPIOF Restore I/O flag register 
POP IF Restore interrupt flag register 
POP IE Restore interrupt enable register 
POPBK Restore block-size register 
POPIRl Restore index register IRl 
POP IRO Restore index register IRO 
POPDP Restore data page pointer 

* 
* RESTORE THE AUXILIARY REGISTERS 
* 

POPAR7 Restore AR7 
POPAR6 Restore AR6 
POPAR5 Restore AR5 
POPAR4 Restore AR4 
POPAR3 Restore AR3 
POPAR2 Restore AR2 
POPARl Restore ARl 
POPARO Restore ARO 

* 
* RESTORE THE EXTENDED PRECISION REGISTERS 
* 



POPF R7 
POPR7 
POPF R6 
POPR6 
POPF RS 
POPRS 
POPF R4 
POPR4 
POPF R3 
POPR3 
POPF R2 
POPR2 
POPF Rl 
POPRl 
POPF RO 
POPRO 
POPST 

* 
* RESTORE IS COMPLETE 
* 

Program Control 

Restore the upper 32 bits and 
the lower 32 bits of R7 

Restore the upper 32 bits and 
the lower 32 bits of R6 

Restore the upper 32 bits and 
the lower 32 bits of RS 

Restore the upper 32 bits and 
the lower 32 bits of R4 

Restore the upper 32 bits and 
the lower 32 bits of R3 

Restore the upper 32 bits and 
the lower 32 bits of R2 

Restore the upper 32 bits and 
the lower 32 bits of Rl 

Restore the upper 32 bits and 
the lower 32 bits of RO 

Restore status register 

Software Applications 11-15 



Program Control 

11.2.3.2 Interrupt Priority 

Interrupts on the TMS320C3x are automatically prioritized. This allows inter­
rupts that occur simultaneously to be serviced in a predefined order. Infrequent 
but lengthy interrupt service routines might need to be interrupted by more fre­
quently occurring interrupts. In Example 11-6, the interrupt service routine for 
INT2 temporarily modifies the IE to permit interrupt processing when an inter­
rupt to I NTO (but no other interrupt) occurs. When the routine has finished pro­
cessing, the IE register is restored to its original state. Notice that the 
RETlcondinstruction not only pops the next program counter address from the 
stack, but also sets the GI E bit of the status register. This enables all interrupts 
that have their interrupt enable bit set. 

Example 11-8. Interrupt Service Routine 

11-16 

* TITLE INTE~~UPT SERVICE ROUTINE 

* . global ISR2 

ENABLE .set 2000h 

MASK .set 1 

* * INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT2-

* 
ISR2: 

* 

PUSH 
PUSH 
PUSH 
PUSH 

ST 
DP 
IE 
RO 

PUSHF RO 
PUSH Rl 
PUSHF Rl 
LDIMASK,IE 
OR ENABLE, ST 

Save status register 
Save data page pointer 
Save interrupt enable register 
Save lower 32 bits and 

upper 32 bits of RO 
Save lower 32 bits and 

upper 32 bits of Rl 
Unmask only INTO 
Enable all interrupts 

* MAIN PROCESSING SECTION FOR ISR2 

* 

XOR ENABLE, ST 
POPF Rl 
POPRl 
POPF RO 
POPRO 
POP IE 
POPDP 
POPST 

RETI 

Disable all interrupts 
Restore upper 32 bits and 

lower 32 bits of Rl 
Restore upper 32 bits and 

lower 32 bits of RO 
Restore interrupt enable register 
Restore data page register 
Restore status register 

Return and enable interrupts 



Program Control 

11.2.4 Delayed Branches 

The TMS320C3x uses delayed branches to create single-cycle branching. 
The delayed branches operate like regular branches but do not flush the pipe­
line. Instead, the three instructions following a delayed branch are also ex­
ecuted. As discussed in Chapter 6, the only limitations are that none of the 
three instructions following a delayed branch can be a: 

o Branch (standard or delayed) 
o Call to a subroutine 
o Return from a subroutine 
o Return from an interrupt 
o Repeat instruction 
o TRAP instruction 
o IDLE instruction 

Conditional delayed branches use the conditions that exist at the end of the 
instruction immediately preceding the delayed branch. Sometimes a branch 
is necessary in the flow of a program, but fewer than three instructions can be 
placed after a delayed branch. For faster execution, it is still advantageous to 
use a delayed branch. This is shown in Example 11-7, with NOPs taking the 
place of the unused instructions. The trade-off is more instruction words for 
less execution time. 

Example 11-7. Delayed Branch Execution 

* TITLE DELAYED BRANCH EXECUTION 

* 

LDF 
BGED 
LDFN 
SUBF 
NOP 

MPYF 

*+AR1(S) ,R2 
SKIP 
R2,Rl 
3.0,Rl 

1.5,Rl 

SKIP LDF Rl , R3 

Load contents of memory to R2 
If loaded number >=0, branch (delayed) 
If loaded number <0, load it to Rl 
Subtract 3 from Rl 
Dummy operation to complete delayed 

branch 
Continue here if loaded number <0 

Continue here if loaded number >=0 

Software Applications 11-17 



Program Control 

11.2.5 Repeat Modes 

11.2.5.1 Block Repeat 

11-18 

The TMS320C3x supports looping without any overhead. For that purpose, 
there are two instructions: RPTB repeats a block of code, and RPTS repeats 
a single instruction. There are three control registers: repeat start address 
(RS), (repeat end address (RE), and repeat counter (RC). These contain the 
parameters that specify loop execution (refer to Section 6.1 on page 6-2 for 
a complete description of RPTB and RPTS). RS and RE are automatically set 
from the code, while you must set RC, as shown in the examples below. 

Example 11-8 shows an application of the block repeat construct. In this ex­
ample, an array of 64 elements is flipped over by exchanging the elements that 
are equidistant from the end of the array. In other words, if the original array is 

a(1), a(2), .... a(31}, a(32}, .... a(64); 

the final array after the rearrangement will be 

a(64), a(63), ... , a(32}, a(31), ... , a(1}. 

Because the exchange operation is done on two elements at the same time. 
it requires 32 operations. The repeat counter RC is initialized to 31. In general, 
if RC contains the number N, the loop will be executed N + 1 times. The loop 
is defined by the RPTS instruction and the EXCH label. 



Program Control 

Example 11-8. Loop Using Block Repeat 

* TITLE LOOP USING BLOCK REPEAT 

* 
* THIS CODE SEGMENT EXCHANGES THE VALUES OF ARRAY ELEMENTS THAT ARE 
* SYMMETRIC AROUND THE MIDDLE OF THE ARRAY. 

* 

* 

* 

* 

II 
ExeH 
II 

LDI@ADDR,ARO 
LDIARO,ARl 
ADDI 63,ARl 

LDI 3l,RC 

RPTB EXCH 

LDI *ARO,RO 
LDI *AR1,Rl 
STI Rl, *ARO++( 1) 
STI RO, *AR1--( 1) 

ARO points to the beginning of the array 

ARl points to the end of the 
64-element array 
Initialize repeat counter 

Repeat RC+l times between here and 
EXCH 

Load one memory element in RO, 
and the other in Rl 

Then, exchange their locations 

Subsection 6.1.2 on page 6-3 specifies restrictions in the block-repeat con­
struct. Because the program counter is modified at the end of the loop accord­
ing to the contents of the registers RS, RE, and RC, no operation should at­
tempt to modify the repeat counter or the program counter at the end of the 
loop in a different way. 

In principle, it is possible to nest repeat blocks. However, there is only one set 
of control registers: RS, RE, and RC. It is therefore necessary to save these 
registers before entering an inside loop. It might be more practical to imple­
ment a nested loop by the more traditional method of using a register as a 
counter and then using a delayed branch rather than using the nested repeat 
block approach. 

Example 11-9 shows another example of using the block repeat to find a maxi­
mum of 147 numbers. 

Software Applications 11-19 



Program Control 

Example 11-9. Use of Block Repeat to Find a Maximum 

* 
* 
* TITLE USE OF BLOCK REPEAT TO FIND A MAXIMUM 
* 
* THIS ROUTINE FINDS THE MAXIMUM OF N c 147 NUMBERS. 
* 

LDI 146,RC Initialize repeat counter to 147-1 
LDI @ADDR,ARO ARO points to beginning of array 
LD *ARO++( 1) ,RO Initialize MAX to the first value 

* 
RPTB LOOP 
CMPF *ARO++( 1) ,RO Compare number to the maximum 

LOOP LDFLT *-ARO (1) ,RO If greater, this is a new maximum 

11.2.5.2 Single-Instruction Repeat 

11-20 

The single-instruction repeat uses the control registers RS, RE, and RC in the 
same way as the block repeat. The advantage over the block repeat is that the 
instruction is fetched only once, and then the buses are available for moving 
operands. Note that the single-instruction repeat construct is not interruptible, 
while block repeat is interruptible. 

Example 11-10 shows an application of the single-repeat construct. In this ex­
ample, the sum of the products of two arrays is computed. The arrays are not 
necessarily different. If the arrays are a(i) and b(i), each of length N = 512, 
register RO will contain, after computation, this quantity: 

a (1) b (1) + a (2) b (2) + ... + a (N) b (N). 

The value of the RC is specified to be 511 in the instruction. If RC contains the 
number N, the loop will be executed N + 1 times. 



Program Control 

Example 11-10. Loop Using Single Repeat 

* TITLE LOOP USING SINGLE REPEAT 
* 
* THIS CODE SEGMENT COMPUTES SUM[a(i)b(i)] FOR i-I to N. 
* 
* 

LDI @ADDR1,ARO ARO points to array a(i) 
LDI @ADDR2,ARI ARI points to array b(i) 

* 
LDF O.O,RO Initialize RO 

* 
MPYF3 *ARO++(1),*AR1++(1),Rl 

* Compute first product 
RPTS 511 Repeat 512 times 

* 

MPYF3 *ARO++(1),*AR1++(1),Rl,RO Compute next product 
II ADDF3 Rl,RO,RO and accumulate the 

previous one 
* 

ADDF Rl,RO One final addition 

Software Applications 11·21 



Program Control 

11.2.6 Computed GOTOs 

It is occasionally convenient to select during run time (and not during assem­
bly) the subroutine to be executed. The TMS320C3x's computed GOTO sup­
ports this selection. The computed GOTO is implemented using the CALLcond 
instruction in the register-addressing mode. This instruction uses the contents 
of the register as the address of the call. Example 11-11 shows a computed 
GOTO for a task controller. 

Example 11-11. Computed GO TO 

11-22 

* TITLE COMPUTED GOTO 

* 
* TASK CONTROLLER 

* 
* THIS MAIN ROUTINE CONTROLS THE ORDER OF TASK EXECUTION (6 TASKS 
* IN THE PRESENT EXAMPLE). TASKO THROUGH TASKS ARE THE NAMES OF 
* SUBROUTINES TO BE CALLED. THEY ARE EXECUTED IN ORDER, TASKO, 
* TASKl, .•. TASKS. WHEN AN INTERRUPT OCCURS, THE INTERRUPT 
* SERVICE ROUTINE IS EXECUTED, AND THE PROCESSOR CONTINUES 
* WITH THE INSTRUCTION FOLLOWING THE IDLE INSTRUCTION. THIS 
* ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT CYCLE, 
* CALLS THE TASK AS A SUBROUTINE, AND BRANCHES BACK TO THE IDLE 
* TO WAIT FOR THE NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK 
* HAS COMPLETED EXECUTION. RO HOLDS THE OFFSET FROM THE BASE 
* ADDRESS OF THE TASK TO BE EXECUTED. 

* 
* 

LDI S,RO Initialize RO 
LDI @ADDR,ARl ARl holds base address of the table 

WAIT IDLE Wait for the next interrupt 
ADDI3 *ARl,RO,AR2 Add the base address to the table 

* Entry number 
SUBI l,RO Decrement RO 
LDILT S,RO If RO<O, reinitialize it to S 
LDI *AR2,Rl Load the task address 
CALLU Rl Execute appropriate task 
BR WAIT 

* 
TSKSEQ • word TASKS Address of TASKS 

.word TASK4 Address of TASK4 
• word TASK3 Address of TASK3 
• word TASK2 Address of TASK2 
.word TASKl Address of TASKl 
.word TASKO Address of TASKO 

ADDR .word TSKSEQ 



Logical and Arithmetic Operations 

11.3 Logical and Arithmetic Operations 

The TMS320C3x instruction set supports both integer and floating-point arith­
metic and logical operations. The basic functions of such instructions can be 
combined to form more complex operations. This section examines examples 
of these operations: 

o Bit manipulation 
o Block moves 
o Bit-reversed addressing 
o Integer and floating-point division 
o Square root 
o Extended-precision arithmetic 
o Floating-point format conversion between IEEE and TMS320C3x formats 

11.3.1 Bit Manipulation 

Instructions for logical operations, such as AND, OR, NOT, ANDN, and XOR 
can be used together with the shift instructions for bit manipulation. A special 
instruction, TSTB, tests bits. TSTB performs the same operation as AND, but 
the result of the logical AND is only used to set the condition flags and is not 
written anywhere. Example 11-12 and Example 11-13 demonstrate the use 
of the several instructions for bit manipulation and testing. 

Example 11-12. Use of TSTB for Software-Controlled Interrupt 

* TITLE USE OF TSTB FOR SOFTWARE-CONTROLLED INTERRUPT 
* 
* 
* 
* 
* 
* 

IN THIS EXAMPLE, ALL INTERRUPTS HAVE BEEN DISABLED BY 
RESETTING THE GIE BIT OF THE STATUS REGISTER. WHEN AN 
INTERRUPT ARRIVES, IT IS STORED IN THE IF REGISTER. THE 
PRESENT EXAMPLE ACTIVATES THE INTERRUPT SERVICE ROUTINE INTR 
WHEN IT DETECTS THAT INT2- HAS OCCURRED. 

TSTB OlOOb, IF 
CALLNZ INTR 

Check if bit 2 of IF is set, 
and, if so, call subroutine INTR 

Software Applications 11-23 



Logical and Arithmetic Operations 

Example 11-13. Copy a Bit From One Location to Another 

11·24 

* TITLE COPY A BIT FROM ONE LOCATION TO ANOTHER 
* 
* BIT I OF R1 NEEDS TO BE COPIED TO BIT J OF R2. 
* ARO POINTS TO A LOCATION HOLDING I, AND IT IS ASSUMED THAT THE 
* NEXT MEMORY LOCATION HOLDS THE VALUE J. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

CONT 

LDI 
LSH 
TSTB 
BZD 
LDI 
LSH 
ANON 
OR 

1,RO 
*ARO,RO 
R1,RO 
CONT 
1,RO 
*+ARO(l),RO 
RO,R2 
RO,R2 

J 

Rl 

R2 

*ARO 

*(ARO+l) 

Shift 1 to align it with bit I 
Test the Ith bit of R1 
If bit - 0, branch delayed 

Align 1 with Jth location 
If bit - 0, reset Jth bit of R2 
If bit = 1, set Jth bit of R2 



11.3.2 Block Moves 

Logical and Arithmetic Operations 

Since the TMS320C3x directly addresses a large amount of memory, blocks 
of data or program code can be stored off-chip in slow memories and then 
loaded on-chip for faster execution. Data can also be moved from on-chip to 
off-chip memory for storage or for multiprocessor data transfers. 

You can use direct memory access (DMA) in parallel with CPU operations to 
accomplish such data transfers. The DMA operation is explained in detail in 
subsection 8.3 on page 8-43. An alternative to DMA is to perform data trans­
fers under program control using load and store instructions in a repeat mode. 
Example 11-14 shows the transfer of a block of 512 floating-point numbers 
from external memory to block 1 of the on-chip RAM. 

Example 11-14. Block Move Under Program Control 

* TITLE BLOCK MOVE UNDER PROGRAM CONTROL 
* 
extern • word 
block1 .word 

01000H 
0809COOH 

LDI @extern,ARO Source address 
LDI @block1,AR1 Destination address 

LDF *ARO++,RO Load the first number 

RPTS 510 Repeat following instruction 511 times 
LDF *ARO++,RO Load the next number, and ••• 

II STF RO,*AR1++ store the previous one 

STF RO,*AR1 Store the last number 

11.3.3 Bit-Reversed Addressing 

The TMS320C3x can implement fast Fourier transforms (FFT) with bit-rev­
ersed addressing. If the data to be transformed is in the correct order, the final 
result of the FFT is scrambled in bit-reversed order. To recover the frequency­
domain data in the correct order, you must swap certain memory locations. 
The bit-reversed addressing mode makes swapping unnecessary. The next 
time data needs to be accessed, the access is performed in a bit-reversed 
manner rather than sequentially. The base address of bit-reversed addressing 
must be located on a boundary of the size of the table. For example, if IRO = 
2n-1, the n LSBs of the base address must be O. 

Software Applications 11-25 



Logical and Arithmetic Operations 

In bit-reversed addressing, IRO holds a value equal to one-half the size of the 
FFT, if real and imaginary data are stored in separate arrays. During access­
ing, the auxiliary register is indexed by IRO, but with reverse carry propagation. 
Example 11-15 illustrates a 512-point complex FFT being moved from the 
place of computation (pointed at by ARO) to a location pointed at by AR1. In 
this example, real and imaginary parts XR(i) and XI (i) ofthe data are not stored 
in separate arrays, but they are interleaved XR(O), XI(O), XR(1), XI(1), ... , 
XR(N-1), XI(N-1). Because of this arrangement, the length of the array is 2N 
instead of N, and IRO is set to 512 instead of 256. 

Example 11-15. Bit-Reversed Addressing 

* 
* TITLE BIT-REVERSED ADDRESSING 
* 
* THIS EXAMPLE MOVES THE RESULT OF THE 512-POINT FFT 
• CO~~UTATION POINTED AT BY ARO TO A LOCATION POINTED AT 
* BY AR1. REAL AND IMAGINARY POINTS ARE ALTERNATING. 

LDI 512,IRO 
LDI 2,IR1 
LDI 511,Re Repeat 511+1 times 
LDF *+ARO(1),R1 Load first imaginary point 
RPTB LOOP 

* 
LDF *ARO++(IRO)B,RO Load real value (and point 

II STF R1,*+AR1(1) to next location) and store 
* the imaginary value 
LOOP LDF *+ARO(1),R1 Load next imaginary point and store 
II STF RO, *AR1++ (IR1) previous real value 

11.3.4 Integer and Floating-Point Division 

11-26 

Although division is not implemented as a single instruction in the 
TMS320C3x, the instruction set has the capacity to perform an efficient divi­
sion routine. Integer and floating-point division are examined separately be­
cause different algorithms are used. 



Logical and Arithmetic Operations 

11.3.4.1 Integer Division 

Division is implemented on the TMS320C3x by repeated subtractions using 
SUBC, a special conditional subtract instruction. Consider the case of a 32-bit 
positive dividend with i significant bits (and 32 - i sign bits) and a 32-bit positive 
divisor with j significant bits (and 32 - j sign bits). The repetition of the SUBC 
command i - j + 1 times produces a 32-bit result in which the lower i - j + 
1 bits are the quotient and the upper 31 - i + j bits are the remainder of the 
division. 

SUBC implements binary division in the same manner that long division imple­
ments it. The divisor which is assumed to be smaller than the dividend) is 
shifted left i - j times to be aligned with the dividend. Then, using SUBC, the 
shifted divisor is subtracted from the dividend. For each subtraction that does 
not produce a negative answer, the dividend is replaced by the difference. It 
is then shifted to the left, and a 1 is put in the LSB. If the difference is negative, 
the dividend is simply shifted left by 1. This operation is repeated 
i - j + 1 times. 

Software Applications 11-27 



Logical and Arithmetic Operations 

11-28 

As an example, consider the division of 33 by 5, using both long division and 
the SUBC method. In this case, i = 6, j = 3, and the SUBC operation is repeated 
6 - 3 + 1 = 4 times. 

Long Division: 

00000000000000000000000000000101 

00000000000000000000000000000110 Quotient 
00000000000000000000000000100001 

-101 

1101 
-101 

11 Remainder 

SUBC Method: 

00000000000000000000000000100001 Dividend 
00000000000000000000000000101000 Divisor (Aligned) 

Negative Difference 
~ 

00000000000000000000000000100010 
00000000000000000000000000101000 

00000000000000000000000000011010 

~ 
00000000000000000000000000110101 
00000000000000000000000000101000 

00000000000000000000000000001101 

~ 
00000000000000000000000000011011 
00000000000000000000000000101000 

Negative Difference 

~ 
00000000000000000000000000110110 

Remainder Quot. 

(First SUBC Command) 

New Dividend + Quotient 
Divisor 
Difference (> 0) (Second SUBC Command) 

New Dividend + Quotient 
Divisor 
Difference (> 0) (Third SUBC Command) 

New Dividend + Quotient 
Divisor 
(Fourth SUBC Command) 

Final Result 

When the SUBC command is used, both the dividend and the divisor must be 
positive. Example 11-16 shows an example of a realization of the integer divi­
sion in which the sign of the quotient is properly handled. The last instruction 
before returning modifies the condition flag in case subsequent operations de­
pend on the sign of the result. 



Example 11-16. Integer Division 

* * TITLE INTEGER DIVISION 
* 

* 
* 

SUBROUTINE DIVI 

Logical and Arithmetic Operations 

* INPUTS: SIGNED INTEGER DIVIDEND IN RO, 
* SIGNED INTEGER DIVISOR IN Rl 

* 
* 
* 

OUTPUT: RO/R1 into RO 

* REGISTERS USED: RO-R3, IRO, IR1 
* 
* 
* 
* 
* 
* 
* 

OPERATION: 1. NORMALIZE DIVISOR WITH DIVIDEND 
2. REPEAT SUBC 
3. QUOTIENT IS IN LSBs OF RESULT 

CYCLES: 31-62 (DEPENDS ON AMOUNT OF NORMALIZATION) 

.globl DIVI 

SIGN .set R2 
TEMPF • set R3 
TEMP • set IRO 
COUNT • set IR1 

* DIVI - SIGNED DIVISION 

DIVI: 
* * DETERMINE SIGN OF RESULT. GET ABSOLUTE VALUE OF OPERANDS. 
* 

* 

XOR 
ABSI 
ABSI 

CMPI 
BGTD 

RO,Rl,SIGN 
RO 
Rl 

RO,R1 
ZERO 

Get the sign 

Divisor > dividend ? 
If so, return 0 

* NORMALIZE OPERANDS. USE DIFFERENCE IN EXPONENTS AS SHIFT COUNT 
* FOR DIVISOR AND AS REPEAT COUNT FOR 'SUBC'. 
* 

FLOAT RO , TEMPF 
PUSHF TEMPF 
POP COUNT 
LSH -24, COUNT 

Normalize dividend 
PUSH as float 
POP as int 
Get dividend exponent 

Software Applications 11-29 



Logical and Arithmetic Operations 

11-30 

* 

FLOAT 
PUSHF 
POP 
LSH 
SUBI 
LSH 

Rl,TEMPF 
TEMPF 
TEMP 
-24,TEMP 
TEMP, COUNT 
COUNT,Rl 

Normalize divisor 
PUSH as float 
POP as int 
Get divisor exponent 
Get difference in exponents 
Align divisor with dividend 

* DO COUNT+l SUBTRACT & SHIFTS. 

* 

RPTS COUNT 
SUBC Rl,RO 

* MASK OFF THE LOWER COUNT+l BITS OF RO. 
* 

* 

SUBRI 
LSH 
NEGI 
LSH 

31,COUNT 
COUNT,RO 
COUNT 
COUNT,RO 

Shift count is (32 - (COUNT+l)) 
Shift left 

Shift right to get result 

* CHECK SIGN AND NEGATE RESULT IF NECESSARY. 
* 

* 
* 
* 
0: 

NEGI RO,Rl Negate result 
ASH -31,SIGN Check sign 
LDINZ Rl,RO If set, use negative result 
CMPI O,RO Set status from result 
RETS 

RETURN O. 

LDI O,RO 
RETS 
.end 

If the dividend is less than the divisor and you want fractional division, you can 
perform a division after you determine the desired accuracy of the quotient in 
bits. If the desired accuracy is k bits, start by shifting the dividend left by k posi­
tions. Then apply the algorithm described above, with i replaced by i + k. It is 
assumed that i + k is less than 32. 



Logical and Arithmetic Operations 

11.3.4.2 Computation of Floating-Point Inverse and Division 

This section presents a method of implementing floating-point division on the 
TMS320C3x. Since the algorithm outlined here computes the inverse of a 
number v, to perform y / v, multiply y by the inverse of v. 

The computation of 1 / v is based on the following iterative algorithm. At the 
ith iteration, the estimate x [i] of 1/ v is computed from v and the previous esti­
mate x [i-1] according to the following formula: 

x [i] = x [i -1] * (2.0 - v * x [i - 1]) 

To start the operation, an initial estimate x [0] is needed. If v = a * 28 , a good 
initial estimate is 

x [0] = 1 .0 * 2 - e - 1 

Example 11-17 shows the implementation of this algorithm on the 
TMS320C3x, where the iteration has been applied five times. Both accuracy 
and speed are affected by the number of iterations. The accuracy offered by 
the single-precision floating-point format is 2 - 23 = 1.192E - 7. If you want 
more accuracy, use more iterations. If you want less accuracy, reduce the 
number of iterations to increase the execution speed. 

This algorithm properly treats the boundary conditions when the input number 
either is 0 or has a very large value. When the input is 0, the exponent 
e = - 128. Then the calculation of x [0] yields an exponent equal to 
- (-128) -1 = 127, and the algorithm will overflow and saturate. On the other 
hand, in the case of a very large number, e = 127, the exponent of x [0] will be 
-127 -1 = -128. This will cause the algorithm to yield 0, which is a reasonable 
handling of that boundary condition. 

Software Applications 11-31 



Logical and Arithmetic Operations 

Example 11-17. Inverse of a Floating-Point Number 

11·32 

* * TITLE INVERSE OF A FLOATING-POINT NUMBER 
* 
* 
* SUBROUTINE INVF 
* 
* * THE FLOATING-POINT NUMBER v IS STORED IN RO. AFTER THE 
* COMPUTATION IS COMPLETED, l/v IS ALSO STORED IN RO. 
* 
* TYPICAL CALLING SEQUENCE: 
* LDFv, RO 
* CALL INVF 
* 
* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* 
* RO 
* RO 

v = NUMBER TO FIND THE RECIPROCAL OF (UPON THE CALL) 
l/v (UPON THE RETURN) 

* * REGISTER USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, RI, R2, R3 
* REGISTER CONTAINING RESULT: RO 

* 
* 
* 
* 

CYCLES: 35 WORDS: 32 

• global INVF 
* 
INVF: LOF RO , R3 

ABSF RO 
* 

v is saved for later 
The algorithm uses v = Ivl 

* EXTRACT THE EXPONENT OF v. 

* 

* 
* 

PUSHF RO 
POP RI 
ASH -24,RI The 8 LSBs of RI contain the exponent 

of v 

* x[O] FORMATION IS GIVEN THE EXPONENT OF v. 
* 



* 

NEGI 
SUBI 
ASH 
PUSH 
POPF 

R1 
1,R1 
24,R1 
R1 
R1 

Logical and Arithmetic Operations 

Now we have -e-1, the exponent of x[O] 

Now R1 x[O] = 1.0 * 2**(-e-1) 

* NOW THE ITERATIONS BEGIN. 

* 

* 

* 

* 

* 

* 

MPYF R1,RO,R2 
SUBRF 2 • 0 , R2 
MPYF R2,R1 

MPYF R1,RO,R2 
SUBRF 2 • 0 , R2 
MPYF R2,R1 

MPYF R1,RO,R2 
SUBRF 2.0 ,R2 
MPYF R2,R1 

MPYF R1,RO,R2 
SUBRF 2 • 0 , R2 
MPYF R2,R1 

RND R1 

R2 = v * x[O] 
R2 - 2.0 - v * x[O] 
R1 x[l] = x[O] * (2.0 - v * x[O]) 

R2 v * x[l] 
R2 = 2.0 - v * x[l] 
R1 = x[2] = x[l] * (2.0 - v * x[l]) 

R2 - v * x[2] 
R2 2.0 - v * x[2] 
R1 = x[3] - x[2] * (2.0 - v * x[2]) 

R2 - v * x[3] 
R2 - 2.0 - v * x[3] 
R1 - x[4] - x[3] * (2.0 - v * x[3]) 

This minimizes error in the LSBs 

* FOR THE LAST ITERATION WE USE THE FORMULATION: 
* x[S] = (x[4] * (1.0 - (v * x[4]))) + x[4] 

* 

* 

* 

MPYF 
SUBRF 
MPYF 
ADDF 

R1,RO,R2 
1. 0,R2 
R1,R2 
R2,R1 

RNDR1,RO 

R2 -
R2 = 
R2 -
R2 = 

v * x[4] - 1.0 •• 01 •• -> 1 
1.0 - v * x[4] = 0.0 •• 01 ••• => 0 
x[4] * (1.0 - v * x[4]) 
x[S] = (x[41*(1.0-(v*x[4])))+x[4] 

Round since this is followed by a MPYF 

* NOW THE CASE OF v < 0 IS HANDLED. 

* 

* 

* 
* END 

* 

NEGF 
LDF 
LDFN 

RETS 

.end 

RO,R2 
R3,R3 
R2,RO 

This sets condition flags 
If v < 0, then RO = -RO 

Software Applications 11-33 



Logical and Arithmetic Operations 

11.3.5 Square Root 

11-34 

An iterative algorithm computes square root on the TMS320C3x and is similar 
to the one used for the computation of the inverse. This algorithm computes 
the inverse of the square root of a number v, 1/ SQRT(v). To derive SQRT(v) , 
multiply this result by v. Since in many applications, division by the square root 
of a number is desirable, the output of the algorithm saves the effort to compute 
the inverse of the square root. 

At the ith iteration, the estimate x[i] of 1/ SQRT(v) is computed from v and the 
previous estimate x[i-1] according to this formula: 

x [i) = x [i - 1) * (1.5 - (v /2) * x [i - 1) * x [i -1)) 

To start the operation, an initial estimate x[O] is needed. If v = a * 2e, a good 
initial estimate is 

x [0) = 1.0 * 2 - e/2 

Example 11-18 shows the implementation of this algorithm on the 
TMS320C3x, where the iteration has been applied five times. Both accuracy 
and speed are affected by the number of iterations. If you want more accuracy, 
use more iterations. If you want less accuracy, reduce the number of iterations 
to increase the execution speed. 



Logical and Arithmetic Operations 

Example 11-18. Square Root of a Floating-Point Number 

* * TITLE SQUARE ROOT OF A FLOATING-POINT NUMBER 
* 
* 
* SUBROUTINE SQRT 
* * THE FLOATING POINT NUMBER v IS STORED IN RO. AFTER THE 
* COMPUTATION IS COMPLETED, SQRT(V) IS ALSO STORED IN RO. NOTE 
* THAT THE ALGORITHM ACTUALLY COMPUTES l/SQRT(v). 
* 
* 
* TYPICAL CALLING SEQUENCE: 

* * LDF v, RO 
* CALL SQRT 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* 
* RO 
* 

v = NUMBER TO FIND THE SQUARE ROOT OF 
(UPON THE CALL) 

* RO SQRT(v) (UPON THE RETURN) 
* 
* REGISTER USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, Rl, R2, R3 
* REGISTER CONTAINING RESULT: RO 
* 
* CYCLES: SO WORDS: 39 
* 

.global SQRT 
* * EXTRACT THE EXPONENT OF V. 

* 

Software Applications 11·35 



Logical and Arithmetic Operations 

11-36 

SQRT: LDF RO , R3 
RETSLE 
PUSHF RO 
POPRl 
ASH-24,Rl 
ADDI 1,Rl 
ASH -l,Rl 

* 

Save v 
Return if number is non-positive 

The 8 LSBs of Rl contain exponent of v 
Add a rounding bit in the exponent 
e/2 

* X[O] FORMATION GIVEN THE EXPONENT OF V. 
* 

NEGI Rl 
ASH 24,Rl 
PUSH Rl 
POPF Rl Now Rl = x[O] = 1.0 * 2**(-e/2) 

* 
* GENERATE V/2. 
* 

MPYF 0.5,RO V/2 and take rounding bit out 
* 
* NOW THE ITERATIONS BEGIN. 
* 

MPYF Rl,Rl,R2 R2 = x[O] * x[O] 
MPYF RO,R2 R2 (v/2) * X[O] * x[O] 
SUBRF 1.5,R2 R2 .. 1.5 - (v/2) * x[O] * x[O] 

MPYF R2,Rl Rl = x[l] = X[O] * 
* (1.5 - (v/2)*x[O]*x[O]) 

RND Rl 
MPYF Rl,Rl,R2 R2 = x[l] * x[l] 
MPYF RO,R2 R2 .. (v/2) * x[l] * x[l] 
SUBRF 1.5,R2 R2 .. 1.5 - (v/2) * x[l] * x[ 1] 
MPYF R2,Rl Rl .. x[2] .. x[l] * 

* (1.5 - (v/2)*x[l]*x[l]) 
RND Rl 
MPYF Rl,Rl,R2 R2 .. x[2] * x[2] 
MPYF RO,R2 R2 .. (v/2) * x[2] * x[2] 
SUBRF 1.5,R2 R2 1.5 - (v/2) * x[2] * x[2] 
MPYF R2,Rl Rl .. x[J] .. x[2] 

* *(1.5 - (v/2)*x[2]*x[2]) 
RND Rl 

* 



MPYF 
MPYF 
SUBRF 
MPYF 

* 
RNO 

* 
MPYF 
MPYF 
SUBRF 
MPYF 

* 
* 
* 

RNO 
* 

MPYF 
* 

RETS 
* 
* end 
* 

.end 

R1,R1,R2 
RO,R2 
l.s,R2 
R2,R1 

R1 

R1,R1,R2 
RO,R2 
l.s,R2 
R2,R1 

R1,RO 

R3,RO 

Logical and Arithmetic Operations 

R2 - x[3] * x[3] 
R2 z (v/2) * x[3] * x[3] 
R2 - 1.5 - (v/2) * x[3] * x[3] 
R1 - x[4] - x[3] 

* (1.5 - (v/2) * x[3] * x[3]) 

R2 = x[4] * x[4] 
R2 = (v/2) * x[4] * x[4] 
R2 - 1.5 - (v/2) * x[4] * x[4] 
R1 - x[s] - x[4] 

* (1.5 - (v/2) * x[4] * x[4]) 

Round 

Sqrt(v) from sqrt(v**(-l)) 

Software Applications 11-37 



Logical and Arithmetic Operations 

11.3.6 Extended-Precision Arithmetic 

11-38 

The TMS320C3x offers 32 bits of precision for integer arithmetic and 24 bits 
of precision in the mantissa for floating-point arithmetic. For higher precision 
in floating-point operations, the eight extended-precision registers R7 to RO 
contain eight additional bits of accuracy. Since no comparable extension is 
available for fixed-point arithmetic, this section shows how you can achieve 
fixed-point double precision by using the capabilities of the processor. The 
technique consists of performing the arithmetic by parts (which is similar to 
performing longhand arithmetic). 

In the instruction set, operations ADDC (add with carry) and SUBB (subtract 
with borrow) use the status carry bit for extended-precision arithmetic. The 
carry bit is affected by the arithmetic operations of the ALU and by the rotate 
and shift instructions. It can also be manipulated directly by setting the status 
register to certain values. For proper operation, the overflow mode bit should 
be reset (OVM = 0) so that the accumulator results are not loaded with the sat­
uration values. Example 11-19 and Example 11-20 show 64-bit addition and 
64-bit subtraction. The first operand is stored in the registers RO (low word) and 
R1 (high word). The second operand is stored in R2 and R3. The result is 
stored in RO and R 1. 



Logical and Arithmetic Operations 

Example 11-19. 64-Bit Addition 

* TITLE 64-BIT ADDITION 
* * TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER, PRODUCING 
* A 64-BIT RESULT. THE NUMBERS X (Rl,RO) AND Y (R3,R2) ARE 
* ADDED, RESULTING IN W (Rl,RO). 
* 
* Rl RO 

* + R3R2 
* 
* Rl RO 

* 
ADDI R2,RO 
ADDC R3,Rl 

Example 11-20. 64-Bit Subtraction 

* TITLE 64-BIT SUBTRACTION 
* * TWO 64-BIT NUMBERS ARE SUBTRACTED FROM EACH OTHER 
* PRODUCING A 64-BIT RESULT. THE NUMBERS X (Rl,RO) AND 
* Y (R3,R2) ARE SUBTRACTED, RESULTING IN W (Rl,RO). 
* 
* Rl RO 

* R3 R2 
* 
* Rl RO 

* 
SUBI R2,RO 
SUBB R3,Rl 

When two 32-bit numbers are multiplied, a 64-bit product results. The proce­
dure for multiplication is to split the 32-bit magnitude values of the multiplicand 
X and the multiplier Y into two parts (X1,XO) and (X3,X2), respectively, with 16 
bits each. The operation is done on unsigned numbers, and the product is ad­
justed for the sign bit. Example 11-21 shows the implementation of a 32-bit by 
32-bit multiplication. 

Software Applications 11-39 



Logical and Arithmetic Operations 

Example 11-21. 32-Bit-by-32-Bit Multiplication 

11-40 

* 
* TITLE 32 BIT X 32 BIT MULTIPLICATION 
* 
* 
* SUBROUTINE EXTMPY 
* 
* FUNCTION: TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT 
* RESULT. THE TWO NUMBERS (X and Y) ARE EACH SEPARATED INTO TWO 
* PARTS (Xl XO) AND (Y1 YO), WHERE XO, Xl, YO, AND Y1 ARE 16 BITS. 
* THE TOP BIT IN Xl AND Y1 IS THE SIGN BIT. THE PRODUCT IS 
* IN TWO WORDS (WO AND W1). THE MULTIPLICATION IS PERFORMED ON 
* POSITIVE NUMBERS, AND THE SIGN IS DETERMINED AT THE END. 

* 
* 

* 

* 
* 
* 
* 
* 

* 
* 
* 
* 
* 

Xl XO 

X Y1 YO 

XO*YO 

XO*Y1 

X1*YO 

X1*Y1 

W1 WO 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 

BITS OF PRODUCTS 

(NOT COUNTING SIGN) 

16+16 

16+16 

16+16 

16+16 

PRODUCT 

P1 

P2 

P3 

P4 

* 
* 
* 
* 
* 

RO 
R1 

MULTIPLIER AND LOW WORD OF THE PRODUCT 
MULTIPLICAND AND UPPER WORD OF THE PRODUCT 

* REGISTERS USED AS INPUT: RO, R1 
* REGISTERS MODIFIED: RO, R1, R2, R3, R4, ARO, AR1 
* REGISTER CONTAINING RESULT: RO,R1 
* 
* 



Logical and Arithmetic Operations 

* CYCLES: 28 (WORST CASE) WORDS: 25 
* 

.global EXTMPY 
* 
EXTMPY 

* 

XOR3 RO ,R1 ,ARO 
ABSI RO 
ABSI R1 

store sign 
Absolute values of X 

and Y 

* SEPARATE MULTIPLIER AND MULTIPLICAND INTO TWO PARTS 
'" 

LDI -16,AR1 
LSH3 AR1,RO,R2 R2 .. Xl .. upper 16 bits of X 
AND OFFFFH,RO RO XO lower 16 bits of X 
LSH3 AR1,R1,R3 R3 ... Y1 ... upper 16 bits of Y 
AND OFFFFH,R1 R1 .. YO ,. lower 16 bits of Y 

'" 
* CARRY OUT THE MULTIPLICATION 
* 

MPYI3 RO,R1,R4 XO*YO .. P1 

MPYI R3,RO XO*Y1 P2 
MPYI R2,R1 X1*YO P3 
ADDI RO,R1 P2+P3 
MPYI R2,R3 X1*Y1 P4 

* 
LDI R1,R2 
LSH 16,R2 Lower 16 bits of P2+P3 
CMPI O,ARO Check the sign of the product 
BGED DONE If >0, mUltiplication complete 

(delayed) 
LSH -16,R1 Upper 16 bits of P2+P3 
ADDI3 R4,R2,RO WO .. RO .. lower word of the product 
ADDC3 R1,R3,R1 W1 .. R1 - upper word of the product 

* 
* NEGATE THE PRODUCT IF THE NUMBERS ARE OF OPPOSITE SIGNS 
* 

NOTRO 
ADDI 1,RO 
NOTR1 
ADDC 0,R1 

'" DONE RETS 
.end 

Software Applications 11-41 



Logical and Arithmetic Operations 

11.3.7 IEEE/TMS320C3x Floating-Point Format Conversion 

11-42 

The fast version of the IEEE-to-TMS320C3x conversion routine was originally 
developed by Keith Henry of Apollo Computer, Inc. The other routines were 
based on this initial input. 

In fixed-point arithmetic, the binary point that separates the integer from the 
fractional part of the number is fixed at a certain location. For example, if a 
32-bit number has the binary point after the most significant bit (which is also 
the sign bit), only fractional numbers (numbers with absolute values less than 
1), can be represented. In other words, there is a number called a 031 number, 
which is a number with 31 fractional bits. All operations assume that the binary 
point is fixed at this location. The fixed-point system, although simple to imple­
ment in hardware, imposes limitations in the dynamic range of the represented 
number, which causes scaling problems in many applications. You can avoid 
this difficuity by using fioating-polnt numbeis. 

A floating-point number consists of a mantissa m multiplied by base braised 
to an exponent e: 

m*be 

In current hardware implementations, the mantissa is typically a normalized 
number with an absolute value between 1 and 2, and the base is b = 2. Al­
though the mantissa is represented as a fixed-point number, the actual value 
of the overall number floats the binary point because of the multiplication by 
be. The exponent e is an integer whose value determines the position of the 
binary point in the number. I EEE has established a standard format for the re­
presentation of floating-point numbers. 

To achieve higher efficiency in hardware implementation, the TMS320C3x 
uses a floating-point format that differs from the IEEE standard. This section 
briefly describes the two formats and presents software routines to convert be­
tween them. 

TMS320C3x floating-point format: 

8 1 23 

e f 



Logical and Arithmetic Operations 

In a 32-bit word representing a floating-point number, the first eight bits corre­
spond to the exponent expressed in two's-complement format. There is one 
bit for sign and 23 bits for the mantissa. The mantissa is expressed in two's­
complement form, with the binary point after the most significant nonsign bit. 
Since this bit is the complement of the sign bit s, it is suppressed. In other 
words, the mantissa actually has 24 bits. A special case occurs when 
e = -128. In this case, the number is interpreted as 0, independently of the 
values of sand f (which are set to 0 by default). To summarize, the values of 
the represented numbers in the TMS320C3x floating-point format are as fol­
lows: 

2e * (01.f) 
2e * (10.f) 
o 

ifs = 0 
if s = 1 
if e = -128 

IEEE floating-point format: 

1 8 

e 

23 

f 

The IEEE floating-pointformat uses sign-magnitude notation for the mantissa, 
and the exponent is biased by 127. In a 32-bit word representing a 
floating-point number, the first bit is the sign bit. The next eight bits correspond 
to the exponent, which is expressed in an offset-by-127 format (the actual ex­
ponent is e-127). The following 23 bits represent the absolute value of the 
mantissa with the most significant 1 implied. The binary point is after this most 
significant 1. In other words, the mantissa actually has 24 bits. There are sev­
eral special cases, summarized below. 

These are the values of the represented numbers in the IEEE floating-point 
format: 

(-1)$*2e - 127 * (01.f) 

Special cases: 

(-1}$*0.0 
(-1)$ * 2 -126 * (O.f) 

(-1) $ * infinity 
NaN (not a number) 

if 0 < e < 255 

if e = 0 and f = 0 (zero) 
if e = 0 and f < > 0 (denormalized) 
if e = 255 and f = 0 (infinity) 
if e = 255 and f < > 0 

Based on these definitions of the formats, two versions of the conversion rou­
tines were developed. One version handles the complete definition of the for­
mats. The other ignores some of the special cases (typically the ones that are 
rarely used), but it has the benefit of executing faster than the complete con­
version. For this discussion, the two versions are referred to as the complete 
version and the fast version, respectively. 

Software Applications 11-43 



Logical and Arithmetic Operations 

11.3.7.1 IEEE-to-TMS320C3x Floating-Point Format Conversion 

Example 11-22 shows the fast conversion from I EEE to TMS320C3x floating­
point format. It properly handles the general case when 0 < e < 255, and also 
handles Os (that is, e = 0 and f = 0). The other special cases (denormalized, 
infinity, and NaN) are not treated and, if present, will give erroneous results. 

Example 11-22. IEEE-to-TMS320C3x Conversion (Fast Version) 

11-44 

* TITLE IEEE TO TMS320C3x CONVERSION (FAST VERSION) 

* 
* 
* SUBROUTINE FMIEEE 

* 
* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE 
* TMS320C3x FLOATING-POINT FORMAT. THE NUMBER TO 
* BE CONVERTED IS IN THE LOWER 32 BITS OF RO. 
* THE RESULT IS STORED IN THE UPPER 32 BITS OF RO. 
* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE 
* FOLLOWING TABLE: 

* 
* (0) OxFF800000 <-- AR1 
* (1) OxFFOOOOOO 
* (2) Ox7FOOOOOO 
* (3) Ox80000000 
* (4) Ox81000000 

* 
* ARGUMENT ASSIGNMENTS: 

* ARGUMENT 

* 
* RO 
* AR1 

* 

FUNCTION 

NUMBER TO BE CONVERTED 
POINTER TO TABLE WITH CONSTANTS 

* REGISTERS USED AS INPUT: RO, AR1 
* REGISTERS MODIFIED: RO, R1 
* REGISTER CONTAINING RESULT: RO 

* 
* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO 
* INITIALIZE IT IN THE CALLING PROGRAM. 

* 
* 
* CYCLES: 12 (WORST CASE) WORDS: 12 

* 
.global FMIEEE 

* 



FMIEEE AND3 
BND 
ADDI 

LDIZ 
SUB I 
PUSH 
POPF 
RETS 

* 
NEG PUSH 

POPF 
NEGF 
RETS 

RO,*AR1,Rl 
NEG 
RO,Rl 

*+AR1(1),Rl 
*+AR1(2),Rl 
Rl 
RO 

Rl 
RO 
RO,RO 

Logical and Arithmetic Operations 

Replace fraction with 0 
Test sign 
Shift sign 

and exponent inserting 0 
If all 0, generate C30 0 
Unbias exponent 

Load this as a flt. pt. number 

Load this as a flt. pt. number 
Negate if orig. sign is negative 

Software Applications 11-45 



Logical and Arithmetic Operations 

Example 11-23 shows the complete conversion between the IEEE and 
TMS320C3x formats. In addition to the general case and the Os, it handles the 
special cases as follows: 

o If NaN (e = 255, f< >0), the number is returned intact. 

o If infinity (e = 255, f = 0), the output is saturated to the most positive or 
negative number, respectively. 

o If denormalized (e = 0, f< >0), two cases are considered. If the MSB of 
f is 1, the number is converted to TMS320C3x format. Otherwise, an un­
derflow occurs, and the number is set to O. 

Example 11-23. IEEE-to-TMS320C3x Conversion (Complete Version) 

11-46 

* 
* 
* 

TITLE IEEE TO TMS320C3x CONVERSION (COMPLETE VERSION) 

* SUBROUTINE FMIEEEI 

* 
* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE TMS320C3x 
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED 
* IS IN THE LOWER 32 BITS OF RO. THE RESULT IS STORED 
* IN THE UPPER 32 BITS OF RO. 

* 
* * UPON ENTERING THE ROUTINE, ARI POINTS TO THE FOLLOWING TABLE: 

* 
* (O)OxFF800000 <-- ARI 
* (1) OxFFOOOOOO 
* (2) Ox7FOOOOOO 
* (3) Ox80000000 
* (4)Ox81000000 
* (5) Ox7F800000 
* (6) Ox00400000 
* (7)Ox007FFFFF 
* (8) Ox7F7FFFFF 

* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT I FUNCTION 

* + 
* RO I NUMBER TO BE CONVERTED 

* ARI I POINTER TO TABLE WITH CONSTANTS 

* 
* REGISTERS USED AS INPUT: RO, ARI 
* REGISTERS MODIFIED: RO, Rl 
* REGISTER CONTAINING RESULT: RO 

* 



Logical and Arithmetic Operations 

* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO 
* INITIALIZE IT IN THE CALLING PROGRAM. 
* 
* 
* CYCLES: 23 (WORST CASE) 
* 

* 
FMIEEE1 
AND 
BZ 
* 
XOR 
BNZ 

• global FMIEEE1 

LDI RO,R1 
*+AR1(S),R1 
UNNORM 

*+AR1 (5) ,R1 
NORMAL 

* HANDLE NaN AND INFINITY 

TSTB *+AR1(7),RO 
RETSNZ 
LDI RO ,RO 

LDFGT *+AR1 ( 8 ) ,RO 

LDFN *+AR1 ( 5 ) ,RO 
RETS 

WORDS: 34 

If e = 0, number is either 0 or 
denormalized 

If e < 255, use regular routine 

Return if NaN 

If positive, infinity -
most positive number 

If negative, infinity '"' 
most negative number RETS 

* HANDLE Os AND UNNORMALIZED NUMBERS 

UNNORM TSTB *+AR1(6),RO Is the MSB of f equal to 1? 
LDFZ *+AR1(3),RO If not, force the number to 0 
RETSZ and return 

XOR *+AR1 (6) ,RO If MSB of f '"' 1, make it 0 
BND NEG1 
LSH 1,RO Eliminate sign bit 

& line up mantissa 
SUBI *+AR1 (2) ,RO Make e = -127 
PUSH RO 
POPF RO Put number in floating point format 
RETS 

NEG1 POPF RO 
NEGF RO,RO If negative, negate RO 
RETS 

Software Applications 11-47 



Logical and Arithmetic Operations 

11·48 

* HANDLE THE REGULAR CASES 
* 
NORMAL AND3 RO,*AR1,Rl 

BND NEG 
ADDl RO,Rl 
SUBl *+AR1(2) ,Rl 
PUSH Rl 
POPF RO 
RETS 

NEG POPF RO 
NEGF RO,RO 
RETS 

Replace fraction with 0 
Test sign 
Shift sign and exponent inserting 0 
Unbias exponent 

Load this as a flt. pt. number 

Load this as a flt. pt. number 
Negate if original sign negative 



Logical and Arithmetic Operations 

11.3.7.2 TMS320C3x-to-IEEE Floating-Point Format Conversion 

The vast majority of the numbers represented by the TMS320C3x 
floating-point format are covered by the general IEEE format and the repre­
sentation of Os. The only special case is e = -127 in the TMS320C3x format; 
this corresponds to a denormalized number in IEEE format. It is ignored in the 
fast version, while it is treated properly in the complete version. 
Example 11-24 shows the fast version, and Example 11-25 shows the com­
plete version of the TMS320C3x-to-IEEE conversion. 

Example 11-24. TMS320C3x-to-IEEE Conversion (Fast Version) 

* * TITLE TMS320C3x TO IEEE CONVERSION (FAST VERSION) 
* 
* * SUBROUTINE TOIEEE 
* * FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE 
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED 
* IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE IN 
* THE LOWER 32 BITS OF RO. 
* 

* UPON ENTERING THE ROUTINE, ARl POINTS TO THE FOLLOWING TABLE: 
* 
* (O)OxFF800000 <-- ARl 
* (1) OxFFOOOOOO 
* (2) Ox7FOOOOOO 
* (3) Ox80000000 
* (4) Ox81000000 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* 

NUMBER TO BE CONVERTED * RO 
* ARl 
* 

POINTER TO TABLE WITH CONSTANTS 

* REGISTERS USED AS INPUT: RO, ARl 
* REGISTERS MODIFIED: RO 
* REGISTER CONTAINING RESULT: RO 
* 

* NOTE: SINCE THE STACK POINTER 'SP' IS USED, MAKE SURE TO 
* INITIALIZE IT IN THE CALLING PROGRAM. 
* 
* 

Software Applications 11-49 



Logical and Arithmetic Operations 

* CYCLES: 14 (WORST CASE) 
* 

* 
TOIEEE 

NEG 

11-50 

• global 

LDF 
LDFZ 
BND 
ABSF 
LSH 
PUSHF 
POP 
ADDI 
LSH 
RETS 

POP 

TOIEEE 

RO,RO 
*+AR1 (4) ,RO 
NEG 
RO 
1,RO 
RO 
RO 
*+AR1 (2) , RO 
-l,RO 

RO 

ADDI *+AR1(2),RO 
LSH -l,RO 
ADDI *+AR1(3),RO 
RETS 

WORDS: 15 

Determine the sign of the number 
If 0, load appropriate number 
Branch to NEG if negative (delayed) 
Take the absolute value of the number 
Eliminate the sign bit in RO 

Place number in lower 32 bits of RO 
Add exponent bias (127) 
Add the positive sign 

Place number in lower 32 bits 
of RO 
Add exponent bias (127) 
Make space for the sign 
Add the negative sign 



Logical and Arithmetic Operations 

Example 11-25. TMS320C3x-to-IEEE Conversion (Complete Version) 

* 
* TITLE TMS320C3x TO IEEE CONVERSION (COMPLETE VERSION) 
* 
* * SUBROUTINE TOIEEEl 
* 
* * FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE 
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED 
* IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE 
* IN THE LOWER 32 BITS OF RO. 
* 
* 
* UPON ENTERING THE ROUTINE, ARl POINTS TO THE FOLLOWING TABLE: 
* 
* (0) OxFF800000 <-- ARl 
* (1) OxFFOOOOOO 
* (2) Ox7FOOOOOO 
* (3) Ox80000000 
* (4) Ox8l000000 
* (5) Ox7F800000 
* (6) Ox00400000 
* (7)Ox007FFFFF 
* (8)Ox7F7FFFFF 
* 
* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* 

NUMBER TO BE CONVERTED * RO 
* ARl POINTER TO TABLE WITH CONSTANTS 
* 
* REGISTERS USED AS INPUT: RO, ARl 
* REGISTERS MODIFIED: RO 
* REGISTER CONTAINING RESULT: RO 
* * NOTE: SINCE THE STACK POINTER ' SP' IS USED, MAKE SURE TO 
* INITIALIZE IT IN THE CALLING PROGRAM. 
* 
* 
* CYCLES: 31 (WORST CASE) WORDS: 25 
* 

• global TOIEEEl 

Software Applications 11-51 



Logical and Arithmetic Operations 

* 
TOIEEE1 LDF 

LDFZ 
BND 
ABSF 

LSH 
PUSHF 
POP 
ADDI 
LSH 

CONT TSTB 
RETSNZ 
TSTB 
RETSZ 
PUSH 
POPF 
LSH 
PUSHF 
POP 
ADDI 
RETS 

NEG POP 
BRD 
ADDI 
LSH 
ADDI 
RETS 

11-52 

RO,RO 
*+ARl ( 4) , RO 
NEG 
RO 

1,RO 
RO 
RO 
*+AR1 (2) ,RO 
-l,RO 

*+AR1(S),RO 

*+AR1 (7 ) , RO 

RO 
RO 
-l,RO 
RO 
RO 
*+AR1 ( 6 ) , RO 

RO 
CONT 
*+ARI ( 2 ) , RO 
-l,RO 
*+AR1 (3) ,RO 

Determine the sign of the number 
If 0, load appropriate number 
Branch to NEG if negative (delayed) 
Take the absolute value 

of the number 
Eliminate the sign bit in RO 

Place number in lower 32 bits of RO 
Add exponent bias (127) 
Add the positive sign 

If e > 0, return 

If e = 0 & f = 0, return 

Shift f right by one bit 

Add 1 to the MSB of f 

Place number in lower 32 bits of RO 

Add exponent bias (127) 
Make space for the sign 
Add the negative sign 



Application-Oriented Operations 

11.4 Application-Oriented Operations 

11.4.1 Companding 

Certain features of the TMS320C3x architecture and instruction set facilitate 
the solution of numerically intensive problems. This section presents exam­
ples of applications using thase features, such as companding, filtering, FFTs, 
and matrix arithmetic. 

In telecommunications, conserving channel bandwidth while preserving 
speech quality is a primary concern. This is achieved this by quantizing the 
speech samples logarithmically. An 8-bit logarithmic quantizer produces 
speech quality equivalent to a 13-bit uniform quantizer. The logarithmic quanti­
zation is achieved by companding (COMpress/exPANDing). Two international 
standards have been established for companding: the wlaw standard (used 
in the United States and Japan), and the A-law standard (used in Europe). De­
tailed descriptions of Illaw and A law companding are presented in an applica­
tion report on companding routines included in the book Digital Signal Pro­
ceSSing Applications with the TMS320 Family (literature number SPRA012A). 

During transmission, logarithmically compressed data in sign-magnitude form 
is transmitted along the communications channel. If any processing is neces­
sary, you should expand this data to a 14-bit (for Il law) or 13-bit (for A law) 
linear format. This operation is performed when the data is received at the digi­
tal signal processor. After processing, the result is compressed back to 8-bit 
format and transmitted through the channel to continue transmission. 

Example 11-26 and Example 11-27 show Il-Iaw compression and expansion 
(that is, linear to Il-Iaw and Il-Iaw to linear conversion), while Example 11-28 
and Example 11-29 show A-law compression and expansion. For expansion, 
using a look-up table is an alternative approach. A look-up table trades 
memory space for speed of execution. Since the compressed data is eight bits 
long, you can construct a table with 256 entries containing the expanded data. 
If the compressed data is stored in the register ARO. the following two instruc­
tions will put the expanded data in register RO: 

ADDI @TABL,ARO; @TABL = BASE ADDRESS OF TABLE 
LDI*ARO,RO PUT EXPANDED NUMBER IN RO 

You could use the same look-up table approach for compression. but the re­
quired table length would then be 16.384 words for Il-Iaw or 8.192 words for 
A-law. If this memory size is not acceptable, use the subroutines presented in 
Example 11-26 or Example 11-28. 

Software Applications 11-53 



Application-Oriented Operations 

Example 11-26. !1-Law Compression 

11-54 

* * TITLE U-LAW COMPRESSION 
* 
* 
* SUBROUTINE MUCMPR 
* 
* 
* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* 
* RO 
* 

NUMBER TO BE CONVERTED 

* REGISTERS USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, Rl, R2, SP 
* REGISTER CONTAINING RESULT: RO 
* 
* NOTE: SINCE THE STACK POINTER 'SP' IS USED IN THE COMPRESSION 
* 
* 
* 
* 

ROUTINE 'MUCMPR', MAKE SURE TO INITIALIZE IT IN THE 
CALLING PROGRAM. 

* CYCLES: 20 
* 
* 

WORDS: 17 

• global MUCMPR 
* 
MUCMPR LDI 

ABSI 
CMPI 
LDIGT 
ADDI 

FLOAT 
MPYF 
LSH 
PUSHF 
POP 
LSH 

LDI 
LDI 
LDILT 
ADDI 
NOT 
RETS 

RO,Rl 
RO,RO 
lFDEH,RO 
lFDEH,RO 
33,RO 

RO 
0.03l25,RO 
1,RO 
RO 
RO 
-20,RO 

0,R2 
Rl,Rl 
BOH,R2 
R2,RO 
RO 

Save sign of number 

If RO>OxlFDE, 
saturate the result 
Add bias 

Normalize: (seg+5)OWXYZx ••• x 
Adjust segment number by 2**(-5) 
(seg)WXYZx ••• x 

Treat number as integer 
Right-justify 

If number is negative, 
set sign bit 

RO = compressed number 
Reverse all bits for transmission 



Application-Oriented Operations 

Example 11-27. J..t-Law Expansion 

* * TITLE U-LAW EXPANSION 
* 
* 
* SUBROUTINE MUXPND 
* 
* 
* ARGUMENT ASSIGNMENTS: 
* 
* ARGUMENT FUNCTION 
* 
* RO NUMBER TO BE CONVERTED 

* * REGISTERS USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, R1, R2, SP 
* REGISTER CONTAINING RESULT: RO 
* 
* * CYCLES: 20 (WORST CASE) WORDS: 14 
* 
* 

_global MUXPND 

* 
MUXPND NOT RO,RO Complement bits 

LDI RO,R1 
AND OFH,R1 Isolate quantization 
LSH 1,R1 
ADDI 33,R1 Add bias to introduce 
LDI RO,R2 Store for sign bit 
LSH -4,RO 
AND 7,RO Isolate segment code 
LSH3 RO,R1,RO Shift and put result 
SUBI 33,RO Subtract bias 
TSTB 80H,R2 Test sign bit 
RETSZ 
NEG I RO Negate if a negative 
RETS 

bin 

1xxxx1 

in RO 

number 

Software Applications 11-55 



Application-Oriented Operations 

Example 11-28. A-Law Compression 

11-56 

* 
* TITLE A-LAW COMPRESSION 
* 
* 
* SUBROUTINE ACMPR 
* 
* 
* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* + 
* RO 
* 

I NUMBER TO BE CONVERTED 

* REGISTERS USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, R1, R2, SP 
* REGISTER CONTAINING RESULT: RO 
* 
* NOTE: SINCE THE STACK POINTER 'SP' IS USED IN THE COMPRESSION 
* ROUTINE 'ACMPR', MAKE SURE TO INITIALIZE IT IN THE 
* CALLING PROGRAM. 
* 
* 
* CYCLES:22 WORDS: 19 

* 

* 
ACMPR 

END 

* 

• global ACMPR 

LDI 
ABSI 
CMPI 
BLED 
CMPI 
LDIGT 
LSH 

FLOAT 
MPYF 
LSH 
PUSHF 
POP 
LSH 

LDI 
LDI 
LDILT 
ADDI 
XOR 

RETS 

RO,R1 
RO,RO 
1FH,RO 
END 
OFFFH,RO 
OFFFH,RO 
-l,RO 

RO 
O.125,RO 
1,RO 
RO 
RO 
-20,RO 

O,R2 
R1,R1 
80H,R2 
R2,RO 
OD5H,RO 

Save sign of number 

If RO<Ox20, 
do linear coding 

If RO>OxFFF, 
saturate the result 

Eliminate rightmost bit 

Normalize: (seg+3)OWXYZx ••• x 
Adjust segment number by 2**(-3) 
(seg)WXYZx ••• x 

Treat number as integer 
Right-justify 

If number is negative, 
set sign bit 

RO - compressed number 
Invert even bits 

for transmission 



Application-Oriented Operations 

Example 11-29. A-Law Expansion 

* 
* TITLE A-LAW EXPANSION 
* 
* 
* 
* SUBROUTINE AXPND 
* 
* 
* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* 
* RO 
* 

NUMBER TO BE CONVERTED 

* REGISTERS USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, R1, R2, SP 
* REGISTER CONTAINING RESULT: RO 
* 
* 
* CYCLES: 2S (WORST CASE) WORDS: 16 
* 
* 

.global AXPND 
* 
AXPND XOR DSH,RO Invert even bits 

LDI RO,R1 
AND OFH,R1 Isolate quantization 
LSH 1,R1 
LDI RO,R2 Store for bit sign 
LSH -4,RO 
AND 7,RO Isolate segment code 
BZ SKIP1 
SUBI 1,RO 
ADDI 32,R1 Create 1xxxx1 

SKIP1 ADDI 1,R1 OR Oxxxx1 
LSH3 RO,R1,RO Shift and put result 
TSTB 80H,R2 Test sign bit 
RETSZ 
NEGI RO Negate if a negative 
RETS 

bin 

in RO 

number 

Software Applications 11-57 



Application-Oriented Operations 

11.4.2 FIR, IIR, and Adaptive Filters 

11.4.2.1 FIR Filters 

Digital filters are a common requirement for digital signal processing systems. 
There are two types of digital filters: finite impulse response (FIR) and infinite 
impulse response (II R). Each of these types can have either fixed or adaptable 
coefficients. This section presents the fixed-coefficient filters first, followed by 
the adaptive filters. 

If the FIR filter has an impulse response h [0], h [1], ... , h [N -1], and x[n] repre­
sents the input of the filter at time n, the output y [n] at time n is given by this 
equation: 

y [n] = h [0] x [n] + h [1] x [n -1] + ... + h [N -1] x [n - (N -1)] 

Two features of the TMS320C3x that facilitate the implementation of the FIR 
filters are parallel multiply/add operations and circular addressing. The former 
permits the performance of a multiplication and an addition in a single machine 
cycle, while the latter makes a finite buffer of length N sufficient for the data x. 

Figure 11-1 shows the arrangement of the memory locations necessary to im­
plement circular addressing, while Example 11-30 presents the TMS320C3x 
assembly code for an FIR filter. 

Figure 11-1. Data Memory Organization for an FIR Filter 

11-58 

Impulse 

Low 
Response 

Address I h(N -1) I Oldest Input 
h(N-2) 

• • • 
0 0 • Circular 

• • • Queue 

High I h(1) I Newest Input I x(n-1) x(n -2) 

h(O) x(n) x(n -1) 
Address 

To set up circular addressing, initialize the block-size register BK to block 
length N. Also, the locations for signal x should start from a memory location 
whose address is a multiple of the smallest power of 2 that is greater than N. 
For instance, if N = 24, the first address for x should be a multiple of 32 (the 
lowest five bits of the beginning address should be 0). See Section 5.3 on page 
5-24 for more information. 



Application-Oriented Operations 

In Example 11-30, the pointer to the input sequence x is incremented and is 
assumed to be moving from an older input to a newer input. At the end of the 
subroutine, AR1 will be pointing to the position for the next input sample. 

Example 11-30. FIR Filter 

* 
* TITLE FIR FILTER 

* 
* 
* SUBROUTINE FIR 
* 
* EQUATION: yen) = h(O) * x(n) + b(l) * x(n-l) + 
* ••• + h(N-l) * x(n-(N-l)) 

* 
* TYPICAL CALLING SEQUENCE: 

* 
* LOAD ARO 
* LOAD ARI 
* LOAD RC 
* LOAD BK 
* CALL FIR 

* 
* 
* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 

* 
ADDRESS OF b(N-l) * ARO 

* ARI 
* RC 
* BK 

ADDRESS OF x(n-(N-l)) 
LENGTH OF FILTER - 2 (N-2) 
LENGTH OF FILTER (N) 

* 
* REGISTERS USED AS INPUT: ARO, ARl, RC, BK 
* REGISTERS MODIFIED: RO, R2, ARO, ARl, RC 
* REGISTER CONTAINING RESULT: RO 
* 
* 
* CYCLES: 11 + (N-l) WORDS: 6 

* 
* 

.global FIR 

* ; Initialize RO: 
FIR MPYF3 *ARO++ (1) , *AR1++ (1) %, RO 

* b(N-l) * x(n-(N-I)) -> RO 
LDF O.O,R2 Initialize R2 

* 
* FILTER (1 <= i < N) 

* 

II 

RPTS RC ; 
MPYF3 *ARO++(l),*ARl++(l)%,RO; 
ADDF3 RO,R2,R2 

Set up the repeat cycle 
h(N-l-i}*x(n-(N-l-i))->RO 
Multiply and add operation 

Software Applications 11-59 



Application-Oriented Operations 

* 
ADDF RO,R2,RO Add last product 

* 
* RETURN SEQUENCE 

* 
RETS Return 

* 
* end 

* 
.end 

11.4.2.2 IIR Filters 

The transfer function of the IIR filters has both poles and Os. Its output depends 
on both the input and the past output. As a rule, the filters need less computa­
tion than an FIR with similar frequency response, but the filters have the draw-
loo.. .... """I, _, ..... _: __ ... __ ,..,:+;, ,_ +_ ,..,,..._":,,,i,,,l1"\+ ftll"",,+i",,"+;,," lJl",t"+ ",fI.~" +h~ II 0 fil+.o.r~ 4!:IPo. 
UQ""n. UI UglllW ~gll~ILlvg LV ,""Ugllly'wIIL "'IUQIILI,,",,-'I"'I' ..... V..., .. VI'''''', "1'IIiiiiI III I 111"~1 g WI'" 

implemented as a cascade of second-order sections, called biquads. 
Example 11-31 and Example 11-32 show the implementation for one biquad 
and for any number of biquads, respectively. 

This is the equation for a single biquad: 

y [n] = a1 y [n - 1) + a2 Y [n - 2] + bO x [n ] + b1 x [n -1] + b2 x [n - 2] 

However, the following two equations are more convenient and have smaller 
storage requirements: 

d [n] = a2 d [n - 2] + a1 d [n -1] + x [n] 
y [n] = b2 d [n - 2] + b1 d [n - 1] + bO d [n] 

Figure 11-2 shows the memory organization for this two-equation approach, 
and Example 11-31 is an implementation of a single biquad on the 
TMS320C3x. 

Figure 11-2. Data Memory Organization for a Single Biquad 

11-60 

Low 
Address 

Filter 
Coefficients 

a2 
b2 

a1 

b1 

bO High L.-""';:;';;"'-.I 
Address -

Newest Delay 

Oldest Delay 

Newest Delay 
Node Values 

Newest Delay 
Node Values 

d(n) d(n -1) h 
d(n -1) d(n-2) eJ ularQueue 
d(n - 2) d(n) 

As in the case of FIR filters, the address for the start of the values d must be 
a multiple of 4; that is, the last two bits of the beginning address must be O. The 
block-size register BK must be initialized to 3. 



Application-Oriented OperatIons 

Example 11-31. IIR Filter (One Biquad) 

* 
* TITLE IIR FILTER 
* 
* 
* SUBROUTINE IIR 1 
* 
* IIRI -- IIR FILTER (ONE BIQUAD) 
* 
* 
* EQUATIONS: den) - a2 * d(n-2) + &1 * d(n-l) + x(n) 
* yen) - b2 * d(n-2) + bl * d(n-l) + bO * den) 
* 
* OR yen) - &l*y(n-l) + a2*y(n-2) + bO*x(n) 
* + bl*x(n-l) + b2*x(n-2) 
* 
* TYPICAL CALLING SEQUENCE: 
* 
* 
* 
* 
* 
* 
* 
* 

load 
load 
load 
load 
CALL 

R2 
ARO 
ARI 
BX 
IIRI 

* ARGUMENT ASSIGNMENTS I 

* ARGUMENT FUNCTION 
* 

INPUT SAMPLE X(N) * R2 
* ARO 
* ARI 
* BX 
* 

ADDRESS OF FILTER COEFFICIENTS (A2) 
ADDRESS OF DELAY MODE VALUES (D(N-2)) 
BX - 3 

* REGISTERS USED AS INPUT: R2, ARO, ARl, BX 
* REGISTERS MODIFIED: RO, Rl, R2, ARO, ARI 
* REGISTER CONTAINING RESULT: RO 
* 
* CYCLES: 11 WORDS: 8 
* 
* 
* FILTER 

Software Applications 11-61 



Application-Oriented Operations 

11-62 

* 
• global IIRI 

* 
IIRI MPYF3 *ARO,*ARl,RO 
* ; a2 * d(n-2) -> RO 

* 
* 

II 
* 

MPYF3 *++ARO(l),*ARl--(l) % ,Rl 

MPYF3 *++ARO(l),*ARl,RO 
ADDF3 RO, R2 , R2 

b2 * d(n-2) -> Rl 

al * d(n-l) -> RO 
a2*d(n-2)+x(n) -> R2 

MPYF3 *++ARO(l),*ARl--(l)%,RO; bl * d(n-l) -> RO 
I I ADDF3 RO,R2,R2 al*d(n-l)+a2*d(n-2)+x(n) -> R2 

* 

II 
* 
* 

* 

MPYF3 *++ARO (1) ,R2 ,R2 
STF R2,*ARl++(1)% 

ADDF RO,R2 
ADDF Rl,R2,RO 

bO * dIn) -> R2 

Store d(n)and point to d(n-l) 

bl*d(n-l)+bO*d(n) -> R2 
b2*d(n-2)+bl*d(n-l) 

+bO*d(n) -> RO 

* RETURN SEQUENCE 

* 

* 
* end 
* 

RETS Return 

.end 

In the more general case, the IIR filter contains N>1 biquads. The equations 
for its implementation are given by the following pseudo-C language code: 

y [O,n] = x [n] 
for (i = 0; i < N; i ++){ 

} 

d [i,n] = a2 [i] d [i, n - 2] + a1 [i] d [i,n -1] + Y [i -1 ,n] 
y [i,n] = b2 [i] d [i - 2] + b1 [i] d [i,n - 1] + bO [i] d [i,n] 

y [n] = y [N - 1,n] 

Figure 11--3 shows the corresponding memory organization, while 
Example 11--32 shows the TMS320C3x assembly-language code. 



Figure 11-3. 

Application-Oriented Operations 

Data Memory Organization for N Biquads 

Filter Initial Delay Final Delay 

Low 
Coefficients Node Values Node Values 

Address a2(0) Newest Delay d(O, n) d(O, n -1) 
b2(0) d(O, n -1) d(O, n-2) Circular Queue 
a1 (0) Oldest Delay d(O, n-2) d(O, n) 
b1 (0) Em~ Emp 
bO(O) • • 
• • • 
• • • 
• d(N-1,n) d(N-1, n-1) 

d(N -1, n -1) d(N-1, n-2) Circular Queue 
a2(N -1) d(N-1, n-2) d(N -1, n) 
b2(N -1) Empty Em 
a1 (N -1) 

b1 (N -1) 

High bO(N-1) 
Address 

You should initialize the block register BK to 3; the beginning of each set of d 
values (that is, d D,n], i = O ... N -1) should be at an address that is a multiple 
of 4 (where the last two bits are 0). 

Software Applications 11-63 



Application-Oriented Operations 

Example 11-32. IIR Filters (N) 1 Biquads) 

11·64 

* 
* TITLE IIR FILTERS (N > 1 BIQUADS) 

* 
* 
* SUBROUTINE IIR2 
* 
* 
* 
* EQUATIONS: y(O,n) = x(n) 
* 
* FOR (i = 0; i < N; i++) 

* { 

* d(i,n) = a2(i) * d(i,n-2) + al(i) * d(i,n-l) * y(i-l,n) 
* y(i,n) = b2(i) * d(i,n-2) + bl(i) * d(i,n-l) * bO(i) * d(i,n) 

* TYPICAL CALLING SEQUENCE: 
* } 
* y(n) = y(N-l,n) 
* 
* TYPICAL CALLING SEQUENCE: 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 

load 
load 
load 
load 
load 
load 
load 
CALL 

ARGUMENT 

ARGUMENT 

R2 

R2 
ARO 
ARl 
IRO 
IRl 
BK 
RC 
IIR2 

ASSIGNMENT: 

FUNCTION 

INPUT SAMPLE x(n) 
* ARO ADDRESS OF FILTER COEFFICIENTS (a2(0)) 
* ARl ADDRESS OF DELAY NODE VALUES (d(0,n-2)) 
* BK BK = 3 
* IRO IRO = 4 
* IRl IRl = 4*N-4 
* RC NUMBER OF BIQUADS (N) -2 
* 

* REGISTERS USED AS INPUT; R2, ARO, ARl, IRO, IR1, BK, RC 
* REGISTERS MODIFIED; RO, Rl, R2, ARO, ARl, RC 
* REGISTERS CONTAINING RESULT: RO 
* 



* CYCLES: l7 + 6N WORDS: l7 
* 
* 
* 
* 

* 
.global IIR2 

IIR2 MPYF3 *ARO, *ARl, RO 
* 

* 

* 

II 
* 

II 

II 
* 
* 

* 
II 
* 
II 

* 

II 
* 

II 
* 

* 

MPYF3 *ARO++(l), *ARl--(l)%, Rl 

MPYF3 *++ARO(l),*ARl,RO 
ADDF RO, R2, R2 

MPYF3 
ADDF3 
MPYF3 
STF 

*++ARO(l),*ARl--(l)%,RO 
RO, R2, R2 
*++ARO (l) ,R2 ,R2 
R2, *ARl--(l)% 

RPTB LOOP 

MPYF3 *++ARO ( 1 ) , *++ARl (IRO ) , RO 
ADDF3 RO,R2,R2 

MPYF3 *++ARO(l),*ARl--(l)%Rl 
ADDF3 Rl,R2,R2 

MPYF3 *++ARO (l) , *ARl, RO 
ADDF3 RO,R2,R2 

MPYF3 *++ARO(l),*ARl--(l)%,RO 
ADDF3 RO,R2,R2 

STF R2, *ARl--(l)% 

LOOP MPYF3 *++ARO (l), R2,R2 

Application-Oriented Operations 

a2(O) * d(O,n-2) -> RO 

b2(O) * d(O,n-2) -> Rl 

al(O) * D(O,n-l) -> RO 
First sum term of d(O,n) 

bl(O) * d(O,n-l) -> RO 
Second sum term of d(O,n) 
bO(O) * d(O,n) -> R2 

Store d(O ,n) ~ 
point to 
d(O,n-2) 

Loop for 1 <= i < n 

a2(i) * d(i,n-2) -> RO 
First sum term of y(i-l,n) 

b2(i) * D(i,n-2) -> Rl 
Second sum term 

of y(i-l,n) 

Al(i) * d(i,n-l) -> RO 
First sum of d(i,n) 

bl(i) * d(i,n-l) -> RO 
Second sum term of d(i,n) 

Store d(i,n) ~ 
point to d(i,n-2) 

* bO(i) * d(i,n) -> R2 
* 

Software Applications 11-65 



Application-Oriented Operations 

* 
* FINAL SUMMATION 
* 

ADDF RO,R2 
ADDF3 Ri,R2,RO 

* 
NOP *ARi--(IRi) 
NOP *ARi--( 1)' 

* 

* RETURN SEQUENCE 
* 

RETS 

* end 
* 

.end 

11-66 

First sum term of y(n-l,n) 
Second sum term 

of y(n-i,n) 

Return to first biquad 
Point to d(O,n-i) 

Return 



Application-Oriented Operations 

11.4.2.3 Adaptive Filters (LMS Algorithm) 

In some applications in digita.l signal processing. you must adapt a filter over 
time to keep track of changing conditions. The book Theory and Design of 
Adaptive Filters by Treichler. Johnson. and Larimore (Wiley-Interscience. 
1987) presents the theory of adaptive filters. Although in theory. both FIR and 
IIR structures can be used as adaptive filters. the stability problems and the 
local optimum points that the IIR filters exhibit make them less attractive for 
such an application. Hence. until further research makes IIR filters a better 
choice, only the FIR filters are used in adaptive algorithms of practical applica­
tions. 

In an adaptive FIR filter. the filtering equation takes this form: 

y [n] = h [n.O] x [n] + h [n, 1] x [n - 1] + ... + h [n.N - 1] x [n - (N - 1)] 

The filter coefficients are time-dependent. In a least-mean-squares (LMS) al­
gorithm. the coefficients are updated by an equation in this form: 

h [n + 1 ,i] = h [n.i] + ~x [n - i]. i = 0.1 ..... N - 1 

~ is a constant for the computation. You can interleave the updating of the filter 
coefficients with the computation of the filter output so that it takes three cycles 
per filter tap to do both. The updated coefficients are written over the old filter 
coefficients. Example 11-33 shows the implementation of an adaptive FIR fil­
ter on the TMS320C3x. The memory organization and the positioning of the 
data in memory should follow the same rules that apply to the FIR filter de­
scribed in subsection 11 .4.2.1 on page 11-58. 

Software Applications 11-67 



Application-Oriented Operations 

Example 11-33. Adaptive FIR Filter (LMS Algorithm) 

11-68 

* TITLE ADAPTIVE FIR FILTER (LMS ALGORITHM) 

* 
* SUBROUTINE LMS 

* LMS 

* 
* 
* 

LMS ADAPTIVE FILTER 

* EQUATIONS: y(n) = h(n,O)*x(n) + h(n,l)*x(n-l) + ••• 

* + h(n,N-l)*x(n-(N-l» 

* FOR (i = 0; i < N; i++) 

* h(n+l,i) = h(n,i) + tmuerr * x(n-i) 

* 
* TYPICAL CALLING SEQUENCE: 
* 

* load R4 
* load ARO 
* load ARl 
* load RC 

* load BK 
* CALL LMS 
* 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* t 
* R4 I SCALE FACTOR (2 * mu * err) 
* ARO I ADDRESS OF h(n,N-l) 
* ARl I ADDRESS OF x(n-(N-l» 
* RC I LENGTH OF FILTER - 2 (N-2) 
* BK I LENGTH OF FILTER (N) 
* 



II 

II 
* 

Application-Oriented Operations 

* REGISTERS USED AS INPUT: R4, ARO, AR1, RC, BK 
* REGISTERS MODIFIED: RO, R1, R2, ARO, AR1, RC 
* REGISTER CONTAINING RESULT: RO 
* 
* PROGRAM SIZE: 10 words 

* 
* EXECUTION CYCLES: 14 + 3(N-1) 

* 
* 
* SETUP (i = 0) 

* 
.qlobal LMS 

* 
LMS MPYF3 *ARO, *AR1, RO 

* 
LDF 0.0,R2 

* 
* 

MPYF3 *AR1++(1)%, R4, R1 
* 

ADDF3 *ARO++(l), R1, R1 
* 
* 
* 

* FILTER AND UPDATE (1 <- I < N) 
* 

RPTB LOOP 
* 
* 

MPYF3 *ARO--(1),*AR1,RO 

ADDF3 RO,R2,R2 
* 
* 

MPYF3 *AR1++(1)%,R4,R1 
STF R1,*ARO++(1) 

Initialize RO: 

h(n,N-1) * x(n-(N-1» -> RO 
Initialize R2 

Initialize R1: 

x(n-(N-1» * tmuerr -> R1 

h(n,N-1) + x(n-(N-1» * 
tmuerr -> R1 

Set up the repeat block 

Filter: 
h(n,N-1-i) 

* x(n-(N-1-i» -> RO 
Multiply and add operation 

UPDATE: 
x(n,N-(N-1-i» * tmuerr -> R1 
R1 -> h(n+l,N-1-(i-1» 

LOOP ADDF3 *ARO++(l), R1, R1 
* 

* 
ADDF3 RO,R2,RO 
STF R1,*-ARO(1) 

* 

* RETURN SEQUENCE 

h(n,N-1-i) + x(n-(N-1-i» 
*tmuerr -> R1 

Add last product 
h(n,O) + x(n) 

* tmuerr -> h(n+1,0) 

Software Applications 11-69 



Application-Oriented Operations 

RETS Return 

* end 

.end 

11.4.3 Matrix-Vector Multiplication 

11-70 

In matrix-vector multiplication, a K x N matrix of elements m(i,j) having K rows 
and N columns is multiplied by an N x 1 vector to produce a K x 1 result. The 
multiplier vector has elements vG), and the product vector has elements p(i). 
Each one of the product-vector elements is computed by the following expres­
sion: 

P (i ) = m (i,O) v (0) + m (i,1) v (1) + ... + m (i,N - 1) v (N - 1) i = 0,1 , ... ,K - 1 

This is essentially a dot product, and the matrix-vector multiplication contains, 
as a special case, the dot product presented in Example 11-2 on page 11-7. 
In pseudo-C format, the computation of the matrix multiplication is expressed 
by 

for (i = 0; i < K; i + +) { 
p(i)=O 
for a = 0; j < N; j + +) 

P (i) = P (i) + m (i,j) * v m 
} 

Figure 11-4 shows the data memory organization for matrix-vector multiplica­
tion, and Example 11-34 shows the TMS320C3x assembly code that imple­
ments it. Note that in Example 11-34, K (number of rows) should be greater 
than 0, and N (number of columns) should be greater than 1. 



Application-Oriented Operations 

Figure 11-4. Data Memory Organization for Matrix-Vector Multiplication 

Inl>ut Result 

Low 
Matrix Storage Vector Storage Vector Storage 

Address I m(O,O) I I v(O) I I p(O) 

m,011l v~1~ p(1) 

• • • 
• • • 
• • • 

m(O N-1) v~N -11 p(K-1) 
m(1,0) 

High m(1, 11 
Address • 

• 
• 

Software Applications 11-71 



Application-Oriented Operations 

Example 11-34. Matrix Times a Vector Multiplication 

11-72 

* 
* TITLE MATRIX TIMES A VECTOR MULTIPLICATION 

* 
* * SUBROUTINE MAT 

* 
* MAT == MATRIX TIMES A VECTOR OPERATION 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

TYPICAL CALLING SEQUENCE: * 
load ARO 
load AR1 
load AR2 
load AR3 
load R1 
CALL MAT 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 

* 
* ARO ADDRESS OF M(O,O) 

* AR1 ADDRESS OF VIOl 
* AR2 ADDRESS OF P(O) 

* AR3 NUMBER OF ROWS - 1 (K-1) 

* R1 NUMBER OF COLUMNS - 2 (N-2) 

* 

* REGISTERS USED AS INPUT: ARO, AR1, AR2, AR3, R1 
* REGISTERS MODIFIED: RO, R2, ARO, AR1, AR2, AR3, IRO, 
* RC, RSA, REA 

* 
* 
* PROGRAM SIZE: 11 

* 
* EXECUTION CYCLES: 6 + 10 * K + K * (N - 1) 
* 
* 
* 

* 

.global MAT 

* SETUP 

* 
MAT LDI R1,IRO 

ADDI 2,IRO 
Number of columns-2 -> IRO 
IRO = N 



Application-Oriented Operations 

* FOR (i = 0; i < K; i++) LOOP OVER THE ROWS 
1< 

ROWS LDF 0.0,R2 Initialize R2 
MPYF3 *ARO++(l),*ARl++(l),RO 

* m(i,O) * v(O) -> RO 
1< 

* FOR (j 1; j < N; j++) DO DOT PRODUCT OVER COLUMNS 
1< 

1< 

II 
1< 

1< 

1< 

RPTS Rl 

MPYF3 *ARO++(l),*ARl++(l),RO 
ADDF3 RO ,R2,R2 

DBD AR3,ROWS 

ADDF RO,R2 
STF R2,*AR2++(1) 

NOP *--ARI ( IRO ) 

Multiply a row by a column 

m(i,j) * v(j) -> RO 
m(i,j-l) * v(j-l) + R2 -> R2 

Counts the no. of rows left 

Last accumulate 
Result -> p(i) 

Set ARI to point to v(O) 

1< III DELAYED BRANCH HAPPENS HERE III 

* 
* RETURN SEQUENCE 

* 

RETS Return 

* end 

* 
.end 

11.4.4 Fast Fourier Transforms (FFT) 

Fourier transforms are an important tool often used in digital signal processing 
systems. The purpose of the transform is to convert information from the time 
domain to the frequency domain. The inverse Fourier transform converts infor­
mation back to the time domain from the frequency domain. Implementation 
of Fourier transforms that are computationally efficient are known as fast Four­
ier transforms (FFTs). The theory of FFTs can be found in books such as DFT/ 
FFT and Convolution Algorithms by C.S. Burrus and T.W. Parks (John Wiley, 
1985) and Digital Signal Processing Applications with the TMS320 Family by 
Texas Instruments (literature number SPRA012A). 

Software Applications 11-73 



Application-Oriented Operations 

11-74 

Fast Fourier transform is a label for a collection of algorithms that implement 
efficient conversion from time to frequency domain. There are several types 
of FFTs: 

o Radix-2 or radix-4 algorithms (depending on the size of the FFT butterfly) 
o Decimation in time or frequency (DIT or DIF) 
o Complex or real FFTs 
o FFTs of different lengths, etc. 

Certain TMS320C3x features that increase efficient implementation of numer­
ically intensive algorithms are particularly well-suited for FFTs. The high speed 
of the device (33-ns cycle time) makes implementation of real-time algorithms 
easier, while floating-point capability eliminates the problems associated with 
dynamic range. The powerful indirect-addressing indexing scheme facilitates 
the access of FFT butterfly legs with different spans. The repeat block implem­
ented by the RPTB instruction reduces the looping overhead in algorithms 
neavily dependent on loops (such as the FFTs). This construct provides the 
efficiency of in-line coding in loop form. The FFT will reverse the bit order of 
the output; therefore, the output must be reordered. This reordering does not 
require extra cycles, because the device has a special mode of indirect ad­
dressing (bit-reversed addressing) for accessing the FFT output in the original 
order. 

The examples in this subsection were based on programs contained in the 
Burrus and Parks book and in the paper Real-Valued Fast Fourier Transform 
Algorithms by H.V. Sorensen, et al (IEEE Transform on ASSP, June 1987). 

Example 11-35 and Example 11-36 show the implementation of a complex 
radix-2, DIF FFT on the TMS320C3x. Example 11-35 contains the generiC 
code of the FFT, which can be used with a number of any length. However, for 
the complete implementation of an FFT, you need a table of twiddle factors 
(sines/cosines); the length of the table depends on the size of the transform. 
To retain the generic form of Example 11-35, the table with the twiddle factors 
(containing 1-1/4 complete cycles of a sine) is presented separately in 
Example 11-36 for the case of a 64-point FFT. A full cycle of a sine should have 
a number of pOints equal to the FFT size. Example 11-36 uses two variables: 
N, which is the FFT length, and M, which is the logorithm of N to a base equal 
tothe radix. In other words, M isthe number of stages of the FFT. For example, 
in a 64-point FFT, M = 6 when using a radix-2 algorithm, and M = 3 when using 
a radix-4 algorithm. If the table with the twiddle factors and the FFT code are 
kept in separate files, they should be connected at link time. 



Application-Oriented Operations 

Example 11-35. Complex, Radix-2, DIF FFT 

* 
* TITLE COMPLEX, RADIX-2, DIF FFT 

* 
* GENERIC PROGRAM FOR LOOPED-CODE RADIX-2 FFT COMPUTATION IN TMS320C3x 

* 
* THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 111. 
* THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION 
* IS DONE IN PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY 
* SECTION TO DEMONSTRATE THE BIT-REVERSED ADDRESSING. 

* 
* THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE THAT IS PUT IN A .DATA 
* SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE 
* GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF 
* THE FFTN AND LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED 
* DURING LINKING. 

* 
* 

.globl 

.globl 

.globl 

.globl 

FFT 
N 
M 
SINE 

INP .usect"IN",1024 
.BSS OUTP,1024 

• text 

* INITIALIZE 

FFTSIZ • word N 
LOGFFT • word M 
SINTAB • word SINE 
INPUT • word INP 
OUTPUT • word OUTP 

FFT: LDP FFTSIZ 

LDI @FFTSIZ,IR1 
LSH -2,IR1 
LDI O,AR6 
LDI @FFTSIZ,IRO 
LSH 1,IRO 
LDI @FFTSIZ,R7 
LDI 1,AR7 

LDI 1,ARS 

Entry point for execution 
FFT size 
LOG2(N) 
Address of sine table 

Memory with input data 
Memory with output data 

Command to load data page pointer 

IR1 - N/4, pointer for SIN/COS table 
AR6 holds the current stage number 

IRO - 2*N1 (because of real/imag) 
R7 - N2 
Initialize repeat counter 

of first loop 
Initialize IE index (ARS - IE) 

Software Applications 11-75 



Application-Oriented Operations 

* OUTER LOOP 

LOOP: NOP *++AR6(l) 
LDI @INPUT,ARO 
ADDI R7 ,ARO ,AR2 
LDI AR7,RC 
SUBI l,RC 

* FIRST LOOP 

RPTB BLKl 
ADDF *ARO,*AR2,RO 
SUBF *AR2++,*ARO++,Rl 
ADDF *AR2,*ARO,R2 
SUBF *AR2,*ARO,R3 
STF R2,*ARO--

11 STF R3,*~..R2--I I 
BLKl STF RO,*ARO++(IRO) 
II STF Rl,*AR2++(IRO) 

Current FFT stage 
ARO points to XCI) 
AR2 points to X(L) 

RC should be one less than desired # 

RO - X(I)+X(L) 
Rl = X(I)-X(L) 
R2 Y(I)+Y(L) 
R3 = Y(I)-Y(L) 
Y(I) .. R2 and ••• 
VIT.\ R3 - ,-, 
XCI) RO and ••• 
X(L) Rl and ARO,2 = ARO,2 + 2*n 

* IF THIS IS THE LAST STAGE, YOU ARE DONE 

CMPI @LOGFFT,AR6 
BZD END 

* MAIN INNER LOOP 

LDI 2,ARl Init loop counter for 
inner loop 

LDI @SINTAB,AR4 Initialize IA index (AR4 IA) 
INLOP: ADDI AR5,AR4 IA = IA+IE; AR4 points to 

cosine 
LDI ARl,ARO 
ADDI 2,ARl Increment inner loop counter 
ADDI @INPUT,ARO (X(I),Y(I)) pointer 
ADDI R7,ARO,AR2 (X(L),Y(L)) pointer 
LDI AR7,RC 
SUBI l,RC RC should be 1 less than 

desired # 
LDF *AR4,R6 R6 .. SIN 

* SECOND LOOP 

RPTB BLK2 
SUBF *AR2,*ARO,R2 R2 X(I)-X(L) 
SUBF *+AR2,*+ARO,Rl 

* Rl Y(I)-Y(L) 
MPYF R2,R6,RO RO R2*SIN and ••• 

II ADDF *+AR2,*+ARO,R3 
* R3 Y(I)+Y(L) 

MPYF Rl,*+AR4(IRl),R3 R3 = Rl *COS and 
II STF R3,*+ARO Y(I) = Y(I)+Y(L) 

11-76 



SUBF RO,R3,R4 
MPYF Rl,R6,RO 

II ADDF *AR2,*ARO,R3 
MPYF R2 , *+AR4 ( IRI ) , R3 ; 

II STF R3,*ARO++(IRO) 
* 
* 

ADDF RO,R3,RS 
BLK2 STF RS, *AR2++( IRO) 

II STF R4 , *+AR2 

CMPI R7,ARI 
BNE INLOP 

LSH 1,AR7 
BRD LOOP 
LSH 1,ARS 
LDI R7,IRO 
LSH -1,R7 

Application-Oriented Operations 

R4 - Rl * COS-R2 * SIN 
RO - Rl * SIN and ••• 
R3 = XCI) + X(L) 
R3 - R2 * COS and ••• 

XCI) - X(I)+X(L) and ARO - ARO+2*Nl 
RS = R2*COS+Rl*SIN 
X(L) - R2 * COS+Rl * SIN, 

incr AR2 and ••• 
Y(L) - Rl*COS-R2*SIN 

Loop back to the inner loop 

Increment loop counter for next time 
Next FFT stage (delayed) 
IE 2*IE 
Nl N2 
N2 = N2/2 

* STORE RESULT OUT USING BIT-REVERSED ADDRESSING 

END: LDI 
SUBI 
LDI 
LDI 
LDI 
LDI 

RPTB 
LDF 

II LDF 
BITRV STF 
II STF 

SELF BR 
.end 

@FFTSIZ,RC 
1,RC 
@FFTSIZ,IRO 
2,IRI 
@INPUT,ARO 
@OUTPUT,ARI 

BITRV 
*+ARO(l),RO 
*ARO++(IRO)B,Rl 
RO,*+AR1(1) 
Rl, *AR1++ (IR1) 

SELF 

RC - N 
RC should be one less than desired # 
IRO = size of FFT = N 

Branch to itself at the end 

Software Applications 11-77 



Application-Oriented Operations 

Example 11-36. Table With Twiddle Factors for a 64-Point FFT 

11-78 

'" 
"'TITLE TABLE WITH TWIDDLE FACTORS FOR A 64-POINT FFT 

'" 
'" FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64--POINT, RADIX-2 FFT 

'" 

N 
M 

SINE 

COSINE 

.globl SINE 

.globl N 

.globl M 

.set 64 

.set 6 

.data 

• float 0.000000 
• float 0.098017 
• float 0.195090 
• float 0.290285 
• float 0.382683 
.float 0.471397 
• float 0.555570 
• float 0.634393 
• float 0.707107 
• float 0.773010 
• float 0.831470 
• float 0.881921 
• float 0.923880 
• float 0.956940 
• float 0.980785 
• float 0.995185 

• float 1.000000 
• float 0.995185 
• float 0.980785 
• float 0.956940 
• float 0.923880 
• float 0.881921 
• float 0.831470 
• float 0.773010 
• float 0.707107 
• float 0.634393 
• float 0.555570 
• float 0.471397 
• float 0.382683 
• float 0.290285 
• float 0.195090 



Application-Oriented Operations 

• float 0.098017 
• float 0.000000 
• float - 0.098017 
• float - 0.195090 
• float - 0.290285 
• float - 0.382683 
• float - 0.471397 
• float -0.555570 
• float - 0.634393 
• float - 0.707107 
• float - 0.773010 
• float - 0.831470 
• float - 0.881921 
• float - 0.923880 
• float - 0.956940 
• float - 0.980785 
• float - 0.995185 
• float -1.000000 
• float - 0.995185 
• float - 0.980785 
• float - 0.956940 
• float - 0.923880 
• float - 0.881921 
• float - 0.831470 
• float - 0.773010 
• float - 0.707107 
• float - 0.634393 
• float - 0.555570 
• float - 0.471397 
• float - 0.382683 
• float - 0.290285 
• float - 0.195090 
. float - 0.098017 

Software Applications 11-79 



Application-Oriented Operations 

11-80 

• float 
• float 
• float 
• float 
• float 
• float 
• float 
• float 
• float 
• float 
• float 
• float 
• float 
• float 
• float 
• float 

0.000000 
0.098017 
0.195090 
0.290285 
0.382683 
0.471397 
0.555570 
0.634393 
0.707107 
0.773010 
0.831470 
0.881921 
0.923880 
0.956940 
0.980785 
0.995185 

The iadix-2 algoiithm has tutoiial value. because the functioning of the FFT 
algorithm is relatively easy to understand. However, radix-4 implementation 
can increase execution speed by reducing the amount of arithmetic required. 
Example 11-37 shows the generic implementation of a complex, DIF FFT in 
radix-4. A companion table, such as the one in Example 11-36, should have 
a value of M equal to the 10gN, where the base of the logarithm is 4. 



Application-Oriented Operations 

Example 11~7. Complex, Radix-4, OIF FFT 

* 
* TITLE COMPLEX, RADIX-4, DIF FFT 

* 
* GENERIC PROGRAM TO PERFORM A LOOPED-CODE RADIX-4 FFT COMPUTATION 
* IN THE TMS320C3x 
* 
* THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 117. 
* THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY, AND THE COMPUTATION 
* IS DONE IN PLACE. 

* 
* THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE THAT IS PUT IN A .DATA 
* SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE 
* GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF 
* THE FFT N AND LOG4(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND 
* SPECIFIED DURING LINKING. 

* 
* IN ORDER TO HAVE THE FINAL RESULT IN BIT-REVERSED ORDER, THE TWO 
* MIDDLE BRANCHES OF THE RADIX-4 BUTTERFLY ARE INTERCHANGED DURING 
* STORAGE. NOTE THIS DIFFERENCE WHEN COMPARING WITH THE PROGRAM IN 
* P. 117 OF THE BURRUS AND PARKS BOOK. 

* 

* 
.globl 
.globl 
.globl 
.globl 

.usect 

.text 

* INITIALIZE 

TEMP 
STORE 

• word 
• word 
.word 
• word 
• word 
.word 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

.BSS 

FFT 
N 
M 
SINE 

"IN",1024 

$+2 
FFTSIZ 
N 
M 
SINE 
INP 

FFTSIZ,l 
LOGFFT,l 
SINTAB,l 
INPUT, 1 
STAGE, 1 
RPTCNT,l 
IEINDX,l 

Entry point for execution 
FFT size 
LOG4(N) 
Address of sine table 

Memory with input data 

Beginning of temp storage area 

FFT size 
LOG4(FFTSIZ) 
Sine/cosine table base 
Area with input data to process 
FFT stage # 
Repeat counter 
IE index for sine/cosine 

Software Applications 11-81 



Application-Oriented Operations 

11·82 

* 

* 

.BSS 

.BSS 

.BSS 

LPCNT,l 
JT,l 
IA1,1 

FFT: 

INITIALIZE OATA LOCATIONS 

LOP TEMP 
LOI @TEMP,ARO 
LOI @STORE,ARl 
LOI *ARO++,RO 
STI RO,*AR1++ 
LOI *ARO++,RO 
STI RO,*AR1++ 
LOI *ARO++,RO 
STI RO,*AR1++ 
LOI *ARO,RO 
STI RO,*ARl 

LOP FFTSIZ 
LOI @FFTSIZ,RO 
LOI @FFTSIZ,IRO 
LOI @FFTSIZ,IRl 
LOI O,AR7 
STI AR7,@STAGE 
LSH 1,IRO 
LSH -2,IRl 
LOI 1,AR7 
STI AR7,@RPTCNT 
STI AR7, @IEINOX 
LSH -2,RO 
ADOI 2,RO 
STI RO,@JT 
SUBI 2,RO 
LSH 1,RO 

OUTER LOOP 

LOOP: 
LOI @INPUT,ARO 
ADOI RO,ARO,ARl 
ADOI RO,AR1,AR2 
ADOI RO,AR2,AR3 
LOI @RPTCNT,RC 
SUBI 1,RC 

* FIRST LOOP 

RPTB BLKl 
ADOF *+ARO,*+AR2,Rl 

Second-loop count 
JT counter in program, P. 117 
IA1 index in program, P. 117 

Command to load data page counter 

Xfer data from one memory to the other 

Command to load data page pointer 

@STAGE holds the current stage number 
IRO - 2*N1 (because of real/imag) 
IRl - N/4, pointer for SIN/COS table 

Init repeat counter of first loop 
Init. IE index 
JT - RO/2+2 

RO - N2 

ARO points to X(I) 
AR1 points to X(Il) 
AR2 points to X(I2) 
AR3 points to X(I3) 

RC should be one less than desired # 



Application-Oriented Operations 

* Rl .. Y(I)+Y(I2) 
ADDF *+AR3,*+AR1,R3 

* R3 • Y(Il)+Y(I3) 
ADDF R3,Rl,R6 R6 Rl+R3 
SUBF *+AR2,*+ARO,R4 

* R4 - Y(I)-Y(I2) 
STF R6,*+ARO Y(I) .. Rl+R3 
SUBF R3,Rl Rl .. Rl-R3 
LDF *AR2,R5 R5 X(I2) 

II LDF *+AR1,R7 R7 .. Y(Il) 
ADDF *AR3,*AR1,R3 R3 .. X(Il)+X(I3) 
ADDF R5,*ARO,Rl Rl .. X(I)+X(I2) 

II STF Rl,*+ARl Y(Il) - Rl-R3 
ADDF R3,Rl,R6 R6 - Rl+R3 
SUBF R5,*ARO,R2 R2 = X(I)-X(I2) 

II STF R6,*ARO++(IRO) X(I) - Rl+R3 
SUBF R3,Rl Rl = Rl-R3 
SUBF *AR3,*AR1,R6 R6 .. X(Il)-X(I3) 
SUBF R7,*+AR3,R3 -R3 = Y(Il)-Y(I3) 

II STF Rl,*AR1++(IRO) X(Il) = Rl-R3 
SUBF R6,R4,R5 R5 = R4-R6 
ADDF R6,R4 R4 = R4+R6 
STF R5,*+AR2 Y(I2) = R4-R6 

II STF R4,*+AR3 Y(I3) .. R4+R6 
SUBF R3,R2,R5 R5 .. R2-R3 
ADDF R3,R2 R2 = R2+R3 

BLKl STF R5,*AR2++(IRO) X(I2) .. R2-R3 
II STF R2, *AR3++( IRO) X(I3) = R2+R3 

* IF THIS IS THE LAST STAGE, YOU ARE DONE 

LDI @STAGE,AR7 
ADDI 1,AR7 
CMPI @LOGFFT,AR7 
BZD END 
STI AR7,@STAGE 

* MAIN INNER LOOP 

LDI 1,AR7 
STI AR7,@IAl 
LDI 2,AR7 
STI AR7,@LPCNT 

LDI 2,AR6 
ADDI @LPCNT,AR6 
LDI @LPCNT,ARO 
LDI @IA1,AR7 
ADDI @IEINDX,AR7 
ADDI @INPUT,ARO 
STI AR7,@IAl 

Current FFT stage 

Init IAl index 

Init loop counter for inner loop 
INLOP: 

Increment inner loop counter 

IAl .. IA1+IE 
(X(I),Y(I)) pointer 

Software Applications 11-83 



Application-Oriented Operations 

ADDI RO,ARO,ARl (X(Il) ,Y(Il» pointer 
STI AR6,@LPCNT 
ADDI RO,AR1,AR2 (X(I2) ,Y(I2» pointer 
ADDI RO,AR2,AR3 (X(I3) ,Y(I3» pointer 
LDI @RPTCNT,RC 
SUBI 1,RC RC should be one less than desired # 
CMPI @JT,AR6 If LPCNT '" JT, go to 
BZD SPCL special butterfly 
LDI @IA1,AR7 
LDI @IA1,AR4 
ADDI @SINTAB,AR4 Create cosine index AR4 
SUBI 1,AR4 Adjust sine table pointer 
ADDI AR4 ,AR7 ,ARS 
SUBI 1,ARS IA2 IA1+IA1-l 
ADDI AR7 ,ARS ,AR6 
SUBI 1,AR6 IA3 IA2+IA1-l 

* SECOND LOOP 

RPTB BLK2 
ADDF *+AR2,*+ARO,R3 

* R3 Y(I)+Y(I2) 
ADDF *+AR3,*+AR1,RS 

* RS .. Y(Il)+Y(I3) 
ADDF RS,R3,R6 R6 R3+RS 
SUBF *+AR2,*+ARO,R4 

* R4 Y(I)-Y(I2) 
SUBF RS,R3 R3 R3-RS 
ADDF *AR2,*ARO,Rl Rl .. X(I)+X(I2) 
ADDF *AR3,*AR1,RS RS '" X(Il)+X(I3) 
MPYF R3,*+ARS(IR1),R6 R6 .. R3*C02 

II STF R6,*+ARO Y(I) .. R3+RS 
ADDF RS,Rl,R7 R7 Rl+RS 
SUBF *AR2,*ARO,R2 R2 X(I)-X(I2) 
SUBF RS,Rl Rl RI-RS 
MPYF Rl,*ARS,R7 R7 .. Rl*SI2 

II STF R7 , *ARO++ (IRO) X(I) '" Rl+RS 
SUBF R7,R6 R6 R3*C02-Rl*SI2 
SUBF *+AR3,*+AR1,RS 

* RS Y(Il)-Y(I3) 
MPYF Rl,*+ARS(IR1),R7 R7 Rl*C02 

II STF R6,*+ARl Y(Il) .. R3*C02-Rl*SI2 
MPYF R3,*ARS,R6 R6 R3*SI2 
ADDF R7,R6 R6 .. Rl*C02+R3*SI2 
ADDF RS,R2,Rl Rl R2+RS 
SUBF RS,R2 R2 R2-RS 
SUBF *AR3,*AR1,RS RS .. X(Il)-X(I3) 
SUBF RS,R4,R3 R3 '" R4-RS 
ADDF RS,R4 R4 R4+RS 
MPYF R3,*+AR4(IR1),R6 R6 .. R3*COl 

II STF R6 , * ARl++ ( IRO ) X(Il) .. Rl*C02+R3*SI2 

11-84 



II 

II 

II 

MPYF Rl,*AR4,R7 
SUBF R7,R6 
MPYF Rl,*+AR4(IR1),R6 
STF R6 , *+AR2 
MPYF R3,*AR4,R7 
ADDF R7,R6 
MPYF R4,*+AR6(IR1),R6 
STF R6, *AR2++ (IRO) 
MPYF R2,*AR6,R7 
SUBF R7,R6 
MPYF R2,*+AR6(IRl),R6 
STF R6, *+AR3 
MPYF R4,*AR6,R7 
ADDF R7,R6 

BLK2 STF 

* 
R6,*AR3++(IRO) 

CMPI @LPCNT , RO 
BP INLOP 
BR CONT 

* SPECIAL BUTTERFLY FOR W ... J 

SPCL LDI IRl,AR4 
LSH -1 ,AR4 
ADDI @SINTAB,AR4 

RPTB BLK3 
ADDF *AR2,*ARO,R1 
SUBF *AR2,*ARO,R2 
ADDF *+AR2,*+ARO,R3 

* 
SUBF *+AR2,*+ARO,R4 

* 
ADDF *AR3,*ARl,RS 
SUBF R1,RS,R6 
ADDF RS,Rl 
ADDF *+AR3,*+ARl,RS 

* 
SUBF RS,R3,R7 
ADDF RS,R3 
STF R3,*+ARO 

II STF R1,*ARO++(IRO) 
SUBF *AR3,*ARl,Rl 
SUBF *+AR3,*+ARl,R3 

* 
STF R6,*+ARI 

Application-Oriented Operations 

R7 Rl*SIl 
R6 R3*C01-Rl*SI1 
R6 ... Rl*C01 
Y(I2) = R3*C01-R1*SI1 
R7 ... R3*SIl 
R6 = R1*C 01+R3*SI1 
R6 ... R4*C03 
X(I2) .. R1*C01+R3*SI1 
R7 .. R2*SI3 
R6 .. R4*C03-R2*SI3 
R6 '"' R2*C03 
Y(I3) ... R4*C03-R2*SI3 
R7 R4*SI3 
R6 = R2*C03+R4*SI3 

x(i3) R2*C03+R4*SI3 

Loop back to the inner loop 

Point to SIN(4S) 
Create cosine index AR4 ... C021 

R1 X(I)+X(I2) 
R2 = X(I)-X(I2) 

R3 = Y(I)+Y(I2) 

R4 Y(I)-Y(I2) 
RS .. X(Il)+X(I3) 
R6 RS-R1 
R1 R1+RS 

RS Y(Il)+Y(I3) 
R7 R3-RS 
R3 = R3+RS 
Y(I) = R3+RS 
X(I) = R1+RS 
Rl X(Il)-X(I3) 

R3 = Y(Il)-Y(I3) 
Y(Il) .. RS-R1 

Software Applications 11-85 



Application-Oriented Operations 

II STF R7, *ARl++( IRO) X(Il) - R3-RS 
ADDF R3,R2,RS RS - R2+R3 
SUBF R2,R3,R2 R2 - -R2+R3 
SUBF Rl,R4,R3 R3 - R4-Rl 
ADDF Rl,R4 R4 - R4+Rl 
SUBF RS,R3,Rl Rl - R3-RS 
MPYF *AR4,Rl Rl - Rl*C021 
ADDF RS,R3 R3 - R3+RS 
MPYF *AR4,R3 R3 - R3*C021 

II STF Rl,*+AR2 Y(I2) - (R3-RS)*C021 
SUBF R4,R2,Rl Rl - R2-R4 
MPYF *AR4,Rl Rl - Rl*C021 

II STF R3,*AR2++(IRO) X(I2) - (R3+R5)*C021 
ADDF R4,R2 R2 - R2+R4 
MPYF *AR4,R2 R2 - R2*C021 

BLK3 STF Rl,*+AR3 Y(I3) = -(R4-R2)*C021 
II STFR2,*AR3++(IRO) X(I3) - (R4+R2)*C021 

CMPI @LPCNT,RO 
BPD INLOP Loop back to the inner loop 

CONT LDI @RPTCNT,AR7 
LDI @IEINDX,AR6 
LSH 2,AR7 Increment repeat counter for 

* next time 
STI AR7,@RPTCNT 
LSH 2,AR6 IE - 4*IE 
STI AR6, @IEINDX 
LDI RO,IRO Nl - N2 
LSH -3,RO 
ADDI 2,RO 
STI RO,@JT JT - N2/2+2 
SUBI 2,RO 
LSH 1,RO N2 - N2/4 
BR LOOP Next FFT stage 

* STORE RESULT USING BIT-REVERSED ADDRESSING 

11-86 



ENO: 

II 
BITRV 
II 
SELF 

Application-Oriented Operations 

LOI @FFTSIZ,RC RC = N 
SUB I l,RC RC should be one less than desired # 
LOI @FFTSIZ,IRO IRO - size of FFT - N 
LOI 2,IRl 
LOI @INPUT,ARO 
LOP STORE 
LOI @STORE,ARl 

RPTB BITRV 
LOF *+ARO(l),RO 
LOF *ARO++(IRO)B,Rl 
STF RO,*+ARl(l) 
STF Rl,*ARl++(IRl) 

BR SELF Branch to itself at the end 
.end 

The data to be transformed is usually a sequence of real numbers. In this case, 
the FFT demonstrates certain symmetries that permit the reduction of the 
computational load even further. Example 11-38 shows the generic imple­
mentation of a real-valued, radix-2 FFT. For such an FFT, the total storage re­
quired for a length-N transform is only N locations; in a complex FFT, 2N are 
necessary. Recovery of the rest of the points is based on the symmetry condi­
tions. 

Example 11-39 shows the implementation of a radix-2 real inverse FFT. The 
inverse transformation assumes that the input data is given in the order pres­
ented at the output of the forward transformation and produces a time signal 
in the proper order (that is, bit reversing takes place at the end of the program). 

Software Applications 11-87 



Application-Oriented Operations 

Example 11-38. Real, Radix-2 FFT 

***************************************************************************** 
* FILENAME : ffft_rl.asm 
* 
* WRITTEN BY Alex Tessarolo 
'* Texas Instruments, Australia 
* 
* DATE 23rd July 1991 
* 
* VERSION : 2.0 
* 
***************************************************************************** 

* 
* VER 
* 
* 1.0 
* 2.0 

* 
* 
* 
* 

DATE 

18th July 91 
23rd July 91 

COMMENTS 

Original release. 
Most stages modified. 
Minimum FFT size increased from 32 to 64. 
Faster in place bit reversing algorithm. 
Program size increased by about 100 words. 
One extra data word required. 

***************************************************************************** 

* SYNOPSIS: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

11-88 

int 

int 
int 
float 
float 

float 
int 

NOTE: 

ffft_rl( FFT_SIZE, LOG_SIZE, SOURCE_ADDR, DEST_ADDR, 
SINE_TABLE, BIT_REVERSE ); 

FFT_SIZE 64, 128, 256, 512, 1024, ... 
LOG_SIZE 6, 7, 8, 9, 10, ... 
* SOURCE_AD DR Points to location of source data. 
*DEST_ADDR Points to where data will be 

operated on and stored. 
*SINE_TABLE Points to the SIN/COS table. 
BIT_REVERSE . - 0, bit reversing is disabled. , 

<> 0, bit reversing is enabled. 

1) If SOURCE_ADDR - DEST_ADDR, then in-place bit 
reversing is performed, if enabled (more 
processor intensive). 

2) FFT_SIZE must be >~ 64 (this is not checked). 



Application-Oriented Operations 

* DESCRIPTION: Generic function to do a radix-2 FFT computation on the C30. 
* The data array is FFT_SIZE-long with only real data. The out-
* put is stored in the same locations with real and imaginary 
* points R and I as follows: 

* 
* 
* 
* 
* 
* 
;; 

;; 

* 
* 
* 
* 
* 
* 
* 

'* 
* 

* 
* 

* 
* 
'* 
'* 

'* 
* 
* 
'* 
'* 
* 
'* 
* 
* 
* 
* 
'* 
* 
* 
'* 
* 
* 
'* 

+ R(O) 
R( 1) 
R( 2) 
R( 3) 

R(FFT_SIZE/2) 
I (FFT_SIZE/2 1) 

I(2) 
+ I(l) 

The program is based on the FORTRAN program in the 
paper by Sorensen et a1., June 1987 issue of Trans. 
on ASSP. 

Bit reversal is optionally implemented at the begin­
ning of the function. 

The sine/cosine table for the twiddle factors is ex­
pected to be supplied in the following format: 

+ sin(O*2*pi/FFT_SIZE) 
sin(1*2*pi/FFT_SIZE) 

sin«FFT SIZE/2-2)*2*pi/FFT SIZE) 
SINE_TABLE[FFT_SIZE/2 - 1]+ sin«FFT=SIZE/2-1)*2*pi/FFT=SIZE) 

NOTE: The table is the first half period of a sine wave. 

Stack structure upon call: 

-FP(7) 
-FP(6) 
-FP(5) 
-FP(4) 
-FP(3) 
-FP(2) 
-FP( 1) 
-FP(O) 

BIT_REVERSE 
SINE TABLE 
DEST_ADDR 
SOURCE_ADDR 
LOG_SIZE 
FFT_SIZE 
returne 
addr 
old FP 

***************************************************************************** 

Software Applications 11-89 



Application-Oriented Operations 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

NOTE; Calling C program can be compiled using either large 
or small model. 

WARNING: DP initialized only once in the program. Be wary 
with interrupt service routines. Make sure interrupt 
service routines save the DP pointer. 

WARNING: The DEST_ADDR must be aligned such that the first 
LOG_SIZE bits are zero (this is not checked by the 
program) • 

* 
***************************************************************************** 
* 
* REGISTERS USED: RO, R1, R2, RJ, R4, R5, R6, R7 
* ARO, AR1, AR2, AR3, AR4, AR5, AR6, AR7 
* IRO, IR1 
* RC, RS, RE 
* DP 
* 
* MEMORY REQUIREMENTS; 

* 
* 

Program 
Data 
Stack 

405 Words (approximately) 
7 Words 

12 Words 

* 
***************************************************************************** 
* 
* BENCHMARKS: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Assumptions 

FFT Size 

Program in RAMO 
Reserved data in RAMO 
Stack on primary/expansion bus RAM 
Sine/cosine tables in RAMO 
processing and data destination in RAM1. 
Primary/expansion bus RAM, 0 wait state. 

Bit ReversingData Source Cycles(CJO) 

1024 OFF RAM 1 19816 approx. 
Note: This number does not include the C callable overheads. 

Add 57 cycles for these overheads. 

* 
***************************************************************************** 

FP .set ARJ 

• global -ffft_rl Entry execution point • 

FFT_SIZE: .usect ".fftdata",1 Reserve memory for arguments. 
LOG_SIZE: .usect ".fftdata",1 
SOURCE_ADDR: .usect ".fftdata",1 
DEST_ADDR: .usect ".fftdata",1 
SINE_TABLE: .usect ".fftdata",1 
BIT_REVERSE: .usect ".fftdata",1 
SEPARATION: .usect ".fftdata",1 

11-90 



-ffft_rl: PUSH 
LOI 
PUSH 
PUSH 
PUSH 
PUSHF 
PUSH 
PUSHF 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

LOP 

LOI 
STI 
LOI 
STI 
LOI 
STI 
LOI 
STI 
LOI 
STI 
LOI 
STI 

.sect 

FP 
SP,FP 
R4 
RS 
R6 
R6 
R7 
R7 
AR4 
ARS 
AR6 
AR7 
OP 

Application-Oriented Operations 

Initialize C function. 

".ffttext" 

~ Preserve C environment. 

FFT_SIZE Init. OP pointer. 

*-FP(2),RO Move arguments from stack. 
RO,@FFT_SIZE 
*-FP(3) ,RO 
RO, @LOG_SIZE 
*-FP( 4) ,RO 
RO,@SOURCE_ADOR 
*-FP(S) ,RO 
RO,@OEST_ADOR 
*-FP(6) ,RO 
RO,@SINE_TABLE 
*-FP(7) ,RO 
RO, @BIT_REVERSE 

Check bit reversing mode (on or off). 

BIT_REVERSING = 0, then OFF 
(no bit reversing). 

BIT_REVERSING <> 0, Then ON. 

LOI @BIT_REVERSE,RO 
CMPI O,RO 
BZ MOVE_DATA 

Check bit reversing type. 

If SourceAd~ - DestAddr, then in place 
bit reversing. 

If SourceAddr <> OestAddr, then 
standard bit reversing. 

Software Applications 11-91 



Application-Oriented Operations 

IN_PLACE: 

11-92 

LOI @SOURCE_ADOR,RO 
CMPI @OEST_ADOR,RO 
BEQ IN_PLACE 

@FFT_SIZE,RO 
2,RO 
@FFT_SIZE,IRO 

Bit reversing Type 1 (from source to 
destination) • 

NOTE: abs(SOURCE_AOOR - OEST_ADOR) 
must be > FFT_SIZE, this is not 
checked. 

LOI 
SUBI 
LOI 
LSH 
LOI 
LOI 

-I,IRO ; IRO half FFT size. 
@SOURCE_AOOR,ARO 
@OEST_AOOR,ARI 

LOF *ARO++,RI 

RPTS RO 
LOF 

II 
*ARO++,RI 
STF Rl,*ARl++(IRO)B 

STF Rl,*ARl++(IRO)B 

BR START 

LOI 
LSH 
LOI 

LOI 
LSH 
SUB I 
LOI 
LOI 
LOI 

NOP 
NOP 
LOF 
LOF 

@FFT_SIZE,IRO 
-2,IRO 
2,IRI 

@FFT_SIZE,RC 
-2,RC 
3,RC 
@OEST_ADOR,ARO 
ARO,ARI 
ARO,AR2 

*ARl++(IRO)B 
*AR2++(IRO)B 
*++ARO ( IRI ) , RO 
*ARl,Rl 

In-place bit reversing. 

Bit reversing on even locations, 
1st half only. 

IRO quarter FFT size. 

CMPI ARl,ARO Xchange 10cs only if ARO<ARI. 
LOFGT RO,RI 
LOFGT *ARl++(IRO)B,Rl 



RPTB 
LDF 

II 
LDF 

II 
CMPI 
LDFGT 

BITRV1 : LDFGT 

STF 
STF 

LDI 
LSB 
LDI 
ADDI 
ADDI 
LDI 
LDI 
LSB 
SUBI 

NOP 
NOP 
LDF 
LDF 
CMPI 
LDFGT 
LDFGT 

RPTB 
LDF 

II 
LDF 

II 
CMPI 
LDFGT 

BITRV2: LDFGT 

STF 
STF 

LDI 
LSB 
LDI 
LDI 
LDI 
ADDI 

BITRV1 
*++ARO(IR1),RO 

Application-Oriented Operations 

STF RO,*ARO 
*AR1,R1 
STF R1,*AR2++(IRO)B 
AR1,ARO 
RO,R1 
*AR1++(IRO)B,RO 

RO,*ARO 
R1,*AR2 

@FFT_SIZE,RC 
-l,RC 
@DEST_ADDR,ARO 
RC,ARO 
1,ARO 
ARO,AR1 
ARO,AR2 
-l,RC 
l,RC 

*AR1++(IRO)B 
*AR2++(IRO)B 
*++ARO(IR1),RO 
*AR1,R1 
AR1,ARO 
RO,R1 
*AR1++(IRO)B,R1 

BITRV2 
*++ARO(IR1),RO 

Perform bit reversing on odd 
locations, 2nd half only. 

Xchange locs only if ARO<AR1. 

STF RO,*ARO 
*AR1,R1 

STF R1,*AR2++(IRO)B 
AR1,ARO 
RO,R1 
*AR1++(IRO)B,RO 

RO,*ARO 
R1,*AR2 

@FFT_SIZE,RC 
-l,RC 
RC,IRO 
@DEST_ADDR,ARO 
ARO,AR1 
1,ARO 

Perform bit reversing on odd 
locations, 1st half only. 

Software Applications 11-93 



Application-Oriented Operations 

ADDI 
LSH 
LDI 
SUBI 

LDF 
LDF 

RPTB 
LDF 

II 
BITRV3: LDF 

II 
STF 
STF 

BR 

MOVE_DATA: LDI 
CMPI 
BEQ 

LDI 
SUBI 
LDI 
LDI 

LDF 

RPTS 
LDF 

II 
STF 

11-94 

IRO,ARl 
-l,RC 
RC,IRO 
2,RC 

*ARO,RO 
*ARl,Rl 

BITRV3 
*++ARO (IRl) ,RO 
STF 
*ARl,Rl 
STF 

RO,*ARl 
Rl,*ARO 

START 

RO,*ARl++(IRO)B 

Rl,*-ARO(IRl) 

Check data source locations. 

If SourceAddr • DestAddr, then 
do nothing. 
If SourceAddr <> DestAddr, then move 
data. 

@SOURCE_ADDR,RO 
@DEST_ADDR,RO 
START 

@FFT_SIZE,RO 
2,RO 
@SOURCE_ADDR,ARO 
@DEST_ADDR,ARl 

*ARO++,Rl 

RO 
*ARO++,Rl 
STF Rl,*ARl++ 

Rl, *ARl 



Application-Oriented Operations 

Perform first and second FFT loops. 

START: 

ARi .. 

AR2 .. 

AR3 .. 

AR4 .. 

ARi 

Il 

12 

13 

I4 

I • 
LDI 
LDI 
LDI 
LDI 
ADDI 
ADDI 
ADDI 
LDI 
LDI 
LSH 
SUBI 
LDF 

II LDF 
ADDF3 
SUBF3 
SUBF3 
ADDF3 
ADDF3 
SUBF3 

II 

II 

II 

II 

II 

II 

II 

LDF 
LDF 
ADDF3 
STF 
SUBF3 
STF 
SUBF3 
STF 
ADDF3 
STF 
ADDF3 
SUBF3 
STF 
STF 
STF 
STF 

o .. [X(Il) + X(I2)] + [X(I3) + X(I4)] 

1 .. [X ( Il ) - X ( 12 ) ] 

2 .. [X(Il) + X(I2)] - [X(I3) + X(I4)] 

3 .. -[X(I3) - X(I4)] 

4 

@DEST_ADDR,ARi 
ARi,AR2 
ARi,AR3 

··ARi,AR4 
1,AR2 
2,AR3 
3,AR4 
4,IRO 
@FFT_SIZE,RC 
-2,RC 
2,RC 
*AR2,RO 
*AR3,Ri 
Ri,*AR4,R4 
Ri,*AR4++(IRO),RS 
RO,*ARi,R6 
RO,*ARi++(IRO),R7 
R7,R4,R2 
R4,R7,R3 

*+AR2(IRO),RO 
*+AR3(IRO),Ri 
Ri,*AR4,R4 
R3,*AR3++(IRO) 
Ri,*AR4++(IRO),RS 
RS,*-AR4(IRO) 
RO,*ARi,R6 
R6,*AR2++(IRO) 
RO,*ARi++(IRO),R7 
R2,*-ARi(IRO) 
R7,R4,R2 
R4,R7,R3 
R3,*AR3 
RS,*-AR4(IRO) 
R6,*AR2 
R2 , *-ARi ( IRO ) 

RO ... X(I2) 
Ri '" X(I3) 
R4 - X(I3) + X(I4) 
RS -[X(I3) - X(I4)]-
R6 X(Il) - X(I2)-
R7 - X(Ii) + X(I2) 
R2 R7 + R4-----
R3 R7 - R4-

X (I3) ~""-----' 

X(I4) ~~---------~--~ 

X(I2) 

X(Il) 

Software Applications 11-95 



Application-Oriented Operations 
:IU 

Perform third FFT loop. 

Part A: 

ARl .. Il 

I2 

AR2 .. I3 

AR3 .. I4 

ARl .. 

R ... 
LDI 
LDI 
LDI 
ADDI 
ADDI 
LDI 
LDI 
LSH 
SUBI 

SUBF3 
ADDF3 
NEGF 

RPTB 
LDF 

II STF 
SUBF3 

II STF 
ADDF3 

II STF 
NEGF 

STF 
STF 
STF 

11-96 

0 .. X( Il) 

1 

2 

3 

4 .. X(Il ) 

5 

6 .. -X(I4) 

7 

a 

9 

@DEST_ADDR,ARl 
ARl,AR2 
ARl,AR3 
4,AR2 
6,AR3 
a,IRO 
@FFT_SIZE,RC 
-3,RC 
2,RC 

*AR2,*AR1,Rl 
*AR2,*AR1,R2 
*AR3,R3 

LOOP3 A 
*+AR2(IRO),RO 
R2, *AR1++ (IRO) 
RO,*AR1,Rl 
Rl,*AR2++(IRO) 
RO,*AR1,R2 
R3,*AR3++(IRO) 
*AR3,R3 

R2,*ARl 
Rl,*AR2 
R3,*AR3 

+ X(I3) 

- X(I3) 

RO X(I3) 

Rl X(Il ) - X(I3)-

R2 X(Il ) + X(I3)-

R3 -X(I4)-

X(Il ) 
X(I3) 
X(I4) 



Part B: 

ARO .. 

ARl .. 

AR2 .. 

AR3 .. 

ARO .. 

II 

II 

II 

II 

II 

Il 

I2 

I3 

I4 

I 

• 
LOI 
LSH 
LOI 
SUBI 
LOI 
LOI 
LOI 
LOI 
LOI 
ADOI 
ADOI 
ADOI 
ADOI 
LOI 
LOF 

MPYF3 
MPYF3 
ADOF3 
MPYF3 
SUBF3 
SUBF3 
ADOF3 
STF 
SUBF3 
STF 
ADOF3 
STF 

RPTB 
MPYF3 
STF 
ADOF3 
MPYF3 

Application-Oriented Operations 

0 
1 .. X[Il] + [X(I3)*COS+ X(I4)*COS] 
2 
3 .. X[Il] [X(I3)*COS+ X(I4)*COS] 
4 
5 .. -X[I2] - [X(I3)*COS- X(I4)*COS] 
6 
7 .. X[I2] [X(I3)*COS- X(I4)*COS] 
S 
9 NOTE: COS(2*pi/S) = SIN(2*pi/S) 

@FFT_SIZE,RC 
-3,RC 
RC,IRl 
3,RC 
S,IRO 
@OEST_ADDR,ARO 
ARO,ARl 
ARO,AR2 
ARO,AR3 
1,ARO 
3,ARl 
5,AR2 
7,AR3 
@SINE_TABLE,AR7 
*++AR7(IR1),R7 

*AR7,*AR2,RO 
*AR3,R7,Rl 
RO,Rl,R2 
*AR7,*+AR2(IRO),RO 
RO,Rl,R3 
*AR1,R3,R4 
*AR1,R3,R4 
R4,*AR2++(IRO) 
R2,*ARO,R4 
R4,*AR3++(IRO) 
*ARO,R2,R4 
R4, *AR1++ (IRO) 

LOOP3_B 
*AR3,R7,Rl 
R4,*ARO++(IRO) 
RO,Rl,R2 
*AR7,*+AR2(IRO),RO 

Initialize table pointers. 
R7 - COS(2*pi/S) 
*AR7 = COS(2*pi/S) 
RO = X(I3)*COS 
R5 - X(I4)*COS 
R2 - [X(I3)*COS + X(I4)*COS] 

R3 - -[X(I3)*COS - X(I4)*COS] 
R4 - -X(I2) + R3 -
R4 - X(I2) + R3 --
X(I3) 
R4 - X ( 11) - R2 -
X(U) .... 

R4 - X(Il) + R2 -­
X(I2)~ 

X (11) 4------...... 

Software Applications 11-97 



Application-Oriented Operations 

II SUBF3 RO,Rl,R3 
SUBF3 *AR1,R3,R4 
ADDF3 *AR1,R3,R4 

II STF R4,*AR2++(IRO) 
SUBF3 R2,*ARO,R4 

II STF R4,*AR3++(IRO) 
LOOP3_B: ADDF3 *ARO,R2,R4 

II STF R4,*AR1++(IRO) 
MPYF3 *AR3,R7,Rl 

II STF R4,*ARO++(IRO) 
ADDF3 RO,Rl,R2 
SUBF3 RO,Rl,R3 
SUBF3 *AR1,R3,R4 
ADDF3 *AR1,R3,R4 

II STF R4,*AR2 
SUBF3 R2,*ARO,R4 

II STF R4,*AR3 
• """,'C'O) 
AI.IU~ .., 

..,,,'On '1:)") 'DA 
·'n.nv 1""'400 ,4"''' 

II STF R4,*ARl 
STF R4,*ARO 

11-98 



Application-Oriented Operations 

Perform fourth FFT loop. 

Part A: 

ARI .. Il 0 .. X ( Il ) + X ( 13 ) 
1 
2 
3 

12 4 
5 
6 
7 

AR2 .. 13 8 .. X(Il) - X(I3) 
9 
10 
11 

AR3 .. 14 12 .. -X(I4) 
13 
14 
15 

ARI .. IS 16 
17 

I ... 
LDI @DEST_ADDR,ARI 
LDI ARl,AR2 
LDI ARl,AR3 
ADDI 8,AR2 
ADDI 12,AR3 
LDI ··16, IRO 
LDI @FFT_SIZE,RC 
LSH -4,RC 
SUBI 2,RC 
SUBF3 *AR2,*ARl,Rl 
ADDF3 *AR2,*ARl,R2 
NEGF *AR3,R3 
RPTB LOOP4_A 
LDF *+AR2(IRO),RO RO = X(I3) 

II STF R2,*ARl++(IRO) 
SUBF3 RO,*ARl,Rl Rl "" X(Il) - X(I3)-

II STF Rl,*AR2++(IRO) 
ADDF3 RO,*ARl,R2 R2 X(Il) + X(I3)-

II STF R3,*AR3++(IRO) 
LOOP4_A: NEGF *AR3,R3 R3 .. -X(I4) -

STF R2,*ARI X(Il) 
II STF Rl,*AR2 X(I3), 

STF R3,*AR3 X(I4)~ 

Software Applications 11-99 



Application-Oriented Operations 

Part BI 

ARO .. Xl (3rd) 
Il (2nd) 
Il (1st) 

I2 (lst) 
I2 (2nd) 

AR1 .. I2 (3rd) 

AR2 .. I3 (3rd) 
I3 (2nd) 

AR4 .. I3 (1st) 

I4 (1st) 

L AR3 .. 
14 (2nd' 
I4 (3rd) 

ARO .. 

I 

~ 

LDI 
LSB 
LDI 
LDI 
SUBI 
LDI 
LDI 
LDI 
LDI 
LDI 
ADDI 
ADDI 
ADDI 
ADDI 
ADDI 

LDI 
LDF 

LDI 
LDF 

LDI 
LDF 

LDI 

11-100 

0 
1 .- X[Il] + 
2 
3 
4 
5 
6 
7 + X[Il] -
8 
9 .- -X[I2] -
10 
11 .-
12 
13 
14 
15 .- X[I2] -
16 
17 

@FFT_SIZE,RC 
-4,RC 
RC,IR1 
2,IRO 
3,RC 
@DEST_ADDR,ARO 
ARO,AR1 
ARO,AR2 
ARO,AR3 
ARO,AR4 
1,ARO 
7,AR1 
9,AR2 
15,AR3 
11,AR4 

@SINE_TABLE,AR7 
*++AR7(IR1),R7 

AR7,AR6 
*++AR6(IR1),R6 

AR6,AR5 
*++AR5(IR1),R5 

16,IR1 

[X(I3)*COS+ X(I4)*SIN] 

[X(I3)*COS+ X(I4)*SIN] 

[X(I3)*COS- X(I4)*COS] 

[X(I3)*SIN- X(I4)*COS] 

R7 = SIN(1*[2*pi/16]) 
*AR7 - COS(3*[2*pi/16]) 

R6 - SIN(2*[2*pi/16]) 
*AR6 = COS(2*[2*pi/16]) 

R5 - SIN(3*[2*pi/16]) 
*AR5 - COS(1*[2*pi/16]) 



Application-Oriented Operations 

MPYF3 *AR7,*AR4,RO RO X(I3)*COS(3) 

MPYF3 *++AR2(IRO),RS,R4 R4 X(I3)*SIN(3) 
MPYF3 *--AR3(IRO),RS,Rl Rl X(I4)*SIN(3) 
MPYF3 *AR7,*AR3,RO RO X(I4)*COS(3) 

II ADDF3 RO,Rl,R2 R2 [X(I3)*COS + X(I4)*SIN] 
MPYF3 *AR6,*-AR4,RO 

II SUBF3 R4,RO,R3 R3 = -[X(I3)*SIN - X(I4)*COS] 
SUBF3 *--ARl(IRO),R3,R4 R4 = -X(I2) + R3-
ADDF3 *ARl,R3,R4 R4 X(I2) + R3- -
STF R4, *AR2-- X(I3), 
SUBF3 R2,*++ARO(IRO),R4 R4 X(Il) R2-
STF R4,*AR3 X(I4) 
ADDF3 *ARO,R2,R4 R4 X(Il) + R2- -
STF R4,*ARI X(I2) , 

MPYF3 *++AR3,R6,Rl 
II STF R4,*ARO X(Il) 

ADDF3 RO,Rl,R2 
MPYF3 *ARS,*-AR4(IRO),RO 

II SUBF3 RO,Rl,R3 
SUBF3 *++ARl,R3,R4 
ADDF3 *ARl,R3,R4 

II STF R4,*AR2 
SUBF3 R2 , *--ARO , R4 

II STF 
STF R4,*ARI 

MPYF3 *--AR2,R7,R4 
II STF R4,*ARO 

MPYF3 *++AR3,R7,Rl 
II MPYF3 *ARS,*AR3,RO 

ADDF3 RO ,Rl ,R2 
MPYF3 *AR7,*++AR4(IRl),RO 

II SUBF3 R4,RO,R3 
SUBF3 *++ARl,R3,R4 
ADDF3 *ARl,R3,R4 
STF R4,*AR2++(IRl) 
SUBF3 R2 , *--ARO , R4 

II STF R4,*AR3++(IRl) 
ADDF3 *ARO,R2,R4 

II STF R4,*AR1++(IRl) 

RPTB LOOP4_B 
MPYF3 *++AR2(IRO),RS,R4 

II STF R4,*ARO++(IRl) 
MPYF3 *--AR3(IRO),RS,Rl 
MPYF3 *AR7,*AR3,RO 

II ADDF3 RO,Rl,R2 
MPYF3 *AR6,*-AR4,RO 

II SUBF3 R4,RO,R3 
SUBF3 *--ARl(IRO),R3,R4 
ADDF3 *ARl,R3,R4 

Software Applications 11-101 



Application-Oriented Operations 

II STF R4,*AR2-
SUBF3 R2,*++ARO(IRO),R4 

II STF R4,*AR3 
ADDF3 *ARO,R2,R4 

II STF R4,*ARl 

MPYF3 *++AR3,R6,Rl 
II STF R4,*ARO 

ADDF3 RO,Rl,R2 
MPYF3 *AR5,*-AR4(IRO),RO 

II SUBF3 RO,Rl,R3 
SUBF3 *++AR1,R3,R4 
ADDF3 *AR1,R3,R4 

II STF R4,*AR2 
SUBF3 R2 , *--ARO , R4 

II STF R4 i *~.R3 I I 

ADDF3 *ARO,R2,R4 
II STF R4,*ARl 

MPYF3 *--AR2,R7,R4 
II STF R4,*ARO 

MPYF3 *++AR3,R7,Rl 
MPYF3 *AR5,*AR3,RO 

II ADDF3 RO,Rl,R2 
MPYF3 *AR7,*++AR4(IR1),RO 

II SUBF3 R4,RO,R3 
SUBF3 *++AR1,R3,R4 
ADDF3 *AR1,R3,R4 

II STF R4,*AR2++(IR1) 
SUBF3 R2 , *--ARO , R4 

II STF R4,*AR3++(IR1) 
LOOP4_B: ADDF3 *ARO,R2,R4 

II STF R4, *AR1++ (IR1) 

MPYF3 *++AR2(IRO),R5,R4 
II STF R4,*ARO++(IR1) 

MPYF3 *--AR3(IRO),R5,Rl 
MPYF3 *AR7,*AR3,RO 

II ADDF3 RO,Rl,R2 
MPYF3 *AR6,*-AR4,RO 

II SUBF3 R4,RO,R3 
SUBF3 *--AR1(IRO),R3,R4 
ADDF3 *AR1,R3,R4 

II STF R4,*AR2--
SUBF3 R2,*++ARO(IRO),R4 

II STF R4,*AR3 
ADDF3 *ARO,R2,R4 

II STF R4,*ARl 

11-102 



Application-Oriented Operations 

MPYF3 *++AR3,R6,Rl 
II STF R4,*ARO 

ADDF3 RO,Rl,R2 
MPYF3 *ARS,*-AR4(IRO),RO 

II SUBF3 RO,Rl,R3 
SUBF3 *++AR1,R3,R4 
ADDF3 *AR1,R3,R4 

II STF R4,*AR2 
SUBF3 R2, *--ARO , R4 

II STF R4,*AR3 
ADDF3 *ARO,R2,R4 
STF R4,*ARl 

MPYF3 *--AR2 ,R7 ,R4 
II STF R4,*ARO 

MPYF3 *++AR3,R7,Rl 
MPYF3 *ARS,*AR3,RO 

II ADDF3 RO,Rl,R2 
SUBF3 R4,RO,R3 
SUBF3 *++AR1,R3,R4 
ADDF3 *AR1,R3,R4 

II STF R4,*AR2 
SUBF3 R2, *--ARO , R4 

II STF R4,*AR3 
ADDF3 *ARO,R2,R4 
STF R4,*ARl 

STF R4,*ARO 

Software Applications 11-103 



Application-Oriented Operations 

Perform remaining FFT loops (loop 4 onwards). 

LOOP 
1st 2nd 
+ + 
0 0 .. X' (Il)+ X' (I3) 

ARl+ X 1 1 .. X(Il ) + [X{I3)*COS + X(I4)*SIN] 

LOOP: 

11-104 

X 2 2 
3 3 

A +~, 16 
B + • 

1 V'T"\ • ,~ .. A\ T 13 29 
14 30 

AR2+ 15 31 .. X[ Il] 
16 32 .. X' (Il)-

AR3+ 17 33 .. -X[I2]-
18 34 
19 35 

C +~24 
+~ 

.. -X' (I4) 48 
D 

AR4+ 

ARl+ 

, 
• LDI 

LSH 
STI 
LSH 
LDI 
LDI 
LDI 
LDI 
LDI 
LSH 
LSH 
ADDI 
LSH 
LDI 

29 61 
30 62 
31 63 .. X[I2] 
32 64 
33 65 

@FFT_SIZE,IRO 
-2,IRO 
IRO,@SEPARATION 
-2,IRO 
5,R5 
3,R7 
16,R6 
@DEST_ADDR,AR5 
@DEST_ADDR,ARl 
-l,IRO 
1,R7 
1,R7 
1,R6 
ARl,AR4 

[X{I3)*COS + X(I4)*SIN] 
X'{I3) 
[X{I3)*SIN- X{I4)*COS] 

[X{I3)*SIN - X{I4)*COS] 



ADDI 
LDI 
ADDI 
ADDI 
SUBI 
LDI 
SUB I 

LDI 
LDI 
LDI 

INLOP: ADDF3 
SUBF3 
NEGF 

II STF 
STF 

II STF 

LOI 

SUBI 

MPYF3 
MPYF3 
MPYF3 
MPYF3 

II SUBF3 
MPYF3 

II ADOF3 
SUBF3 
ADOF3 

II STF 
SUBF3 

II STF 
ADOF3 

II STF 

RPTB 
LOF 
MPYF3 

II STF 
MPYF3 
MPYF3 

II SUBF3 
MPYF3 

II ADOF3 
SUBF3 
ADDF3 

II STF 
SUBF3 

II STF 
IN_BLK: ADOF3 

II STF 

Application-Oriented Operations 

R7,ARI ARI points at A. 
ARl,AR2 
2,AR2 AR2 points at B. 
R6,AR4 
R7,AR4 AR4 points at D. 
AR4,AR3 
2,AR3 AR3 points at C. 

@SINE_TABLE,ARO ARO points at SIN/COS table. 
R7,IRI 
R7,RC 

*--AR1(IR1),*++AR2(IR1),RO; RO .. X'(Il) + X'(I3)-
*--AR3(IR1) ,*AR1++,Rl Rl" X' (Il) - X' (13)-
*--AR4,R2 R2 .. -X'(I4)----
RO,*-ARI X' (Il) ... ,r-----+-_i' 
Rl,*AR2-- X' (13) .... "'"-r------t---' 
R2,*AR4++(IR1) X'(I4) 

@SEPARATION,IRI 

3,RC 

*++ARO(IRO),*AR4,R4 
*ARO,*++AR3,Rl 
*++ARO(IR1),*AR4,RO 
*ARO,*AR3,RO 
Rl,RO,R3 
*++ARO(IRO),*-AR4,RO 
RO,R4,R2 
*AR2,R3,R4 
*AR2,R3,R4 
R4,*AR3++ 
R2,*AR1,R4 
R4,*AR4--
*AR1,R2,R4 
R4,*AR2--

IN_BLK 
*-ARO(IR1),R3 
*AR4,R3,R4 
R4,*AR1++ 
*AR3,R3,Rl 
*ARO,*AR3,RO 
Rl,RO,R3 
*++ARO(IRO),*-AR4,RO 
RO,R4,R2 
*AR2,R3,R4 
*AR2,R3,R4 
R4,*AR3++ 
R2,*AR1,R4 
R4,*AR4-­
*AR1,R2,R4 
R4,*AR2--

IR1=SEPARATION 
BETWEEN SIN/COS TBLS 

R4 X(I4)*SIN 
Rl - X(I3)*SIN 
RO - X(I4)*COS 
RO - X(I3)*COS 
R3 - -[X(I3)*SIN - X(I4)*COS] 

R2 - X(I3)*COS + X(I4)*SIN 
R4 - R3 
R4 - R3 
X(I3) 
R4 .. X( 
X(I4) 
R4 .. X( 

X(I2) 

X(Il) 

- X(I2) 
+ X(I2) 
-
Il) - R2 

Il) + R2 

.... 

Software Applications 11-105 



Application-Oriented Operations 

LDF *-ARO ( IRl ) , R3 
MPYF3 *AR4,R3,R4 

II STF R4,*ARl++ 
MPYF3 *AR3,R3,Rl 
MPYF3 *ARO,*AR3,RO 

II SUBF3 Rl,RO,R3 
LDI R6,IRl 
ADDF3 RO,R4,R2 
SUBF3 *AR2,R3,R4 
ADDF3 *AR2,R3,R4 

II STF R4,*AR3++(IRl) 
SUBF3 R2,*ARl,R4 

II STF R4,*AR4++(IRl) 
ADDF3 *ARl,R2,R4 

II STF R4,*AR2++(IRl) 

STF R4,*ARl++(IRl) 

SUBI3 ARS,ARl,RO 
CMPI @FFT_SIZE,RO 
BLTD INLOP LOOP BACK TO THE 

INNER LOOP 
LDI @SINE_TABLE,ARO ; ARO POINTS TO 

SIN/COS TABLE 
LDI R7,IRl 
LDI R7,RC 

ADDI l,RS 
CMPI @LOG_SIZE,RS 
BLED LOOP 
LDI @DEST_ADDR,ARl 
LSH -l,IRO 
LSH lt R7 

11-106 



POP 

POP 
POP 
POP 
POP 
POPF 
POP 
POPF 
POP 
POP 
POP 
POP 
RETS 

.end 

* 
* No more. 
* 

DP 

AR7 
AR6 
ARS 
AR4 
R7 
R7 
R6 
R6 
RS 
R4 
FP 

Application-Oriented Operations 

Return to C environment. 

Restore C environment 
variables. 

***************************************************************************** 

Software Applications 11-107 



Application-Oriented Operations 

Example 11-39. Real Inverse, Radix-2 FFT 

* Real Inverse FFT 
***************************************************************************** 
* 
* FILENAME ifft_rl.asm 
* 
* WRITTEN BY Daniel Mazzocco 
* Texas Instruments, Houston 
* 
* DATE 18th Feb 1992 
* 
* VERSION 1.0 
* 

***************************************************************************** 
* VER 
* 
* 1.0 
* 
* 

DATE 

18th Feb 92 

COMMENTS 

Original release. Started from forward real FFT 
routine written by Alex Tessarolo, rev 2.0 • 

***************************************************************************** 
* 
* SYNOPSIS: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

11-108 

int 

int 
int 
float 

float 
float 
int 

NOTE: 

ifft_rl( FFT_SIZE, LOG_SIZE, SOURCE_ADDR, 
DEST_ADDR, SINE_TABLE, BIT_REVERSE )J 

FFT_SIZE 
LOG_SIZE 
*SOURCE_ADDR 

*DEST_ADDR 
* SINE_TABLE 
BIT_REVERSE 

64, 128, 256, 512, 1024, ••• 
6, 7, 8, 9, 10, ••• 

Points to where data is originated 
and operated on. 
Points to where data will be stored. 
Points to the SIN/COS table. 
= 0, bit reversing is disabled. 
<> 0, bit reversing is enabled. 

1) If SOURCE_ADDR - DEST_ADDR, then in place bit 
reversing is performed, if enabled (more 
processor intensive). 

2) FFT_SIZE must be >= 64 (this is not checked). 



* DESCRIPTION: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Application-Oriented Operations 

Generic function to do an inverse radix-2 FFT computation 
on the C30. 
The data array is FFT_SIZE long with real and imaginary 
points R and I as follows: 

SOURCE_ADDR[O] .. R(O) 
R( 1) 
R(2 ) 
R(3) 

R(FFT_SIZEI2) 
I (FFT_SIZE/2 1) 

I(2) 
SOURCE_ADDR[FFT_SIZE-l] .. I(l) 

The output data array will contain only real values. 
Bit reversal is optionally implemented at the end 
of the function. 

The sine/cosine table for the twiddle factors is expected 
to be supplied in the following format: 

.. sin(O*2*pi/FFT_SIZE) 
sin(1*2*pi/FFT_SIZE) 

sin«FFT_SIZE/2-2)*2*pi/FFT_SIZE) 
SINE_TABLE[FFT_SIZE/2-1] .. sin«FFT_SIZE/2-1)*2*pi/FFT_SIZE) 

NOTE: The table is the first half period of a sine wave. 

Stack structure upon call: 

-FP(7) BIT_REVERSE 
-FP(6) SINE_TABLE 
-FP(S) DEST_ADDR 
-FP(4) SOURCE_ADDR 
-FP(3) LOG_SIZE 
-FP(2) FFT_SIZE 
-FP(l) returne 
-FP(O) addr 

old FP 

* 
***************************************************************************** 

Software Applications 11-109 



Application-Oriented Operations 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

NOTE: Calling C program can be compiled using either large 
or small model. 

WARNING: DP initialized only once in the program. Be wary 
with interrupt service routines. Make sure interrupt 
service routines save the DP pointer. 

WARNING: The SOURCE_ADDR must be aligned such that the first 
LOG_SIZE bits are zero (this is not checked by the 
program) • 

***************************************************************************** 
* * REGISTERS USED: RO, Rl, R2, R3, R4, R5, R6, R7 
* ARO, ARl, AR2, AR3, AR4, AR5, AR6, AR7 
* IRO, IRI 
* 
* 
* 

RC, RS, RE 
DP 

* MEMORY REQUIREMENTS: 

* 
* 

Program 
Data 
Stack 

- 322 words (approximately) 
- 7 words 

12 words 
* 
***************************************************************************** 

* 
* BENCHMARKS: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Assumptions Program in RAMO 
Reserved data in RAMO 

FFT Size 

1024 
Note: 

Stack on primary/expansion bus RAM 
Sine/cosine tables in RAMO 
Processing and data destination in RAMI 
primary/expansion bus RAM, 0 wait state 

Bit Reversing Data Source Cycles(C30) 

OFF RAMI 25892 approx. 
This number does not include the C callable overheads. 
Add 57 cycles for these overheads. 

***************************************************************************** 

FP 

FFT_SIZE: 
LOG_SIZE: 
SOURCE_ADDR: 
DEST_ADDR: 
SINE_TABLE: 
BIT_REVERSE: 
SEPARATION: 

11-110 

.set 

.usect 

.usect 

.usect 

.usect 

.usect 

.usect 

.usect 

AR3 

".ifftdata",l 
".ifftdata",l 
".ifftdata",l 
".ifftdata",l 
".ifftdata",l 
".ifftdata",l 
".ifftdata",l 

Entry execution point. 

Reserve memory for arguments. 



Application-Oriented Operations 

Initialize C Function. 

.sect ".iffttext" 

-ifft_rl: PUSH FP Preserve C environment. 
LOI SP,FP 
PUSH R4 
PUSH RS 
PUSH R6 
PUSHF R6 
PUSH R7 
PUSHF R7 
PUSH AR4 
PUSH ARS 
PUSH AR6 
PUSH AR7 
PUSH OP 

LOP FFT_SIZE Initialize OP pointer. 

LOI *-FP(2) ,RO Move arguments from stack. 
STI RO,@FFT_SIZE 
LOI *-FP( 3) ,RO 
STI RO, @LOG_SIZE 
LOI *-FP(4) ,RO 
STI RO,@SOURCE_ADOR 
LOI *-FP(S) ,RO 
STI RO,@OEST_ADOR 
LOI *-FP(6) ,RO 
STI RO,@SINE_TABLE 
LOI *-FP(7) ,RO 
STI RO,@BIT_REVERSE 

Software Applications 11-111 



Application-Oriented Operations 

LOOP: 

11-112 

Perform last FFT loops first (loop 2 onwards). 

LOOP 
1st 2nd 

+ + 
X' (Il) 0 0 .. X' (Il)+ X'(I3) 

AR1+ X(Il) (1st) 1 1 .. X(Il) + [X(I2) 
X(Il) (2nd) 2 2 
X(Il) (3rd) 3 3 . ... 

A 
16 .. X'(12)* 2 

B 

13 29 
14 30 

AR2+ 15 31 .. X[I4] [X(I3) 
16 32 .. X' (Il)- X' (I3) 

AR3+ 17 33 .. [X(I1)-X(I2)]*COS-[X(I3)+X(I4)]*SIN 
18 34 
19 35 

+~24 
+~ 

C 
48 .. -X' (I4)*2 

D 

~r . 
X(I4) 
X(I4) 

AR4+ X(I4) 

AR1+ 

I 
I • 

LDI 
LDI 
LDI 
LSH 
SUB I 
LDI 
LSH 
LDI 
LDI 

LSH 
LDI 
ADDI 

~ 

(3rd) 
(2nd) 

29 61 
30 62 

(1st) 31 63 .. [X(I2 )-X(I2) ]*SIN+[X(I3)+X(I4) ]*COS 
32 64 
33 65 

1,IRO 
4,R5 
@FFT_SIZE,R7 
-2,R7 
1,R7 
@FFT_SIZE,R6 

Step between two consecutive sines 
Stage number from 4 to M. 

R7 is FFT_SIZE/4-1 (ie 15 for 64 pts) 
and will be used to point at A & D. 
R6 will be used to point at D. 

1,R6 
@SOURCE_ADDR,AR5 
@SOURCE_ADDR,AR1 

-1,R6 
AR1,AR4 
R7,AR1 

R6 is FFT_SIZE at the 1st loop. 

AR1 points at A. 



1NLOP: 

Application-Oriented Operations 

LOI 
ADOI 
ADOI 
SUBI 
L01 
SUBI 

ARI,AR2 
2,AR2 
R6,AR4 
R7,AR4 
AR4,AR3 
2,AR3 

LOI R7,1RI 
LOI R7,RC 

ADOF3 

SUBF3 
LOF 

AR2 points at B. 

AR4 points at o. 

AR3 points at C. 

RO - X' (11) + X' (13) -
RI X'(Il)-X'(I3)-

II STF 

*--ARI ( IRI ) , * 
--AR3 (IRI) , RO 
*AR3,*ARI,RI 
*--AR4,R2 
RO,*ARI++ 
-2.0,R2 
*--AR2,R3 
RI,*AR3++ 
2.0,R3 
R3,*AR2++(IRI) 
R2,*AR4++(1RI) 

X I (11) ~"------t--' 
R2 = -2*X'(14)----MPYF 

LOF 
II STF X' (I3) ~"-----t--' 

R3 = 2*X ' (12) ~ MPYF 
STF X' (12) III --

II STF X' (14) 

II 

II 

II 

II 

LOI @FFT_SIZE,1RI IRI=separation between SIN/ 
cos tbls 

LOI @SINE_TABLE,ARO~ ARO points at SIN/COS table. 
LSH -2,1RI 
SUB1 3,RC 

SUBF3 
AOOF3 
MPYF3 
LOF 
MPYF3 
SUBF3 
ADOF3 
STF 
MPYF3 
STF 
ADOF3 
MPYF3 
STF 
SUBF3 

*AR2,*ARI,R3 ; R3 = X(II)-X(I2) 
*ARI,*AR2,R2 ; R2 = X(1I)+X(I2) ---­
R3,*++ARO(IRO),RI; RI = R3*SIN 
*AR4,R4 ~ R4 = X(I4) 
R3,*++ARO(IRI),RO; RO = R3*COS 
*AR3, R4, R3 R3 = X (14 I-X (13) ---+---, 
R4,*AR3,R2 ; R2 = X(I3)+X(I4) 
R2,*ARI++ ; X(II) 
R2,*ARO--(IR1),R4; R4 - R2*COS 
R3,*AR2-- X(I2) 
R4,RI,R3 R3 = R3*SIN + R2*COS ~ 
R2,*ARO,Rl Rl = R2*SIN I 
R3,*AR4-- X(I4) ~111------------------' 
Rl,RO,R4 R4 = R3*COS - R2*SIN 

Software Applications 11-113 



Application-Oriented Operations 

11-114 

SUBF3 
ADDF3 
MPYF3 

II STF 
LDF 
MPYF3 

II SUBF3 
ADDF3 

II STF 
MPYF3 

II STF 
ADDF3 
MPYF3 

II STF 
SUBF3 

SUBF3 
ADDF3 
MPYF3 

II STF 
LDF 
MPYF3 

II SUBF3 
ADDF3 

II STF 
MPYF3 

II STF 
LDI 
ADDF3 
MPYF3 

II STF 
SUBF3 
NEGF 

II STF 

SUBI3 
CMPI 
BLTD 
NOP 
LDI 
LDI 

ADDI 
CMPI 
BLED 
LDI 
LSH 
LSH 

*AR2,*ARl,R3 1 R3 .. X(Il)-X(I2) 
*ARl,*AR2,R2 1 R2 .. X(Il)+X(I2)-----, 
R3,*++ARO(IRO),Rl, Rl - R3*SIN 
R4,*AR3++ 1 X(I3) 
*AR4,R4 1 R4 = X(I4) 
R3,*++ARO(IRl),RO; RO - R3*COS 
*AR3,R4,R3 R3 = X(I4)-X(I3)------+--, 
R4,*AR3,R2 ; R2 - X(I3)+X(I4) 
R2,*ARl++ ; X(Il) 
R2,*ARO--(IRl),R4; R4 - R2*COS 
R3,*AR2-- X(I2) 
R4,Rl,R3 R3 - R3*SIN + R2*COS~ 
R2,*ARO,Rl Rl - R2*SIN ~ 
R3, *AR4-- X (I4 ) 44--------------~ 

Rl,RO,R4 R4 = R3*COS - R2*SIN 

*AR2,*ARl,R3 R3 X(Il)-X(I2) 
*ARl,*AR2,R2 R2 .. X(Il)+X(I2)----, 
R3,*++ARO(IRO),Rl; Rl = R3*SIN 
R4,*AR3++ 1 X(I3) 
*AR4,R4 ; R4 = X(I4) 
R3,*++ARO(IRl),RO; RO - R3*COS 
*AR3,R4,R3 R3 .. X(I4)-X(I3) 
R4,*AR3,R2 1 R2 - X(I3)+X(I4) 
R2,*ARl 1 X(Il) 
R2,*ARO--(IRl),R4, R4 = R2*COS 
R3,*AR2 X(I2) 
R6,IRl Get prepared for the next 
R4,Rl,R3 R3 .. R3*SIN + R2*COS-----, 
R2,*ARO,Rl Rl - R2*SIN 
R3,*AR4++(IRl) X(I4) .... 4f-----------' 
Rl,RO,R4 R4 - R3*COS - R2*SIN 
*ARl++(IRl),R2 Dummy 
R4,*AR3++(IRl) X(I3) 

ARS,ARl,RO 
@FFT_SIZE,RO 
INLOP 
*AR2++(IRl) 
R7,IRl 
R7,RC 

l,RS 
@LOG_SIZE,RS 
LOOP 
@SOURCE_ADDR,ARl 
l,IRO 
-l,R7 

Loop back to the inner loop 
Dummy 

Next stage if any left 

Double step in sinus table 



Perform third FFT loop. 

~Part A: 
ARl +1 
AR2 +1 
AR3 +1 
AR3 +1 
ARl +1 

II 

II 

LOOP3_A: 
II 

II 

I2 

I3 

I4 

I ... 

LOI 
LOI 
LOI 
LOI 
ADOI 
ADOI 
ADOI 
LOI 
LOI 
LSB 
SUB I 
LOI 

RPTB 
LOF 
ADOF3 
SUBF3 
LOF 
STF 
MPYF 
LOF 
STF 
MPYF 
STF 
STF 

0 • X 

2 .. 2 

4 .. X 

6 .. -2 

8 

@SOURCE_ADOR,ARl 
ARl,AR2 
ARl,AR3 
ARl,AR4 
2,AR2 
4,AR3 
6,AR4 
8,IRO 
@FFT_SIZE,RC 
-3,RC 
l,RC 
@SINE_TABLE,ARO 

LOOP3_A 
*AR3,R3 
R3,*ARl,RO 
R3,*ARl,Rl 
*AR4,R2 
RO,*AR1++(IRO) 
-2.0,R2 
*AR2,R3 
Rl,*AR3++(IRO) 
2.0,R3 
R3,*AR2++(IRO) 
R2,*AR4++(IRO) 

Application-Oriented Operations 

(II ) + X(I3) 

1 

* X (I2) 

3 

(II) - X(I3) 

5 

* X(I4) 

7 

9 

ARO points at SIN/COS table. 

RO - X' (II) + X' (I3)-
Rl .. X' (II) - X' (I3)-

X'(Il) 
R2 = -2*X' (I4) 

X' (I3),. 
R3 • 2*X' (I2) 
X' (I2)4 
X' (I4)_ 

Software Applications 11-115 



Application-Oriented Operations 

Part B: 

0 
ARl + Il 1 .. X(Il) + X(I2) 

2 
AR2 + 12 3 .. X(Il) - X(I3) 

4 
AR3 + 13 S .. [X(Il)- X(I2)]*COS- [X(I3)+ X(I4)]*SIN 

6 
AR4 + 14 7 .. [X(Il)- X(I2)]*SIN+ [X(I3)+ X(I4)]*COS] 

8 
ARl + 9 NOTE: COS(2*pi/8) ~ SIN(2*pi/8) 

I 

I 

'" 
LOI @SOURCE_AOOR,ARl 
LOI ARl,AR2 
LOI ARl,AR3 
LOI ARl,AR4 
ADOI 1,ARl 
ADOI 3,AR2 
ADOI S,AR3 
ADOI 7,AR4 
LOI @SINE_TABLE,AR7 AR7 points at SIN/COS table. 
LOI @FFT_SIZE,RC 
LSH -3,RC 
LOI RC,IRl 
SUBI 2,RC 

11-116 



LOOP3 B: 

II 

II 

II 

II 

II 

II 

II 

II 

II 

LDF 
LDF 
ADDF3 
SUBF3 
SUBF3 
ADDF3 
SUBF3 
STF 
ADDF3 
STF 
MPYF3 
SUBF3 
MPYF3 
STF 

*AR2,R6 
*AR3,RO 
R6,*AR1,R5 
R6,*AR1,R4 
RO,R4,R3 
RO,R4,R2 
RO,*AR4,Rl 
R5,*AR1++(IRO) 
R2,*AR4,R5 
Rl,*AR2++(IRO) 
R5,*++AR7(IR1),Rl 
*AR4,R3,R2 
R2,*AR7,RO 
Rl,*AR4++(IRO) 

RPTB LOOP3 B 

LDF 
STF 
ADDF3 
LDF 
SUBF3 
SUBF3 
ADDF3 
SUBF3 
STF 
ADDF3 
STF 
MPYF3 
SUBF3 
MPYF3 
STF 

STF 

*AR2,R6 
RO,*AR3++(IRO) 
R6,*AR1,R5 
*AR3,RO 
R6,*AR1,R4 
RO,R4,R3 
RO,R4,R2 
RO,*AR4,Rl 
R5,*AR1++(IRO) 
R2,*AR4,R5 
Rl,*AR2++(IRO) 
R5,*AR7,Rl 
*AR4,R3,R2 
R2,*AR7,RO 
Rl,*AR4++(IRO) 

RO,*AR3 

Application-Oriented Operations 

R6 X(I2) 
RO X(I3) 
R5 X(Il)+X(I2) 
R4 X(Il)-X(I2) 
R3 X(Il)-X(I2)-X(I3) 
R2 X(Il)-X(I2)+X(I3) 
Rl X(I4)-X(I3) ----+--.. 
X(Il) 
R5 = X(Il)-X(I2)+X(I3)+X(I4) 
X(I2) 
Rl R5*SIN 
R2 = X(Il)-X(I2)-X(I3)-X(I4) 
RO = R2*SIN 
X(I4) 

R6 = X(I2) 
X (I3) .-"'-_____ ---l 
R5 X(Il)+X(I2) -----, 
RO X(I3) 
R4 X(Il)-X(I2) 
R3 X(Il)-X(I2)-X(I3) 
R2 X(Il)-X(I2)+X(I3) 
Rl X (I4 )-X (I3) ------11-----, 
X(Il) 
R5 = X(Il)-X(I2)+X(I3)+X(I4) 
X(I2) 
Rl = R5*SIN4--------------.. 
R2 = X(Il)-X(I2)-X(I3)-X(I4) 
RO = R2*SIN 
X(I4) 

X(I3) 

Software Applications 11-117 



Application-Oriented Operations 

Perform first and second FFT loops. 

11-118 

[ :! : 
AR3 .. 
AR4 .. 
ARl .. 

Il 
12 
13 
14 

I 

I .,. 

LOI 
LOI 
LOI 
LOI 
ADOI 
ADOI 
ADOI 
LOI 
LOI 
LSH 
SUBI 

o + X(Il) + X(I3) + 
1 + X(Il) + X(I3)-
2 + X(Il) - X(I3)-
3 + X(Il) - X(I3) + 
4 

@SOURCE_ADOR,ARl 
ARl,AR2 
ARl,AR3 
ARl,AR4 
1,AR2 
2,AR3 
3,AR4 
4,IRO 
@FFT_SIZE,RC 
-2,RC 
2,RC 

2*X(I2) 
2*X(I2) 
2*X(I4 ) 
2*X( I4) 



II 

II 

II 

II 

II 

II 

II 

II 

II 

LDF 
LDF 
LDF 
MPYF 
MPYF 
SUBF3 
SUBF3 
SUBF3 
STF 
ADDF3 
ADDF3 
STF 
SUBF3 
ADDF3 
STF 
ADDF3 

RPTB 
LDF 
STF 
MPYF 
LDF 
LDF 
MPYF 
SUBF3 
SUBF3 
SUBF3 
STF 
ADDF3 
ADDF3 
STF 
SUBF3 
ADDF3 
STF 
ADDF3 

STF 

*AR4,R6 
*AR2,R7 
*AR1,Rl 
2.0,R6 
2.0,R7 
R6,*AR3,R5 
R5,Rl,R4 
R7,*AR3,R5 
R4,*AR4++(IRO) 
R5,Rl,R3 
R6,*AR3,R4 
R3,*AR2++(IRO) 
R4,Rl,R4 
R7,*AR3,RO 
R4,*AR3++(IRO) 
RO,Rl,RO 

LOOP1_2 
*AR4,R6 
RO, *AR1++ (IRO ) 
2.0,R6 
*AR2,R7 
*AR1,Rl 
2.0,R7 
R6,*AR3,R5 
R5,Rl,R4 
R7,*AR3,R5 
R4,*AR4++(IRO) 
R5,Rl,R3 
R6,*AR3,R4 
R3,*AR2++(IRO) 
R4 ,Rl ,R4 
R7,*AR3,RO 
R4,*AR3++(IRO) 
RO,Rl,RO 

RO,*ARl 

Application-Oriented Operations 

R6 .. X(14) 
R7 .. X(I2) 
Rl = X(Il) 
R6 - 2 * X(I4) 
R7 .. 2 * X(I2) 
R5 = X(I3) - 2*X(I4) 
R4 .. X(Il)-X(I3)+2X(I4)~ 
R5 - X(I3) - 2*X(I2) ~ 
X (I4) ..... I---------.....J 
R3 .. X(Il)+X(I3)-2X(I2)~ 
R4 = X(I3) + 2*X(I4) ~ 
X(I2) ..... ----------------~ 
R4 .. X(Il)-X(I3)-2X(I4)~ 
RO .. X(I3) + 2*X(I2) ~ 
x (I3) ...... --------------~ 
RO .. X(Il)+X(I3)+2X(I2)] 

R6 = X(14) 
X (Il ) ..... ______________ --l 

R6 .. 2 * X(14) 
R7 .. X(I2) 
Rl = X(Il) 
R7 .. 2 * X(I2) 
R5 .. X(I3) - 2*X(I4) 
R4 - X(Il)-X(I3)+2X(I4)~ 
R5 - X(I3) - 2*X(I2) ~ x (14 ) ...... ______________ ........1 

R3 .. X(Il)+X(I3)-2X(I2)~ 
R4 .. X(I3) + 2*X(I4) ~ 
X(I2) ..... --------.....J 
R4 = X(Il)-X(I3)-2X(I4)~ 
RO .. X(I3) + 2*X(I2) ~ 
X (I3 ) ...... -----------------1 
RO = X(Il)+X(I3)+2X(I2)~ 

LAST x (Il) ...... ----------1 

Software Applications 11-119 



Application-Oriented Operations 

11-120 

Check bit reversing mode (on or off). 

BIT_REVERSING - 0, then OFF (no bit reversing). 
BIT_REVERSING <> 0, then ON. 

LDI @BIT_REVERSE,RO 
CMPI O,RO 
BZ MOVE_DATA 

Check bit reversing type. 

If SourceAddr - DestAddr, then in place bit reversing. 
If SourceAddr <> DestAddr, then standard bit reversing. 

LDI @SOURCE_ADDR,RO 
CMPI @DEST_ADDR,RO 
BEQ IN_PLACE 

Bit reversing type 1 (from source to destination). 

NOTE: abs(SOURCE_ADDR - DEST_ADDR) must be > FFT_SIZE, this is not checked. 

LDI @FFT_SIZE,RO 
SUBI 2,RO 
LDI @FFT_SIZE,IRO 
LSB -l,IRO IRO ~ half FFT size. 
LDI @SOURCE_ADDR,ARO 
LDI @DEST_ADDR,ARl 

LDF *ARO++,Rl 

RPTS RO 
LDF *ARO++,Rl 

II STF Rl,*AR1++(IRO)B 

STF Rl, *AR1++ (IRO) B 

BR DIVISION 



IN_PLACE: 

II 

II 

BITRV1: 

LDI 
LSH 
LDI 

LDI 
LSH 
SUBI 
LDI 
LDI 
LDI 

NOP 
NOP 
LDF 
LDF 

@FFT_SIZE,IRO 
-2,IRO 
2,IR1 

@FFT_SIZE,RC 
-2,RC 
3,RC 
@DEST_ADDR,ARO 
ARO,AR1 
ARO,AR2 

*AR1++ (IRO) B 
*AR2++(IRO)B 
*++ARO ( IR1 ) , RO 
*AR1,R1 

Application-Oriented Operations 

In-place bit reversing. 

Bit reversing on even locations, 1st half 
only. 

IRO - quarter FFT size. 

CMPI AR1,ARO xchange locations only if ARO<AR1. 
LDFGT 
LDFGT 

RPTB 
LDF 
STF 
LDF 
STF 
CMPI 
LDFGT 
LDFGT 

STF 
STF 

RO,R1 
*AR1++( IRO )B,R1 

BITRV1 
*++ARO(IR1),RO 
RO,*ARO 
*AR1,R1 
R1,*AR2++(IRO)B 
AR1,ARO 
RO,R1 

*AR1++(IRO)B,RO 

RO,*ARO 
R1, *AR2 

LDI @FFT_SIZE,RC 
LSH -l,RC 
LDI @DEST_ADDR,ARO 
ADDI RC,ARO 
ADDI 1,ARO 
LDI ARO,AR1 
LDI ARO,AR2 
LSH -l,RC 
SUB I 3,RC 

NOP *AR1++(IRO)B 
NOP *AR2++(IRO)B 
LDF *++ARO(IR1),RO 

Perform bit reversing on odd locations, 
2nd half only. 

Software Applications 11-121 



Application-Oriented Operations 

LDF *ARl,Rl 
CMPI ARl,ARO 
LDFGT RO,Rl 
LDFGT *AR1++(IRO)B,Rl 

RPTB BITRV2 
LDF *++ARO(IRl),RO 

II STF RO,*ARO 
LDF *ARl,Rl 

II STF Rl,*AR2++(IRO)B 
CMPI ARl,ARO 
LDFGT RO,Rl 

BITRV2: LDFGT *AR1++(IRO)B,RO 

STF RO,*ARO 
STF Rl,*AR2 

LDI @FFT_SIZE,RC 
LSH -l,RC 
LDI RC,IRO 
LDI @DEST_ADDR,ARO 
LDI ARO,ARl 
ADDI l,ARO 
ADDI IRO,ARl 
LSH -l,RC 
LDI RC,IRO 
SUBI 2,RC 

LDF *ARO,RO 
LDF *ARl,Rl 

RPTB BITRV3 
LDF *++ARO ( IRl ) , RO 

II STF RO, *AR1++ (IRO ) B 
BITRV3: LDF *ARl,Rl 
II STF Rl,*-ARO(IRl) 

STF RO,*ARl 
STF Rl,*ARO 

BR DIVISION 

11-122 

Xchange locations only if ARO<ARl. 

Perform bit reversing on odd 
locations, 1st half only. 



Application-Oriented Operations 

Check data source locations. 

If SourceAddr '" 
DestAddr, then do nothing. 

If SourceAddr <> 
DestAddr, then move data. 

MOVE_DATA: LDI @SOURCE_ADDR,RO 
CMPI @DEST_ADDR,RO 
BEQ DIVISION 

LDI @FFT_SIZE,RO 
SUBI 2,RO 
LDI @SOURCE_ADDR,ARO 
LDI @DEST_ADDR,ARl 

LDF *ARO++,Rl 

RPTS RO 
LDF *ARO++,Rl 

II STF Rl,*AR1++ 

STF Rl,*ARl 

DIVISION: LDI 2,IRO 
LDI @FFT_SIZE,RO 
FLOAT RO exp - LOG_SIZE 
PUSHF RO 32 MSB' S saved 
POP RO 
NEGI RO Neg exponent 
PUSH RO 
POPF RO RO = l/FFT_SIZE 
LDI @DEST_ADDR,ARl 
LDI @DEST_ADDR,AR2 
NOP *AR2++ 
LDI @FFT_SIZE,RC 
LSH -l,RC 
SUBI 2,RC 
MPYF3 RO,*AR1,Rl 1st location 
RPTB LAST_LOOP 
MPYF3 RO,*AR2,R2 2nd,4th,6th, ••• location 

II STF Rl,*AR1++(IRO) 
LAST_LOOP: MPYF3 RO,*AR1,Rl 3rd,5th,7th, ••• location 

II STF R2,*AR2++(IRO) 

MPYF3 RO,*AR2,R2 Last location 

II STF Rl,*ARl 
STF R2,*AR2 

Software Applications 11-123 



Application-Oriented Operations 

Return to C environment. 

POP DP Restore C environment variables. 
POP AR7 
POP AR6 
POP ARS 
POP AR4 
POPF R7 
POP R7 
POPF R6 
POP R6 
POP RS 
POP R4 
POP FP 
RETS 

.end 

* 
* No more. 
* 
***************************************************************************** 
* 

11-124 

The TMS320C3x quickly executes FFT lengths up to 1024 points (complex) 
or 2048 (real), covering most applications, because it can do so almost entirely 
in on-chip memory. Table 11-1 and Table 11-2 summarize the number of CPU 
clock cycles and the execution time required for FFT lengths between 64 and 
1024 points for the four algorithms. 



Application-Oriented Operations 

Table 11-1. TMS320C3x FFT Timing Benchmarks (Cycles) 

FFT Timing In Cycles 

Number of RADIX-2 RADIX-4 RADIX-2 RADIX-2 
Points (Complex) (Complex) (Real) (Real Inverse} 

64 2770 2050 810 1070 

128 6170 1760 2370 

256 13600 10400 3940 5290 

512 29740 8860 11740 

1024 64570 50670 19820 25900 

1024t 39500 

t This benchmark is based on the Meyer and Schwarz program found in Digital Signal ProceSSing Applications With the TMS320 
Family, Volume 3. 

Table 11-2. TMS320C3x FFT Timing Benchmarks (Milliseconds) 

FFT Timing In Milliseconds 

Number of RADIX-2 RADIX-4 RADIX-2 RADIX-2 
Points (Complex) (Complex) (Real) (Real Inverse} 

64 0.139 0.103 0.041 0.054 

128 0.309 0.088 0.119 

256 0.680 0.520 0.197 0.265 

512 1.487 0.443 0.587 

1024 3.229 2.534 0.991 1.295 

1024t 1.975 

t This benchmark is based on the Meyer and Schwarz program found in Digital Signal Processing Applications With the TMS320 
Family, Volume 3. 

11.4.5 lattice Filters 

The lattice form is an alternative way of implementing digital filters; it has found 
applications in speech processing, spectral estimation, and other areas. In this 
discussion, the notation and terminology from speech processing applications 
are used. 

If H (z) is the transfer function of a digital filter that has only poles, A(z) = 1/H (z) 
will be a filter having only Os, and it will be called the inverse filter. The inverse 
lattice filter is shown in Figure 11-5. These equations describe the filter in 
mathematical terms: 

Software Applications 11-125 



Application-Oriented Operations 

f (i,n) = f (i - 1,n) + k (i) b (i - 1 ,n -1) 
b (i,n) = b (i - 1 ,n - 1) + k (i) f (i - 1,n) 

Initial conditions: 

f (O,n) = b (O,n) = x (n) 

Final conditions: 

y (n) = f ( p,n) 

In the above equation, f (i,n) is the forward error, b (i,n) is the backward error, 
k (i) is the i-th reflection coefficient, x (n) is the input, and y (n) is the output 
signal. The order of the filter (that is, the number of stages) is p. In the linear 
predictive coding (LPC) method of speech processing, the inverse lattice filter 
is used during analysis, and the (forward) lattice filter during speech synthesis. 

Figure 11-5. Structure of the Inverse Lattice Filter 

x(n) 1(0, n) 

Figure 11-6 shows the data memory organization of the inverse lattice-filter 
on the TMS320C3x. 

Figure 11-6. Data Memory Organization for Lattice Filters 

Reflection Backward 
Coefficients Propagation Terms 

Add~~~ I-I--..!-.:...---I k(1) 

I I 
b(O, n-1) 

k(2) b~1,n-1l 

• • 
• • 
• • 

k(p) High I 
Address ...... ---~-.... 

b(p-1, n-1) 

Example 11-40 shows the implementation of an inverse lattice filter. 

11-126 



Application-Oriented Operations 

Example 11-40. Inverse Lattice Filter 

* TITLE INVERSE LATTICE FILTER 

* 
* 
* SUBROUTINE LATINV 

* 
* LATINV -- LATTICE FILTER (LPC INVERSE FILTER - ANALYSIS) 

* 
* 
* TYPICAL CALLING SEQUENCE: 

* 

* load R2 
* load ARO 
* load ARI 
* load RC 
* CALL LATINV 
* 
* 

* ARGUMENT ASSIGNMENTS: 

* ARGUMENT FUNCTION 
* 
* R2 f(O,n) = x(n) 
* ARO ADDRESS OF FILTER COEFFICIENTS 
* ARI ADDRESS OF BACKWARD PROPAGATION 
* VALUES (b(O,n-l» 
* RC RC = P - 2 
* 

* REGISTERS USED AS INPUT: R2, ARO, ARl, RC 

(k(I» 

* REGISTERS MODIFIED: RO, Rl, R2, R3, RS, RE, RC, ARO, ARI 
* REGISTER CONTAINING RESULT: R2 (f(p,n» 

* 
* 
* PROGRAM SIZE: 10 WORDS 

* 
* EXECUTION CYCLES: 13 + 3 * (p-l) 

* 
* 

.global LATINV 

* 
* i = 1 

* 
LATINV MPYF3 *ARO, *AR1, RO 

Software Applications 11-127 



Application-Oriented Operations 

* 
* 

* 
* 

LDF R2,R3 
MPYF3 *ARO++(1),R2,Rl 

* 2 <- i <- p 

* 

II 
* 
* 
* 
* 

II 
* 

RPTB LOOP 
MPYF3 *ARO, *++ARl (1) ,RO 
ADDF3 R2 ,RO ,R2 

1'.DDF3 *-l'.Rl (1), Rl, R3 

STF R3 , *-ARl ( 1 ) 

LOOP MPYF3 *ARO++(l) ,R2,Rl 

k(l) * b(O,n-l) -> RO 
Assume f(O,n) -> R2. 
Put b(O,n) z f(O,n) -> R3. 

k(l) * f(O,n) -> Rl 

k(i) * b(i-l,n-l) -> RO 
f(i-l-l,n)+k(i-l) 
*b(i-l-l,n-l) 
.. f(i-l,n) -> R2 

b(i-l-l,b-l)+k(i-l)*f(i-l-l,n) 
= b(i-l,n) -> R3 
b(i-l~l,n) -> b(i-l-l,n-l) 

* k(i) * f(i-l,n) -> Rl 

* 
* I - P+l (CLEANUP) 

* 
* 
* 

II 
* 

ADDF3 R2, RO, R2 

ADDF3 *AR1, Rl, R3 
STF R3, *ARl 

* RETURN SEQUENCE 

* 
RETS 

* * end 
* .end 

f(p-l,n)+k(p)*b(p-l,n-l) 
.. f(p,n) -> R2 

b(p-l,n-l)+k(p)*f(p-l,n) 
- b(p,n) -> R3 
b(p-l,n) -> b(p-l,n-l) 

RETURN 

The forward lattice filter is similar in structure to the inverse filter, as shown in 
Figure 11-7. 

Figure 11-7. Structure of the (Forward) Lattice Filter 
x(n) f(p-1. n) f(2. n) f(1. n) y(n) 

8' z-1 III 
b(p-1. n) 

11-128 



Application-Oriented Operations 

These corresponding equations describe the lattice filter: 

f (i -1 ,n) = f (i,n) - k (i) b (i - 1 ,n -1) 
b (i,n) = b (i -1 ,n -1) + k (i) f (i -1 ,n) 

Initial conditions: 

f (p,n) = x (n), b (i,n -1) = 0 for i = 1, ... ,p 

Final conditions: 

y (n) = f (O,n) 

The data memory organization is identical to that of the inverse filter, as shown 
in Figure 11-6 on page 11-126. Example 11-41 shows the implementation of 
the lattice filter on the TMS320C3x. 

Example 11-41. Lattice Filter 

* TITLE LATTICE FILTER 

* 
* 
* SUBROUTINE LATICE 
* 

* LOAD ARO 
* LOAD AR1 
* LOAD RC 
* CALL LATICE 
* 
* 
* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 

* + 
I F(P,N) = E(N) - EXCITATION 
I ADDRESS OF FILTER COEFFICIENTS (K(P» 

* R2 
* ARO 
* AR1 

IRO 
I ADDRESS OF BACKWARD PROPAGATION VALUES (B(P-1,N-1» 
I 3 

* RC I RC-P-3 
* 
* 
* 
* 
* 

REGISTERS USED AS INPUT: R2, ARO, AR1, RC 
REGISTERS MODIFIED: RO, R1, R2, R3, RS, RE, RC, ARO, AR1 
REGISTER CONTAINING RESULT: R2 (f(O,n» 

* STACK USAGE: NONE 

* * PROGRAM SIZE: 12 WORDS 

* 
* EXECUTION CYCLES: 15 + 3 * (P-2) 

* 

Software Applications 11-129 



Application-Oriented Operations 

11-130 

• global LATICE 

* 
* 
LATICE MPYF3 *ARO,*ARl,RO 
* K(P) * B(P-l,N-l) -> RO 

SUBF3 RO, R2, R2 
Assume F(P,N) -> R2 
F(P,N)-K(P)*B(P-l,N-l) 

.. F(P-l,N) -> R2 
I I MPYF3 *--ARO(l),*--ARl(l),RO 

K(P-l) * B(P-2,N-l) -> RO 
SUBF3 RO,R2,R2 F(P-l,N)-K(P-l)*B(P-2,N-l) 

.. F(P-2,N) -> R2 
I I MPYF3 *--ARO(l),*--ARl(l),RO 

* 

II 

II 
LOOP 

K(P-2) * B(P-3,N-l) -> RO 
MPYF3 R2,*+ARO(1),Rl F(P-2,N) * K(P-l) -> Rl 
ADDF3 Rl,*+AR1(1),R3 F(P-2,N) * K(P-l) + B(P-2,N-l) 

RPTB LOOP 
SUBF3 RO, R2, R2 

= B(P-l iN) -> R3 

1 <= I <= P-2 

F(I,N) - K(I) * B(I-l,N-l) 
= F(I-l,N) -> R2 

MPYF3 *--ARO(l),*--ARl(l),RO 

STF R3, *+ARl (IRO ) 
MPYF3 R2, *+ARO (1) , Rl 
ADDF3 Rl, *+ARl (1) , R3 

STF R3,*+ARl(2) 
STF R2,*+ARl(l) 

K(I-l) * B(I-2,N-l) -> RO 
B(I+l,N) -> B(I+l,N-l) 
F(I-l,N) * K(I) -> Rl 
F(I-l,N) * K(I) + B(I-l,N-l) 

= B(I,N) -> R3 
B(l,N) -> B(l,N-l) 
F(O,N) -> B(O,N-l) 

* 
* 

RETURN SEQUENCE 

* 
* END 

* 

RETS 

.end 



Programming Tips 

11.5 Programming Tips 

Programming style reflects personal preference. The purpose of this section 
is not to impose any particular style; rather, it is to highlight features of the 
TMS320C3x that can help to produce faster and/or shorter programs. The tips 
cover the C compiler, assembly language programming, and low-power-mode 
wakeup. 

11.5.1 C-Callable Routines 

The TMS320C3x was designed with a large register file, software stack, and 
large memory space to implement a high-level language (HLL) compiler easi­
ly. The first such implementation supplied is a C compiler. Use ofthe C compil­
er increases the transportability of applications that have been tested on large, 
general-purpose computers, and it decreases their porting time. 

For best use of the compiler, complete the following steps: 

1) Write the application in the high-level language. 

2) Debug the program. 

3) Determine whether it runs in real-time. 

4) If it doesn't, identify the places where most of the execution time is spent. 

5) Optimize these areas by writing assembly language routines that implement 
the functions. 

6) Call the routines from the C program as C functions. 

When writing a C program, you can increase the execution speed by maximiz­
ing the use of register variables. For more information, refer to the 
TMS320C3x C Compiler Reference Guide. 

You must observe certain conventions when writing a C-callable routine. 
These conventions are outlined in the Runtime Environment chapter of the 
TMS320C3x C Compiler Reference Guide. Certain registers are saved by the 
calling function, and others need to be saved by the called function. The C 
compiler manual helps achieve a clean interface. The end result is the read­
ability and natural flow of a high-level language combined with the efficiency 
and special-feature use of assembly language. 

11.5.2 Hints for Assembly Coding 

Each program has particular requirements. Not all possible optimizations will 
make sense in every case. You can use the suggestions presented in this sec­
tion as a checklist of available software tools. 

Software Applications 11-131 



Programming Tips 

11·132 

o Use delayed branches. Delayed branches execute in a single cycle; reg­
ular branches execute in four cycles. The following three instructions are 
also executed whether the branch is taken or not. If fewer than three in­
structions can be used, use the delayed branch and append Naps. Ma­
chine cycles (time) are still being saved. 

o Apply the repeat single/block construct. In this way, loops are achieved 
with no overhead. Nesting such constructs will not normally increase effi­
ciency, so try to use the feature on the most often performed loop. Note 
that RPTS is not interruptible, and the executed instruction is not refetched 
for execution. This frees the buses for operands. 

o Use parallel instructions. It is possible to have a multiply in parallel with 
an add (or subtract) and to have stores in parallel with any multiply or ALU 
operation. This increases the number of operations executed in a single 
cycle, For maximum efficiency, observe the addressing modes used in 
parallel instructions and arrange the data appropriately. 

o Maximize the use of registers. The registers are an efficient way to ac­
cess scratch-pad memory. Extensive use of the register file facilitates the 
use of parallel instructions and helps avoid pipeline conflicts when you use 
the registers in addressing modes. 

o Use the cache. This is especially important in conjunction with external 
slow memory. The cache is transparent to the user, so make sure that it 
is enabled. 

o Use internal memory instead of external memory. The internal 
memory (2K x 32 bits RAM and 4K x 32 bits ROM) is considerably faster 
to access. In a single cycle, two operands can be brought from internal 
memory. You can maximize performance if you use the DMA in parallel 
with the CPU to transfer data to internal memory before you operate on it. 

o Avoid pipeline conflicts. If there is no problem with program speed, 
ignore this suggestion. For time-critical operations, make sure you do not 
miss any cycles because of conflicts. To identify conflicts, run the trace 
function on the development tools (simulator, emulators) with the program 
tracing option enabled. The tracing immediately identifies the pipeline 
conflicts. Consult the appropriate section of this user's guide for an expla­
nation of the reason for the conflict. You can then take steps to correct the 
problem. 

The above checklist is not exhaustive, and it does not address the more de­
tailed features outlined in other sections of this manual. To learn how to exploit 
the full power of the TMS320C3x, study the architecture, hardware configura­
tion, and instruction set of the device. These subjects are described in earlier 
chapters. 



Programming Tips 

11.5.3 Low-Power-Mode Wakeup Example 

There are two instructions by which the TMS320C31 is placed in the low power 
consumption mode: 

o IDLE2 
o LOPOWER 

The LOPOWER instruction will slow down the H1/H3 clock by a factor of 16 
during the read phase ofthe instruction. The MAXSPEED instruction will wake 
the device from the low-power mode and return it to full frequency during 
MAXSPEED's read cycle. However, the H1/H3 clock may resume with the 
phase opposite from before the clocks were shut down. 

The IDLE2 instruction has the same functions that the IDLE instruction has, 
except that the clock is stopped during the execute phase of the I DLE2 instruc­
tion. The clock pin will stop with H1 high and H3 low. The status of a" of the 
signals will remain the same as in the execute phase of the IDLE2 instruction. 
In emulation mode, however, the clocks will continue to run, and I DLE2 will op­
erate identically to IDLE. The external interrupts INT(0-3) are the only signals 

\ that start the processor up from the mode the device was in. Therefore, you 
, must enable the external interrupt before going to IDLE2 power-down mode. 

(See Example 11-42.) If the proper external interrupt is not set up before 
executing I DLE2 to power down, the only way to wake up the processor is with 
a device RESET. 

Example 11-42. Setup of IDLE2 Power-Dawn-Mode Wakeup 

* * TITLE IDLE2 POWER-DOWN MODE WAKEUP ROUTINE SETUP 
* 
* THIS EXAMPLE SETS UP THE EXTERNAL INTERRUPT 0, INTO, BEFORE 
* EXECUTING THE IDLE2 INSTRUCTION. WHEN THE INTO SIGNAL IS RECEIVED 
* LATER, THE PROCESSOR WILL RESUME FROM ITS PREVIOUS 
* STATE. NOTE: THE uINTRPT" SECTION IS MAPPED FROM THE 
* ADDRESS 0 FROM THE RESET AND INTERRUPT VECTORS. 

* 

sect uINTRPT" 
RESET .word START Reset vector 
INTO • word INTO_ISR INTO interrupt vector 
INTl • word INTl_ISR INTl interrupt vector 
INT2 .word INT2_ISR INT2 interrupt vector 
INT3 • word INT3_ISR INT3 interrupt vector 

• text 

Software Applications 11-133 



Programming Tips 

11-134 

I : 

LDP @SP_ADR 
LDI @SP_ADR,SP 
OR Olh, IE 
IDLE2 

Set up stack pointer 
Enable INTO 
Set GIE - 1 and stop clock 

Return to instruction after IDLE2 

There will be one cycle of delay while waking up the processor from the IDLE2 
power-down mode before the clocks start up. This adds one extra cycle from 
the time the interrupt pad goes low until the interrupt is taken. The interrupt pad 
needs to be low for at least two cycles. The clocks may start up In the phase 
opposite from before the clocks were stopped. 



Chapter 12 

Hardware Applications 

The TMS320C3x's advanced interface design can implement many system 
configurations. Its two external buses and DMA capability provide a parallel 
32-bit interface to external devices, while the interrupt interface, dual serial 
ports, and general-purpose digital I/O provide communication with many 
peripherals. 

This chapter describes how to use the TMS320C3x's interfaces to connect to 
various external devices. Specific discussions include implementation of par­
allel interface to devices with and without wait states, use of general-purpose 
I/O, and system control functions. All interfaces shown in this chapter have 
been built and tested to verify proper operation and apply to the TMS320C30. 
Comparable designs for the other TMS320C3x devices can be implemented 
with appropriate logic. 

Major topics discussed in this chapter are as follows: 

Topic Page 

12-1 



System Configuration Options Overview 

12.1 System Configuration Options Overview 

The various TMS320C3x interfaces connect to many different device types. 
Each of these interfaces is tailored to a particular family of devices. 

12.1.1 Categories of Interfaces on the TMS320C3x 

The TMS320C3x interface types fall into several categories, depending on the 
devices to which they are intended to be connected. Each interface comprises 
one or more signal lines that transfer information and control its operation. 
Figure 12-1 shows the signal line groupings for each of these various inter­
faces. 

Figure 12-1. External Interfaces on the TMS320C3x 

primary{ 
Bus 

Data 
Address 

Control { 

System 
Control 

System Reset 

Master Clock { 

Clock Outputs { 

ROM Enable 
(TMS320C30 only) 

Boot Load Enable 
(TMS320C31 only) 

... ..... ... ..... 

..... 

..... 

... ..... 

... 
..... 

32 .. D31-DO 24 r 

A23-AO 

R/W 
STRB 
RDY 

RESET 

X1 .. X2/CLKIN r 

H1 

H3 
.. MC/MP r 

.. MCBLlMP .. 

HOLD 
HOLDr 

INT3-0 
lACK 

XF1-O 

TCLKO 
TCLK1 

CLKXO 
DXO 

FSXO 
CLKRO 

DRO 
FSRO 

CLKX1 
DX1 

... ..... 

..... 

..... 

... 

..... ... ..... ... 

... 
.... ..... 
.... 

~} External DMA Interface 

4 } External Interrupt Interface 

External Flags 

~} Timer Interface 

.. 
r .. 
r 

_ .. 
r .. Serial Port 0 

.. 

.. 

.. 
r .. 
r 

Expansion BUS{ 
(TMS320C30 only) 

Data 
Address 

~-{ 

... 

... 

... 

... 

32 
13 

.. 

XD31-XDO 
XA12-XAO 
XR/W 
XRDY 
IOSTRB 
MSTRB 

FSX1 
CLKR1 

DR1 
FSR1 

.. 
r .. 
r .. 

..... r .. 
r 

Serial Port 1 
(TMS320C30 only) 

12-2 

TMS320C3x 

All of the interfaces are independent of one another, and you can perform dif­
ferent operations simultaneously on each interface. 

The primary and expansion buses implement the memory-mapped interface 
to the device. The external direct memory access (OMA) interface allows ex­
ternal devices to cause the processor to relinquish the primary bus and allow 
direct memory access. 



System Configuration Options Overview 

12.1.2 Typical System Block Diagram 

The devices that can be interfaced to the TMS320C3x include memory, DMA 
devices, and numerous parallel and serial peripherals and I/O devices. 
Figure 12-2 illustrates a typical configuration of a TMS320C3x system with 
different types of external devices and the interfaces to which they are con­
nected. 

Figure 12-2. Possible System Configurations 

Memory ....... I-*---t~ OMA Devices Memory 

TMS320C3x 
Peripherals External OMA Interface Peripherals 

Primary Bus Expansion Bus 

Peripherals 
Interrupt 

Timer Interface I/O Devices Interface 

External Flags 

System 
Control 

Bit I/O TCM29C13 
COOEC 

Clock and TLC3204x Reset AIC Generators, Analog I/O etc. 

This block diagram constitutes eS$entially a fully expanded system. In an actual 
deSign, you can use any subset of the illustrated configuration as appropriate. 

Hardware Applications 12-3 



Primary Bus Interface 

12.2 Primary Bus Interface 

The TMS320C3x uses the primary bus to access the majority of its 
memory-mapped locations. Therefore, typically, when a large amount of exter­
nal memory is required in a system, it i$ interfaced to the primary bus. The ex­
pansion bus (discussed in Section 12.3 on page 12-19) actually comprises two 
mutually exclusive interfaces, controlled by the MSTRB and IOSTRB signals, 
respectively. Cycles on the expansion bus controlled by the MSTRB signal are 
essentially equivalent to cycles on the primary bus, except that bank switching 
is not implemented on the expansion bus. Accordingly, the discussion of pri­
mary bus cycles in this section applies equally to MSTRB cycles on the expan­
sion bus. 

Although you can use both the primary bus and the expansion bus to interface 
to a wide variety of devices, the devices most commonly interfaced to these 
buses are memories. Therefore, this section presents detailed examples of 
memory interface. 

12.2.1 Zero-Wait-State Interface to Static RAMs 

12-4 

Zero-wait-state read access time for the TMS320C3x is determined by the dif­
ference between the cycle time (specification 10 in Table 13-12 on page 
13-31) and the sum of the times for H 1 low to address valid (specification 14.1 
in Table 13-13 on page 13-34) and data setup before next H 1 low (specifica­
tion 15.1 in table 13-13 on page 13-34): 

tC(H) - [td(H1L-A) + tSU(D)R] 

For example, for full-speed, zero-wait-state interface to any device, the 60-ns 
TMS320C3x requires a read access time of 30 ns from address stable to data 
valid. Because for most memories access time from chip select is the same 
as access time from address, it is theoretically possible to use 30-ns memories 
at full speed with the TMS320C3x-33. This requires that there be no delays 
between the processor and the memories. However, because of 
interconnection delays and because some gating is normally required for chip­
select generation, this is usually not the case. Therefore, slightly faster memo­
ries are required in most systems. 

Among currently available RAMs, there are two distinct categories of devices 
with different interface characteristics: 

o RAMs without output enable control lines (OE), which include the one-bit­
wide organized RAMs and most of the four-bit wide RAMs 

o RAMs with OE controls, which include the byte-wide RAMs and a few of 
the four-bit wide RAMs 



-------------------------

Primary Bus Interface 

Many of the fastest RAMs do not provide OE control; they use chip-select (CS) 
controlled write cycles to ensure that data outputs do not turn on for write oper­
ations. In CS-controlled write cycles, the write control line (WE) goes low be­
fore CS goes low, and internal logic holds the outputs disabled until the cycle 
is completed. Using CS-controlled Write cycles is an efficient way to interface 
fast RAMs without OE controls to the TMS320C30 at full speed. 

In the case of RAMs with OE controls, using this signal can add flexibility to 
many systems. Additionally, many (>1 these devices can be interfaced by using 
CS-controlled write cycles with OE tied low in the same manner as with RAMs 
without OE controls. There are, however, two requirements for interfacing to 
OE RAMs in this manner. First, the RAM's OE input must be gated with chip 
select and WE internally so that the device's outputs do not turn on unless a 
read is being performed. Second, the RAM must allow its address inputs to 
change while WE is low; some RAMs specifically prohibit this. 

Figure 12-3 shows the TMS320C3x interfaced to Cypress Semiconductor's 
CY7C186 25-ns 8K x 8-bit CMOS statio RAM with the OE control input tied low 
and using a CS-controlled write cycle. 

Hardware Applications 12-5 



Primary Bus Interface 

Figure 12-3. TMS320C3x Interface to Cypress Semiconductor CY7C186 CMOS SRAM 

12-6 

4 x CY7C186-25 

Primary 
Address 

Bus 

A23-AO 

A12 1/07 031 
A12 030 

A11 A11 
1/06 

029 
A10 A10 

1/05 
028 

A9 A9 1/04 
027 

AS 
AS 

1/03 
026 

A7 A7 
1/02 

025 
A6 A6 

1/01 
024 

AS AS 1/00 

A4 A4 
A3 A3 
A2 

~ 
A1 

A1 
A23 AO 

AO I/O 
8 023-D16 

(7-O) 

STRB CS1 8 015-08 
1/0 

CS2 (7-0) 

RNI WE 
74AS04 OE I/O 

8 07-00 

Primary Oata Bus 031-00 V (7-O) 

In this circuit, the two chip selects on the RAM are driven by STRB and A23, 
which are ANOed together internally. A23 locates the RAM at addresses 
OOOOOh through 03FFFh in external memory, and STRB establishes the CS­
controlled write cycle. The WE control input Is then driven by the TMS320C3x 
R/W signal, and the OE input is not used and is therefore connected to ground. 

The timing of read operations, shown in Figure 12-4, is very straightforward 
because the two chip-select inputs are driven directly. The read access time 
of the circuit is therefore the inverter propagation delay added to the RAM's 
chip-select access time, or t1 + t2 = 5 + 25 = 30 ns. This access time therefore 
meets the TMS320C3x-33's specified 30-ns read access time requirement. 



Primary Bus Interface 

Figure 12-4. Read Operations Timing 

H1 , ______ 1 
\._----

A2.3-A0 ______ ~~~------__ --Vi-~-id-------------')(~----
~ / 

CS1=STRB ________ ~ .. ------__ ----------------~~------

CS2 I X- \"---__ 
----..;I-..J I -

I I ~ >--I' Valid . 
~t1~_ .~------------~ 
~ t2--t1 

031-00 

During write operations, as shown in Figure 12-5, the RAM's outputs do not 
turn on at all, because of the use of the chip-select controlled write cycles. The 
chip-select controlled write cycles are generated because RIW goes active 
(low) before the STRB term of the chip-select input. Because the RAM's output 
drivers are disabled whenever the WE input is low (regardless of the state of 
the OE input), bus conflicts with the TMS320C3x are automatically avoided 
with this interface. The circuit's data setup and hold times (t1 and t2 in the timing 
diagram) of approximately 50 and 20 ns, respectively, also easily meet the 
RAM's timing requirements of 10 and 0 ns. 

Hardware Applications 12-7 



Primary Bus Interface 

Figure 12-5. Write Operations Timing 

12-8 

H1 ~ ___ I ' ___ I ' ___ I '---
~~AO ____ JX~ ___________________________ X~ ____ __ 

CS1 = STRB __ J1 ,'-__ ___',1 
I 

,-------------~I--_I I 

031-00 -------~~t~:-:-=t1:-:-:-=-..:;=~f~-----
-..I t2 j.-

If you require more complex chip-select decode than can be accomplished in 
time to meet zero-wait-state timing, you should use wait states (see subsec­
tion 12.2.2) or bank-switching techniques (see subsection 12.2.3). 

Note that the CY7C186's OE control is gated internally with CS; therefore, the 
RAM's outputs are not enabled unless the device is selected. This is critical 
if there are any other devices connected to the same bus; if there are no other 
devices connected to the bus, OE need not be gated internally with chip select. 

You can easily interface RAMs without OE controls to the TMS320C3x by us­
ing an approach similar to that used with RAMs with OE controls. If only one 
bank of memory is implemented and no other devices are present on the bus, 
the memories' CS input can usually be connected to STRB directly. If several 
devices must be selected, however, a gate is generally required to AND the 
device select and STRB to drive the CS input to generate the chip-select con­
trolled write cycles. In either case, the WE input is driven by the TMS320C3x 
R/W signal. Provided sufficiently fast gating is used, 25-ns RAMs can still be 
used. 

As with the case of RAMs with OE control lines, this approach works well if only 
a few banks of memory are implemented where the chip-select decode can 
be accomplished with only one level of gating. If many banks are required to 
implement very large memory spaces, bank switching can be used to provide 
for multiple bank select generation while still maintaining full-speed accesses 
within each bank. Bank switching is discussed in detail in subsection 12.2.3. 



Primary Bus Interface 

12.2.2 Ready Generation 

The use of wait states can greatly Increase system flexibility and reduce hard­
ware requirements over systems without wait-state capability. The 
TMS320C3x has the capability of generating wait states on either the primary 
bus or the expansion bus; both buses have independent sets of ready control 
10gic.This subsection discusses ready generation from the perspective of the 
primary bus interface; however, wait-state operation on the expansion bus is 
similar to that on the primary bus. Therefore, these discussions also pertain 
to expansion bus operation. Accordingly, ready generation is not included in 
the specific discussions of the expansion bus interface. 

Wait states are generated on the basis of: 

o the internal wait-state generator, 
o the external ready input (ROY), or 
o the logical AND or OR of the two. 

When enabled, internally generated wait states affect all external cycles, re­
gardless of the address accessed. If different numbers of wait states are re­
quired for various external devices, the external ROY input may be used to tai­
lor wait-state generation to specific system requirements. 

If the logical AND (electrical OR) of the wait count and external ready signals 
is selected, the later ofthe two signals will control the internal ready signal, and 
both signals must occur. Accordingly, external ready control must be imple­
mented for each wait-state deviee, and the wait count ready signal must be en­
abled. 

If the logical OR (or electrical AND, since the signals are low true) of the exter­
nal and internal wait-count ready signals is selected, the earlier of the two sig­
nals will generate a ready condition and allow the cycle to be completed. Both 
signals need not be present. 

DRing of the Ready Signals 

The OR of the two ready signals can implement wait states for devices that 
require a greater number of wait states than are implemented with external 
logic (up to seven). This feature is useful, for example, if a system contains 
some fast and some slow devices. In this case, fast devices can generate a 
ready Signal externally with a mhiimum of logic, and slow devices can use the 
internal wait counter for larger numbers of wait states. Thus, when fast devices 
are accessed, the external hardware responds promptly with a ready signal 
that terminates the cycle. When slow devices are accessed, the external hard­
ware does not respond, and the cycle is appropriately terminated after the in­
ternal wait count. 

Hardware Applications 12-9 



Primary Bus Interface 

You can use the OR of the two ready signals if conditions occur that require 
termination of bus cycles prior to the number of wait states implemented with 
external logic. In this case, a shorter wait count Is specified internally than the 
number of wait states implemented with the external ready logic, and the bus 
cycle is terminated after the wait count. This feature can also be a safeguard 
against inadvertent accesses to nonexistent memory that would never re­
spond with ready and would therefore lock up the TMS32OC3x. 

If the OR of the two ready signals is used, however, and the internal wait-state 
count is less than the number of wait states implemented externally, the exter­
nal ready generation logic must have the ability to reset its sequencing to allow 
a new cycle to begin immediately following the end of the internal wait count. 
ThiS requires that, under these conditions, consecutive cycles be from inde­
pendently decoded areas of memory and that the external ready generation 
logic be capable of restarting its sequence as soon as a new cycle begins. 
Otherwise, the external ready generation logic might iose synchronization with 
bus cycles and therefore generate improperly timed wait states. 

ANDing of the Ready Signals 

The AND of the two ready signals can be used to implement wait states for de­
vices that are equipped to provide a ready signal but cannot respond quickly 
enough to meet the TMS320C3x's timing requirements. In particular, if these 
devices normally indicate a ready condition and, when accessed, respond with 
a wait until they become ready, the logical AND of the two ready Signals can 
be used to save hardware in the system. In this case, the internal wait counter 
can provide wait states initially and become ready after the external device has 
had time to send a not ready indication. The internal wait counter then remains 
ready until the external device also becomes ready, which terminates the 
cycle. 

Additionally, the AND of the two ready signals can extend the number of wait 
states for devices that already have external ready logic implemented but re­
quire additional wait states under certain unique circumstances. 

External Ready Generation 

12·10 

In the implementation of external ready generation hardware, the particular 
technique employed depends heavily on the specific characteristics of the sys­
tem. The optimum approach to ready generation varies, depending on the rel­
ative number of wait-state and non-wait-state devices in the system and on the 
maximum number of wait states required for anyone device. The approaches 
discussed here are intended to be general enough for most applications and 
are easily modifiable to comprehend many different system configurations. 



Primary Bus Interface 

In general, ready generation involves the following three functions: 

o Segmentating the address space in some fashion to distinguish fast and 
slow devices 

o Generating properly timed ready indications 

o Logically ORing all of the separate ready timing signals together to con-
nect to the physical ready input 

Segmentation of the address space is required to obtain a unique indication 
of each particular area within the address space that requires wait states. This 
segmentation is commonly implemented in a system in the form of chip-select 
generation. In many cases, you can use Chip-select signals to initiate wait 
states; however chip-select decoding considerations might occasionally pro­
vide signals that will not allow ready input timing requirements to be met. In this 
case, you could make coarse address space segmentation on the basis of a 
small number of address lines, where simpler gating allows signals to be gen­
erated more quickly. In either case, the signal indicating that a particular area 
of memory is being addressed is normally used to initiate a ready or wait-state 
indication. 

Once the region of address space being accessed has been established, a 
timing circuit of some sort is normally used to provide a ready indication to the 
processor at the appropriate point in the cycle to satisfy each device's unique 
requirements. 

Finally, since indications of ready status from multiple devices are typically 
present, the signals are logically ORed by using a single gate to drive the RDY 
input. 

Ready Control Logic 

You can take one of two basic approaches in the implementation of ready con­
trollogic, depending on the state of the ready input between accesses. If RDY 
is low between accesses, the processor is always ready unless a wait state is 
required; if RDY is high between accesses, the processor will always enter a 
wait state unless a ready indication is generated. 

If ROY is low between accesses, control of full-speed devices is straightfor­
ward; no action is necessary because ready is always active unless otherwise 
required. Devices requiring wait states, however, must drive ready high fast 
enough to meet the input timing requirements. Then, after an appropriate 
delay, a ready indication must be generated. This can be quite difficult in many 
circumstances because wait-state devices are Inherently slow and often re­
quire complex select decoding. 

Hardware Applications 12-11 



Primary Bus Interface 

If RDY is high between accesses, zero-wait-state devices, which tend to be 
inherently fast, can usually respond immediately with a ready indication. Wait­
state devices might delay their select signals appropriately to generate a 
ready. Typically, this approach results in the most efficient implementation of 
ready control logic. Figure 12-6 shows a circuit of this type, which can be used 
to generate zero, one, or two wait states for multiple devices in a system. 

Figure 12~. Circuit for Generation of Zero, One, or Two Wait States for Multiple Devices 

Other 2-
Wait-State 

Devices 

TMS320C30 { 
Address 

Bus 

STRB 

>---IJ PRE 
Q 

74ACT112 

K CCR 

74ALS138 

A YO 

B Y1 

C Y2 
G2A Y3 

G1 Y4 
Y5 

G2B VB 

V L.i!P- J 
Other 1-

Wait-State 
Devices 

A .------J 

Device 
Selects 

74AS32 

+5V 

H1 --------~~--------~----------------------------~a> 

12-12 

Other 0-
Wait-State 

Devices 
A 



Example Circuit 

Primary Bus Interface 

In this circuit, full-speed devices drive ready directly through the '74AS21 , and 
the two flip-flops delay wait-state devices' select signals one or two H1 cycles 
to provide one or two wait states. 

Considering the TMS320C3x-33's ready delay time of eight ns following ad­
dress, zero-wait-state devices must use ungated address lines directly to drive 
the input of the '74AS21, since this gate contributes a maximum propagation 
delay of six ns to the ROY signal. Thus, zero-wait-state devices should be 
grouped together within a coarse segmentation of address space if other de­
vices in the system require wait states. 

With this circuit, devices requiring wait states might take up to 36 ns from a val­
id address on the TMS320C3x to provide inputs to the '74AS20's inputs. This 
usually allows sufficient time for any decoding required in generating select 
signals for slower devices in the system. For example, the 74ALS138, driven 
by address and STRB, can generate select decodes in 22 nSf which easily 
meets the TMS320C3x-33's timing requirements. 

With this circuit, unused inputs to either the 74AS20s or the 74AS21 should 
be tied to a logiC high level to prevent noise from generating spurious wait 
states. 

If more than two wait states are required by devices within a system, other ap­
proaches can be employed for ready generation. If between three and seven 
wait states are required, additional flip-flops can be included in the same man­
ner shown in Figure 12-6, or internally generated wait states can be used in 
conjunction with external hardware. If more than seven wait states are re­
quired, an external circuit using a counter may be used to supplement the ca­
pabilities of the internal wait-state generators. 

12.2.3 Bank Switching Techniques 

The TMS320C3x's programmable bank switching feature can greatly ease 
system deSign when large amounts of memory are required. Because, in gen­
eral, devices take longer to release the bus than they take to drive the bus, 
bank switching is used to provide a period of time for disabling all device se­
lects that would not be present otherwise (refer to Section 7.4 on page 7-30 
for further information regarding bank switching). During this interval, slow de­
vices are allowed time to turn off before other devices have the opportunity to 
drive the data bus, thus avoiding bus contention. 

Hardware Applications 12-13 



Primary Bus Interface 

12-14 

When bank switching is enabled, any time a portion of the high order address 
lines changes, as defined by the contents of the BNKCMPR register, STRB 
goes high for one full H1 cycle. Provided STRB is Included in chip-select de­
codes, this causes all devices to be disabled during this period. The next bank 
of devices is not enabled until STRB goes low again. 

In general, bank switching is not required during writes, because these cycles 
always exhibit an inherent one-half H1 cycle setup of address information be­
fore STRB goes low. Thus, when you use bank switching for read/write de­
vices, a minimum of half of one H1 cycle of address setup is provided for all 
accesses. Therefore, large amounts of memory can be implemented without 
wait states or extra hardware required for isolation between banks. Also, note 
that access time for cycles during bank switching is the same as that for cycles 
without bank switching, and, accordingly, full-speed accesses can still be ac­
complished within each bank. 

When you use bank switching to implement large multiple-bank memory sys­
tems, an important consideration is address line fanout. Besides parametric 
specifications for which account must be made, AC characteristics are also 
crucial in memory system design. With large memory arrays, which commonly 
require large numbers of address line inputs to be driven in parallel, capacitive 
loading of address outputs is often quite large. Because all TMS320C3x timing 
specifications are guaranteed up to a capacitive load of 80 pF, driving greater 
loads will invalidate guaranteed AC characteristics. Therefore, it is often nec­
essary to provide buffering for address lines when driving large memory ar­
rays. AC timings for buffer performance can then be derated according to man­
ufacturer specifications to accommodate a wide variety of memory array sizes. 

The circuit shown in Figure 12-7 illustrates the use of bank switching with Cy­
press Semiconductor's CY7C185 25-ns 8K x 8 CMOS static RAM. This circuit 
implements 32K 32-bit words of memory with one-wait-state accesses within 
each bank. 

A wait state is required with this implementation of bank memory because of 
the added propagation delay presented by the address bus buffers used in the 
circuit. The wait state is not a function of the memory organization of multiple 
banks or the use of bank switching. When bank switching is used, memory ac­
cess speeds are the same as without bank switching, once bank boundaries 
are crossed. Therefore, no speed penalty is paid when bank switching is used, 
except for the occasional extra cycle Inserted when bank boundaries are 
crossed. Note, however, that if the extra cycle inserted when bank boundaries 
are crossed does impact software performance significantly, you can often re­
structure code to minimize bank boundary crossings, thereby reducing the ef­
fect of these boundary crossings on software performance. 



Primary Bus Interface 

The wait state for this bank memory is generated by using the wait-state gener­
ator circuit presented in the previous section. Because A23 is the signal that 
enables the entire bank memory system, the inverted version of this signal is 
ANDed with STRB to derive a one-wait-state device select. This signal is then 
connected in the circuit along with the other one-wait-state device selects. 
Thus, any time a bank memory access is made, one wait state is generated. 

Each of the four banks in this circuit is selected by using a decode of A 15-A 13 
generated by the 74AS138 (see Figure 12-8). With the BNKCMPR register 
set to OBh, the banks will be selected on even 8K-word boundaries starting at 
location 080AOOOh in external memory space. 

Figure 12-7. Bank Switching for Cypress Semiconductor's CY7C185 

BANKSELO 

BSTRB 

BRiN 

BANKSEL1 

BANKSEL2 

BANKSEL3 

031-00 

~------------------~-----------------~ +yv +yv +yv +yv 
BA12 

A12VCC 
BA12 

A12VCC 
BA12 

A12VCC 
BA12 

A12VCC 
BAll BAH BAll BAH 
BA10 

All 
BA10 

A11 
BA10 

A11 
BA10 

A11 

BA9 
A10 

BA9 
Al0 

BA9 
A10 ----- BA9 

Al0 
DO 

AS 
DO r---- AS 

DO ~ 
AS 

DO 
AS -BAS 

AS 01 r---- BAS 
AS 01 ~ BAS 

AS 
01 ---. BAa 

AS 
01 -

BA7 
A7 

02 f---, BA7 
A7 

02 ~ BA7 
A7 

02 I------ BA7 
A7 

D2 -
BAS 

AS 
D3 f---, BA6 

AS 
D3 ~ BAS 

AS 
D3 I------ BA6 

AS 
D3 -

BAS 
AS 

04 ~ BA5 
AS 04 ~ BAS 

AS 
D4 I------ BA5 

AS 
04 -

BA4 
M 

05 f---, BA4 
M 

05 ~ BM 
M 

os I------ BA4 
M 

05 -
BA3 

A3 
os f---, BA3 

A3 
os ~ BA3 

A3 
os --. BA3 

A3 
os -

BA2 
A2 

07 f---, BA2 
A2 

07 ~ BA2 
A2 

07 --. BA2 
A2 

07 -
BAl SAl BA1 BA1 
BAO 

A1 
BAO 

Al 
BAO 

A1 
BAO 

Al 
AO a AD 8 AD 8 AD 8 

BANKSEL 
CS1 

SANKSEL 
CS1 

BANKSEL 
CS1 

BANKsEI: 
CS1 

B~ CS2 B~ CS2 B~ CS2 B~ CS2 

- WE - WE .--- WE - WE 

r OE GNO .- OE GNO .- OE GNO r OE GNO 

+ + + + 

1.. ________ BankO ---------j --------_. -----~----
32 

Bank 1 ~ 
Data Bus D31-DO 

32 
Bank2 ~ 

32 
Bank3 ~ 

Hardware Applications 12-15 



Primary Bus Interface 

Figure 12-8. Bank Memory Control Logic 

74ALS254i 

AO Ai Vi BAO 
A1 A2 V2 BA1 
A2 A3 V3 BA2 
A3 A4 V4 BA3 
A4 A5 V5 BA4 
A5 A6 V6 BA5 
A6 A7 V7 BA6 
A7 AB VB BA7 

Gi G2 

74ALS254i 

A8 Ai Vi BA8 
A9 A2 V2 BA9 

A10 A3 V3 BA10 
A11 A4 V4 BA11 
A12 A5 V5 BA12 
R/W A6 V6 BR/W 

A7 V7 
AB VB 
Gi G2 

74ASi3B 

A15 C V1 
A14 B V2 
A13 A V3 74AS04 

V4 STRB -(>0---- BSTRB 
V5 
V6 

A23 G1 V7 
G2A VB 
G2B 

12-16 



Primary Bus Interface 

The 74ALS2541 buffers used on the address lines are necessary in this design 
because the total capacitive load presented to each address line is a maximum 
of 16 x 10 pF or 160 pF (bank memory plus zero-wait-state static RAM), which 
exceeds the TMS320C3x rated capacitive loading of 80 pF. Using the 
manufacturer's derating curves for these devices at a load of 80 pF (the load 
presented by the bank memory) predicts propagation delays at the output of 
the buffers of a maximum of 16 ns. The access time of a read cycle within a 
bank of the memory is therefore the sum of the memory access time and the 
maximum buffer propagation delay, or 25 + 16 = 41 ns, which, since it falls be­
tween 30 and 90 ns, requires one wait state on the TMS320C3x-33. 

The 74ALS2541 buffers offer one additional system-performance enhance­
ment in that they include 25-ohm resistors in series with each individual buffer 
output. These resistors greatly improve the transient response characteristics 
of the buffers, especially when driving CMOS loads such as the memories 
used here. The effect of these resistors is to reduce overshoot and ringing, 
which is common when driving predominantly capacitive loads such as 
CMOS. The result is reduced noise and increased immunity to latch-up in the 
circuit, which in turn results in a more reliable memory system. Having these 
resistors included in the buffers eliminates the need to put discrete resistors 
in the system, which is often required in high-speed memory systems. 

This circuit cannot be implemented without bank switching because data out­
put's turn-on and turn-off delays cause bus conflicts. Here, the propagation 
delay of the 74AS 138 is involved only during bank switches, when there is suf­
ficient time between cycles to allow new chip selects to be decoded. 

The timing of this circuit for read operations using bank switching is shown in 
Figure 12-9. With the BNKCMPR register set to OBh, when a bank switch oc­
curs, the bank address on address lines A23-A 13 is updated during the extra 
H 1 cycle while STRB is high. Then, after chip-select decodes have stabilized 
and the previously selected bank has disabled its outputs, STRB goes low for 
the next read cycle. Further accesses occur at normal bus timings with one 
wait state, as long as another bank switch is not necessary. Write cycles do 
not require bank switching due to the inherent address setup provided in their 
timings. 

Hardware Applications 12·17 



Primary Bus Interface 

Figure 12-9. Timing for Read Operations Using Bank Switching 

I4---tI- t1 ~t4 

H1 ~ I I ~ I I I I 
I 

: A2.3-A13 X Valid 

I 

\ r 

valid; A12-AO X 
I 
~ ________ ~ ___________ x ___ __ 

I 
STRB Ii 't ,-t2 

I 
BANKSELO ~t5 I 

I I 
BANKSEL1 I 

) t-'6 
~t3 

Bank 0 on Bus ) 031-00 { 

This timing is summarized in Table 12-1. 

Table 12-1. Bank Switching Interface Timing 

Timer Interval Event 

t1 H1 falling to address valid/STRB rising 

t2 Address valid to select delay 

t3 Memory disable from STRB 

t4 H1 falling to STRB 

t5 STRB to select delay 

t6 Memory output enable delay 

t Timing for the TMS320C3x-33 

12-18 

Bank 1 on Bus 

Time Period 

14 ns 

10 ns 

10 ns 

10 ns 

4.5 ns 

3ns 



Expansion Bus Interface 

12.3 Expansion Bus Interface 

The TMS320C30's expansion bus interface provides a second complete par­
allel bus, which can be used to implement data transfers concurrently with (and 
independently of) operations on the primary bus. The expansion bus com­
prises two mutually exclusive interfaces controlled by the MSTRB and 
10STRB Signals, respectively. This subsection discusses interface to the ex­
pansion bus using 10STRB cycles; MSTRB cycles are essentially equivalent 
in timing to primary bus cycles and are discussed in Section 12.2, beginning 
on page 12-4. This section applies to TMS320C30 devices. 

Unlike the primary bus, both read and write cycles on the I/O portion of the ex­
pansion bus are two H1 cycles in duration and exhibit the same timing. The 
XR/W signal is high for reads and low for writes. Since I/O accesses take two 
cycles, many peripherals that require wait states if interfaced either to the pri­
mary bus or by using MSTRB can be used in a system without the need for wait 
states. Specifically, in cases where there is only one device on the expansion 
bus, devices with address access times greater than the 30 ns required by the 
primary bus, but less than 59 ns, can be interfaced to the I/O bus of the 
TMS320C30-33 without wait states. 

12.3.1 AID Converter Interface 

NO and D/A converters are commonly required in DSP systems and interface 
efficiently to the I/O expansion bus. These devices are available in many 
speed ranges and with a variety of features. While some might require one or 
more wait states on the I/O bus, others can be used at full speed. 

Figure 12-10 illustrates a TMS320C30 interface to an Analog Devices 
AD1678 analog-to-digital converter. The AD1678 is a 12-bit, 5-1AS converter 
that allows sample rates up to 200 kHz and has an input voltage range of 10 
volts, bipolar or unipolar. The converter is connected according to manufactur­
er's specifications to provide 0- to + 1 O-volt operation. This interface illustrates 
a common approach to connecting devices such as this to the TMS320C30. 
Note that the interface requires only a minimum amount of control logic. 

Hardware Applications 12-19 



Expansion Bus Interface 

Figure 12-10. Interface to AD 1678 ND Converter 

XA12- +12V +5V 

IOSTRB ]"J:>--.-- lOW 
XRNV ~ 

~ 74AS32 
74AS04 Y --ob-_T~I:;::O.:..!R_-+~ -OEVCC 

r-XA12 I sc 

IJ 74AS32 
~ ... 

74LS244 

XDO 18 1Y1 1A1 
XD1 16 
XD2 14 

XD3 12 
XD4 9 2Y1 
X05 7 
X06 5 
X07 3 

X08 18 1Y1 
X09 16 

X010 14 
X011 12 

2A1 

1G 

1 I 

74LS244 

1A1 

I 

- CS 

I'" 12/8 
ONE ~ SYNC r EOCEN 

2 00 
4 01 
6 D2 
8 03 
11 04 
13 05 
15 06 
17 07 

08 
09 

- 010 

- 011 

..1.... 

.-L-
6 PGNO 
8 

~ --1L ONE 

VOO 
REFOUT f--

t 50g 

REFIN f--

AIN ...... -----0 Analog 
r---<' Input 

+5V V 

~ 20Kg 

EOC 1-----41---- INTO 

VEE AGNO 

-1lv ~ 
XOBus 

12-20 

The AD1678 is a very flexible converter and is configurable in a number of dif­
ferent operating modes. These operating modes include byte or word data for­
mat, continuous or noncontinuous conversions, enabled or disabled chip-se­
lect function, and programmable end-of-conversion indication. This interface 
utilizes 12-bit word data format, rather than byte format, to be compatible with 
the TMS320C3x. Noncontinuous conversions are selected so that variable 
sample rates can be used; continuous conversions occur only at a rate of 200 
kHz. With noncontinuous conversions, the host processor determines the con­
version rate by initiating conversions through write operations to the converter. 



Expansion Bus Interface 

The chip-select function is enabled, so the chip-select input is required to be 
active when accessing the device. Enabling the chip select function is neces­
sary to allow a mechanism for the AD 1678 to be isolated from other peripheral 
devices connected to the expansion bus. To establish the desired operating 
modes, the SYNC and 12/8 inputs to the converter are pulled high and EOCEN 
is grounded, as specified in the AD1678 data sheet. 

In this application, the converter's chip select is driven by XA12, which maps 
this device at 804000h in I/O address space. Conversions are initiated by writ­
ing any data value to the device, and the conversion results are obtained by 
reading from the device after the conversion is completed. To generate the de­
vice's start conversion (SC) and output enable (OE) inputs, 10STRB is ANDed 
with XR/W. Therefore, the converter is selected whenever XA 12 is low; OE is 
driven when reads are performed, while SC is driven when writes are per­
formed. 

As with many AID converters, at the end of a read cycle the AD1678 data out­
put lines enter a high-impedance state. This occurs after the output enable 
(OE) or read control line goes inactive. Also common with these types of de­
vices is that the data output buffers often require a substantial amount of time 
to actually attain a full high-impedance state. When used with the 
TMS320C30-33, devices must have their outputs fully disabled no later than 
65 ns following the rising edge of 10STRB because the TMS320C30 will begin 
driving the data bus at this point if the next cycle is a write. If this timing is not 
met, bus conflicts between the TMS320C30 and the AD1678 might occur, po­
tentially causing degraded system performance and even failure due to dam­
aged data bus drivers. The actual disable time for the AD1678 can be as long 
as 80 ns; therefore, buffers are required to isolate the converter outputs from 
the TMS320C30. The buffers used here are 74LS244s that are enabled when 
the AD1678 is read and turned off 30.8 ns following 10STRB going high. 
Therefore, the TMS320C30-33 requirement of 65 ns is met. 

When data is read following a conversion, the AD1678 takes 100 ns after its 
OE control line is asserted to provide valid data at its outputs. Thus, including 
the propagation delay of the 74LS244 buffers, the total access time for reading 
the converter is 118 ns. This requires two wait states on the TMS320C30-33 
expansion I/O bus. 

The two wait states required in this case are implemented using software wait 
states; however, depending on the overall system configuration, it might be 
necessary to implement a separate wait-state generator for the expansion bus 
(refer to subsection 12.2.2 on page 12-9). This would be the case if multiple 
devices that required different numbers of wait states were connected to the 
expansion bus. 

Hardware Applications 12-21 



Expansion Bus Interface 

Figure 12-11 shows the timing for read operations between the 
TMS320C30-33 and the AD1678. At the beginning of the cycle, the address 
and xpjW lines become valid t1 = 10 ns following the falling edge of H1' Then, 
after t2 = 10 ns from the next rising edge of H1, IOSTRB goes low, beginning 
the active portion of the read cycle. After t3 :i: 5.8 ns (the control logic propaga­
tion delay), the lOR signal goes low, asserting the OE input to the AD1678. The 
'74LS244 buffers take 4 = 30 ns to enable their outputs, and then, following 
the converters access delay and the buffer propagation delay (ts = 100 + 18 
= 118 ns), data is provided to the TMS320C30. This provides approximately 
46 ns of data setup before the rising edge of 10STRB. Therefore, this design 
easily satisfies the TMS320C30-33's requirement of 15 ns of data setup time 
for reads. 

Figure 12-11. Read Operations Timing Between the TMS320C30 and AD1678 

H1 '" { 
\"" __ -J1 \"" __ -J1 

XA12-XAO ~-T: ___________________ ---' 
~t1 ,...,-- t2 

IOSTRB ~~ _______________ ----J 

~ts 
--~~ 

lOR T~------------------------J 
REt~~ -------tI1~~~~~~~~~~~ __ ------------J 

k-tI- 14 I 

12-22 

~ - ~ 

Unlike the primary bus, read and write cycles on the I/O expansion bus are 
timed the same with the exception that xpjW is high for reads and low for 
writes and that the data bus is driven by the TMS32OC30 during writes. When 
writing to the AD1678, the '74LS244 buffers do not turn on and no data is trans­
ferred. The purpose of writing to the converter is only to generate a pulse on 
the converter's 'SC input, which initiates a conversion cycle. When a conver­
sion cycle is completed, the AD1678's EOC output is used to generate an inter­
rupt on the TMS320C30 to indicate that the converted data can be read. 

It should be noted that for different applications, use of TLC1225 or TLC1550 
AID converters from Texas Instruments can be beneficial. The TLC1225 is a 
self-calibrating 12-bit-plus-sign bipolar or unipolar converter, which features 
10-~ conversion times. The TLC1550 is a 10-bit, 6-~ converter with a high­
speed DSP interface. Both converters are parallel-interface devices. 



Expansion Bus Interface 

12.3.2 D/A Converter Interface 

In many DSP systems, the requirement for generating an analog output signal 
is a natural consequence of sampling an analog waveform with an AID conver­
ter and then processing the signal digitally internally. Interfacing D/A conver­
ters to the TMS320C30 on the expansion I/O bus is also quite straightforward. 

As with AID converters, D/A converters are also available in a number of vari­
eties. One of the major distinctions between various types of D/A converters 
is whether or not the converter includes both latches to store the digital value 
to be converted to an analog quantity, and the interface to control those 
latches. With latches and control logic Included with the converter, interface 
design is often simplified; however, internal latches are often included only in 
slower D/A converters. 

Because slower converters limit signal bandwidths, the converter used in this 
design was selected to allow a reasonably wide range of signal frequencies 
to be processed, and to illustrate the technique of interfacing to a converter that 
uses external data latches. 

Figure 12-12 shows an interface to an Analog Devices AD565A digital-to­
analog converter. This device is a 12-bit, 250-ns current output DAC with an 
on-Chip 10-volt reference. Using an offchip current-to-voltage conversion cir­
cuit connected according to manufacturers specifications, the converter ex­
hibits output signal ranges of 0 to + 10 volts, which Is compatible with the con­
version range of the AID converter discussed in the previous section. 

Hardware Applications 12-23 



Expansion Bus Interface 

Figure 12-12. Interface Between the TMS320C30 and the AD565A 

+12V 

XDO 3 

XD1 4 

XD2 7 

XD3 8 

XD4 13 

XD5 14 

XD6 17 

XD7 18 

-

XD8 3 

XD9 4 

XD10 7 

XD11 8 

~ 

XD Bus lOW 

12-24 

I 
VCC 

REF. OUT 

50Q ~ VEE 
20VSPAN 

REF. IN 

~ 
REF. GND 

74LS377 10V 
AGND SPAN 

10 1Q 2 Bit 12 (LSB) 
5 11 
6 10 DACOUT 9 

U25 9 
12 8 
15 /1,D565A 

7 
16 6 
19 5 

CLK EN - 4 

- 3 

- 2 

74LS377 
r- Bit 1 (MSB) 

Power 
2 GND 
5 

U26 
6 

9 

CLK EN ~ 

~/ - XA12 

~ 

--12V 

* 
;;::k: 10 pF 

+12V 

~~ 
r~Jv 

2.4 K 

n 
AGND 

Analog 
Out 

Because this DAC essentially performs continuous conversions based on the 
digital value provided at its inputs, periodic sampling is maintained by periodi­
cally updating the value stored in the external latches. Therefore, between 
sample updates, the digital value is stored and maintained at the latch outputs 
that provide the input to the DAC. This results in the analog output remaining 
stable until the next sample update is performed. 



-----------------------

Expansion Bus Interface 

The external data latches used in this interface are '74LS377 devices that have 
both clock and enable inputs. These latches serve as a convenient interface 
with the TMS320C30; the enable inputs provide a device select function, and 
the clock inputs latch the data. Therefore, with the enable input driven by in­
verted XA 12 and the clock input by lOW, which is the AND of IOSTRB and 
XR/W, data will be stored in the latches when a write is performed to I/O ad­
dress 80S000h. Reading this address has no effect on the circuit. 

Figure 12-13 shows a timing diagram of a write operation to the DIA converter 
latches. 

Figure 12-13. Write Operation to the D/A Converter Timing Diagram 

Because the write is actually being performed to the latches, the key timings 
for this operation are the timing requirements for these devices. For proper op­
eration, these latches require simply a minimal setup and hold time of data and 
control signals with respect to the rising edge of the clock input. Specifically, 
the latches require a data setup time of 20 ns, enable setup of 25 ns, disable 
setup of 10 ns, and data and enable hold times of 5 ns. This design provides 
approximately 60 ns of enable setup, 30 ns of data setup, and 7.2 ns of data 
hold time. Therefore, the setup and hold times provided by this design are well 
in excess of those required by the latches. The key timing parameters for this 
interface are summarized in Table 12-2. 

Hardware Applications 12-25 



Expansion Bus Inter/ace 

Table 12-2. Key Timing Parameter for D/A Converter Write Operation 

nme nme 
Interval Event Perlodt 

t1 H 1 falling to address valid 10ns 

t2 XA12 to XA12 delay 5 ns 

t3 H1 rising to IOSTRB falling 10 ns 

t4 IOSTRB to lOW delay 5.8 ns 

t5 Data setup to lOW 30ns 

is Data hold from lOW 7.2 ns 

t Timing for the TMS320C30·33 

12·26 



System Control Functions 

12.4 System Control Functions 
Several aspects of TMS320C3x system hardware design are critical to overall 
system operation. These include such functions as clock and reset signal gen­
eration and interrupt control. 

12.4.1 Clock Oscillator Circuitry 
You can provide an input clock to the TMS320C3x either from an external clock 
input or by using the on board oscillator. Unless special clock requirements ex­
ist, the onboard oscillator is generally a convenient method for clock genera­
tion. This method requires few external components and can provide stable, 
reliable clock generation for the device. 
Figure 12-14 shows the external clock generator circuit designed to operate 
the TMS320C3x at 33.33 MHz. Since crystals with fundamental oscillation fre­
quencies of 30 MHz and above are not readily available, a parallel-resonant 
third-overtone crystal is used with crystal frequency of 13 MHz. 

Figure 12-14. Crystal Oscillator Circuit 

TMS320C3x 

X2/CLKIN X1 

13 MHz 

o 

10 IlH V 115PF T 15pF 

In a third-overtone oscillator, the crystal fundamental frequency must be 
attenuated so that oscillation is at the third harmonic. This is achieved with an 
LC circuit that filters out the fundamental, thus allowing oscillation at the third 
harmonic. The impedance of the LC circuit must be inductive at the crystal fun­
damental and capacitive at the third harmonic. The impedance ofthe LC circuit 
is represented by 

z(oo) = jooL + . 1C 
JOO 

Therefore, the LC circuit has a 0 at 

=_1_ 
./LC 

rop 

(3) 

(4) 

Hardware Applications 12-27 



System Control Functions 

At frequencies significantly lower than rop, the 1/{roC) term in (3) becomes the 
dominating term, while roL can be neglected. This is expressed as 

z{ro) = ~ 
JroC 

for ro < rop 
(3) 

In (5), the LC circuit appears conductive at frequencies lower than rop. On the 
other hand, at frequencies much higher than rop, the roL term is the dominant 
term in (3), and 1/{roC) can be neglected. This is expressed as 

z{ro) = jroL for ro < rop 
(3) 

The LC circuit in (6) appears increasingiy inductive as the frequency increases 
above ro p. This is shown in Figure 12-15. which is a plot of the magnitude of 
the impedance of the LC circuit of Figure 12-14 versus frequency. 

Figure 12-15. Magnitude of the Impedance of the Oscillator LC Network 

Iz (OJ) I 

OJp = _1_ 
M 

OJ 
(rad/s) 

12-28 



System Control Functions 

Based on the discussion above, the design of the LC circuit proceeds as fol­
lows: 

1) Choose the pole frequency rop slightly above the crystal fundamental. 
2) The circuit now appears inductive at the fundamental frequency and ca­

pacitive at the third harmonic. 

In the oscillator of Figure 12-14 on page 12-27, choose fp = 13 MHz, which 
is slightly above the fundamental frequency of the crystal. Choose C = 15 pF. 
Then, using equation (4), L = 10 J.tH. 

12.4.2 Reset Signal Generation 

The reset input controls initialization of internal TMS320C3x logic and also 
causes execution of the system initialization software. For proper system ini­
tialization, the reset signal must be applied for at least ten H1 cycles, i.e., 600 
ns for a TMS320C3x operating at 33.33 MHz. Upon power-up, however, it can 
take 20 ms or more before the system oscillator reaches a stable operating 
state. Therefore, the power-up reset circuit should generate a low pulse on the 
reset line for 100 to 200 ms. Once a proper reset pulse has been applied, the 
processor fetches the reset vector from location 0, which contains the address 
of the system initialization routine. Figure 12-16 shows a circuit that will gener­
ate an appropriate power-up reset circuit. 

Figure 12-16. Reset Circuit 

TMS320C3x 

+5V 

T 1~ 
DC3ND 

Hardware Applications 12-29 



System Control Functions 

The voltage on the reset pin (RESET) is controlled by the R1 C1 network. After 
a reset, this voltage rises exponentially according to the time constant R1 C1, 
as shown in Figure 12-17. 

Figure 12-17. Voltage on the TMS320C30 Reset Pin 

12-30 

Voltage 

V = Vee (1 - e -t1't) 
Vee - - - - - - - -:::.:;.-------

v. - , 

Time 

The duration of the low pulse on the reset pin is approximately t1, which is the 
time it takes for the capacitor C1 to be charged to 1.5 V. This is approximately 
the voltage at which the reset input switches from a logic 0 to a logic 1. The 
capacitor voltage is expressed as 

(7) 

where 1: = R1 C1 is the reset circuit time constant. Solving equation (7) for t re­
sults in 

Setting the following: 

R1=100KQ 

C1 = 4.7 J.lF 

VCC=5 V 

V = V1 = 1.5 V 

(8) 

results in t = 167 ms. Therefore, the reset circuit of Figure 12-16 provides a 
low pulse of long enough duration to ensure the stabilization of the system os­
cillator. 



System Control Functions 

Note that if synchronization of multiple TMS320C3xs is required, all proces­
sors should be provided with the same input clock and the same reset signal. 
After power-up, when the clock has stabilized, all processors can be synchro­
nized by generating a falling edge on the common reset signal. Because it is 
the falling edge of reset that establishes synchronization, reset must be high 
for at least ten H1 cycles initially. Following the falling edge, reset should re­
main low for at least ten H1 cycles and then be driven high. This sequencing 
of reset can be accomplished using additional circuitry based on either RC 
time delays or counters. 

Hardware Applications 12-31 



Serial-Port Interface 

12.5 Serial-Port Interface 

12-32 

For applications such as modems, speech, control, instrumentation, and ana­
log interface for DSPs, a complete analog-to-digital (ND) and digital-to-analog 
(D/A) input/output system on a single chip might be appropriate. The 
TLC32044 analog interface circuit (AIC) integrates a bandpass, switched-ca­
pacitor, antialiasing input filter, 14-bit resolution ND and D/A converters, and 
a low-pass, switched-capacitor, output-reconstruction filter, all on a single 
monolithic CMOS Chip. The TLC32044 offers numerous combinations of mas­
ter clock input frequencies and conversion/sampling rates, which can be 
changed via digital signal processor control. 

Four serial port modes on the TLC32044 allow direct interface to TMS320C3x 
processors. When the transmit and receive sections of the AIC are operating 
synchronously, it can interface to two SN54299 or SN74299 serial-to-parallel 
shift registers. These shift registers can then interface in paraiiei to the 
TMS320C30, to otherTMS320 digital processors, orto external FIFO circuitry. 
Output data pulses inform the processor that data transmission is complete or 
allow the DSP to differentiate between two transmitted bytes. A flexible control 
scheme is provided so that the functions of the AIC can be selected and ad­
justed coincidentally with signal processing via software control. Refer to the 
TLC32044 data sheet for detailed information. 

When you interface the AIC to the TMS320C3x via one of the serial ports, no 
additional logic is required. This interface is shown in Figure 12-18. The serial 
data, control, and clock signals connect directly between the two devices, and 
the AIC's master clock input is driven from TCLKO, one of the TMS320C3x's 
internal timer outputs. The AIC's WORD/BYTE input is pulled high, selecting 
16-bit serial port transfers to optimize serial port data transfer rate. The 
TMS320C3x's XFO pin, configured as an output, is connected to the AIC's re­
set (RST) input to allow the AIC to be reset by the TMS320C3x under program 
control. This allows the TMS320C3x timer and serial port to be initialized be­
fore beginning conversions on the AIC. 



Figure 12-18. AIC to TMS320C30 Interface 

TMS320C30 TLC32044 

IN+ 
FSXO FSX IN-

DXO DX 

FSRO FSR OUT+ 
DRO DR OUT-

CLKXO 

L-1 
SHIFTCLK 

CLKRO VDD 
TCLKO MSTRCLK VCC+ 

XFO 
Vce-

G2 
AGND 
AGND 

WOR01 BYTE 

RST 
DGND 

V 
DGND 

Serial-Port Interface 

AD 

~AG 

V 
ND 

AO UT 

~ 
-+5 

-+5 

v 
v 
v -+5 

f-- +5V 

t--
~7 

AGND 

To provide the master clock input for the AIC, the TClKO timer is configured 
to generate a clock signal with a 50% duty cycle at a frequency of f(H 1 )/4 or 
4.167 MHz. To accomplish this, the global control register for timer 0 is set to 
the value 3C1 h, which establishes the desired operating modes. The period 
register for timer 0 is set to 1, which sets the required division ratio for the H1 
clock. 

To properly communicate with the AIC, the TMS320C30 serial port must be 
configured appropriately by initializing several TMS320C30 registers and 
memory locations. First, reset the serial port by setting the serial port global 
control register to 2170300h. (The AIC should also be reset at this time. See 
description below of resetting the AIC via XFO.) This resets the serial port logic, 
configures the serial port operating modes, including data transfer lengths, 
and enables the serial port interrupts. This also configures another important 
aspect of serial port operation: polarity of serial port signals. Because active 
polarity of all serial port signals is programmable, it is critical to set appropriate­
ly the bits in the serial port global control register that control the polarity. In this 
application, all polarities are set to positive except FSX and FSR, which are 
driven by the AIC and are true low. 

The serial port transmit and receive control registers must also be initialized 
for proper serial port operation. In this application, both of these registers are 
set to 111 h, which configures all of the serial port pins in the serial port mode, 
rather than the general-purpose digital 1/0 mode. 

Hardware Applications 12-33 



Serial-Port Interface 

12-34 

When the operations described above are completed, interrupts are enabled, 
and, provided that the serial port interrupt vector(s) are properly loaded, serial 
port transfers can begin after the serial port is taken out of reset. You can do 
this by loading E170300h into the serial port global control register. 

To begin conversion operations on the AIC and subsequent transfers of data 
on the serial port, first reset the AIC by setting XFO to 0 at the beginning of the 
TMS320C3x initialization routine. Set XFO to 0 by setting the TMS320C3x IOF 
register to 2. This sets the AIC to a default configuration and halts serial port 
transfers and conversion operations until reset is set high. Once the 
TMS320C3x serial port and timer have been initialized as described above, 
set XFO high by setting the IOF register to 6. This allows the AIC to begin oper­
ating in its default configuration, which in this application is the desired mode. 
In this mode, all internal filtering is enabled, sample rate is set at approximately 
6.4 kHz, and the transmit and receive sections of the device are configured to 
operate synchronously. This mode of operation is appropriate for a variety of 
applications; if a 5.184-MHz master clock input is used, the default configura­
tion results in an 8-kHz sample rate, which makes this device ideal for speech 
and telecommunications applications. 

In addition to the benefit of a convenient default operating configuration, the 
AIC can also be programmed for a wide variety of other operating configura­
tions. Sample rates and filter characteristics can be varied, and numerous con­
nections in the device can be configured to establish different internal architec­
tures by enabling or disabling various functional blocks. 

To configure the AIC in a fashion different from the default state, you must first 
send the device a serial data word with the two LSBs set to 1. The two LSBs 
of a transmitted data word are not part of the transferred data information and 
are not set to 1 during normal operation. This condition indicates that the next 
serial transmission will contain secondary control information, not data. This 
information is then used to load various internal registers and specify internal 
configuration options. Four different types of secondary control words are dis­
tinguished by the state of the two LSBs of the transferred control information. 
Note that each transferred secondary control word must be preceded by a data 
word with the two LSBs set to 1. 

The TMS320C3x can communicate with the AIC either synchronously or 
asynchronously, depending on the information in the control register. The op­
erating sequence for synchronous communication with the TMS320C30 
shown in Figure 12-19 is as follows: 

1) The FSX or FSR pin is brought low. 
2) One 16-bit word is transmitted, or one 16-bit word is received. 
3) The FSX or FSR pin is brought high. 
4) The EODX or EODR pin emits a low-going pulse. 



Serial-Port Interface 

Figure 12-19. Synchronous Timing of TLC32044 to TMS320C3x 

SHIFTCLK 

FSR,FSX ~ 

OR 015 

OX -{ 015 

EOOR,EOOX 

II I 
X 014 X 02 01 X 00 X 

X 014 X 02 01 X 00 ) 

'/J '---I 

For asynchronous communication, the operating sequence is similar, but FSX 
and FSR do not occur at the same time (see Figure 12-20). After each receive 
and transmit operation, the TMS320C30 asserts an internal receive (RINT) 
and transmit (XI NT} interrupt, which can be used to control program execution. 

Figure 12-20. Asynchronous Timing of TLC32044 to TMS320C30 

u u u u 
u u 

Hardware Applications 12-35 



Low-Power-Mode Interrupt Interface 

12.6 Low-Power-Mode Interrupt Interface 

This section explains how to generate interrupts when the IDLE2 power-down 
mode is used. 

The execution ofthe I DLE2 instruction causes the Hi and H3 processor clocks 
to be held at a constant level until the occurrence of an external interrupt. To 
use the TMS320C31 IDEL2 power management feature effectively, interrupts 
must be generated with or without the presence of the Hi clock. For normal 
(non-IDLE2) operation, however, the interrupt inputs must be synchronized 
with the falling edge of the Hi clock. An interrupt must satisfy the following 
conditions: 

o It must meet the setup time on the falling edge of Hi, and 
o It must be at least one cycle and less than two cycles in duration. 

For an interrupt to be recognized during IDLE2 operation and turn the clocks 
back on, it must first be held low for one Hi cycle. The logic in Figure 12-21 
can be used to generate an interrupt signal to the TMS320C31 with the correct 
timing during non-IDLE2 and I DLE2 operation. Figure 12-21 shows the inter­
rupt circuit, which uses a 16R4 PLD to generate the appropriate interrupt sig­
nal. 

Figure 12-21. Interrupt Generation Circuit for Use With IDLE2 Operation 

12-36 

TMS320C31 TIBPAL16R4 

INTx r-.- Interrupt -.-
Source 2 12 t--

H1 CLK 

Example 12-1 shows the PLD equations for the 16R4 using the ABELTM lan­
guage. This implementation makes the following assumptions regarding the 
interrupt source: 

o The interrupt source is at least one Hi cycle in duration. One Hi cycle is 
required to turn the Hi clock on again. 

o The interrupt source is a low-going pulse or a falling edge. If the interrupt 
source stays active for more than one Hi cycle, it is regarded as the same 
interrupt request and not a new one. 



Low-Power-Mode Interrupt Interface 

Notice that the interrupt is driven active as soon as the interrupt source goes 
active. It goes inactive again on detection of two H3 rising edges. These two 
rising edges ensure that the interrupt is recognized during normal operation 
and after the end of I DLE2 operation (when the clocks turn on again). The inter­
rupt goes inactive after the two H3 clocks are counted and does not go inactive 
again until after the interrupt source again goes inactive and returns to active. 

Example 12-1. State Machine and Equations for the Interrupt Generation 16R4 PLD 

MODULE INTERRUPT GENERATION 
TITLE' INTERRUPT:GENERATION FOR IDLE2 AND NON-IDLE2 TMS320C31A 

TMS320C31' 

c3xuS device 

"inputs 
h3 Pin 1; 
intsrc Pin 2; 

" output 
intx_ Pin 12; 

Pin 15; 

'P16R4'; 

"Interrupt source 

" Interrupt input signal to the TMS320C31 

"Internal signal used to synchronize the 
"input to the HI clock 
"Keeps track if the new interrupt source 
"has occurred. If active, no new interrupt 
"has occurred. 

"This logic makes the following assumptions: 
"The duration of the interrupt source is at least one HI 
"cycle in duration. It takes one H1 cycle to turn the HI 
"clock on again. 

"The interrupt source is pulse- or level-triggered. If the 
"source stays active after being asserted, it is regarded 
"as the same interrupt request and not a new one. 

"Name Substitutions for Test Vectors and Equations 

c,H,L,X = .C."I,O,.X.; 

source 
sync 
samesrc 
c3xint 

= lintsrc ; 
Isync_src_; 
Isame ; 
lintx:; 

"state bits 
outstate = [samesrc,sync); 

"synchronize state 
idle 
sync_st 
wait 

... "bOO; 
= "b01; 

"b10; "wait for interrupt source to go inactive 

Hardware Applications 12-37 



Low-Power-Mode Interrupt Interface 

state_diagram outstate 

state idle: 
if (source) then sync_st 
else idle; 

state sync_st: 
if (source) then wait 
else idle; 

state wait: 
if (source) then wait 
else idle; 

equations 
iintx_ (source # syncj & isamesrc; 

@page 

"Test interrupt generation logic 
test vectors 
([he7 source] -> [outstate,c3xint]) 
[ c, L ] -> [idle, L ] ; "check start from idle 
[ L, H ] -> [idle, H ] ; "test normal interrupt operation 
[ c, H ] -> [sync_st, H ] ; 
[ c, L ] -> [idle, L ] ; 
[ c, L ] -> [idle, L ] ; 
[ L, H ] -> [idle, H ] ; "test coming out of idle2 operation 
[ L, H ] -> [idle, H ] ; 
[ c, H ] -> [sync_st, H ] ; 
[ c, L ] -> [idle, L ] ; 
[ c, H ] -> [sync st, H ] ; "test same source 
[ c, H ] -> [wait7 L ] ; 
[ c, H ] -> [wait, L ] ; 
[ c, L ] -> [idle, L ] ; 
[ L, H ] -> [idle, H ] ; "test idle2 operation 
[ L, H ] -> [idle, H ] ; 
[ L, H ] -> [idle, H ] ; 
end interrupt_generation 

12-38 



XDS Target Design Considerations 

12.7 XDS Target Design Considerations 

12.7.1 Designing Your MPSD Emulator Connector (12-Pln Header) 

The 'C3x uses a modular port scan device (MPSD) technology to allow com­
plete emulation via a serial scan path of the 'C3x. To communicate with the 
emulator, your target system must have a 12-pin header (2 rows of 6 pins) with 
the connections that are shown in Figure 12-22. To use the target cable, sup­
ply the signals shown in Table 12-3 to a 12-pin header with pin 8 cut out to pro­
vide keying. For the latest information, refer to the JTAG/MPSD Emulation 
Technicsl Reference (literature number SPDU079). 

Figure 12-22. 12-Pin Header Signals and Header Dimensions 

EMU1t 1 2 GNO 

EMUOt 3 4 GNO Header Dimensions: 
Pin-to-pin spacing, 0.100 in. (X,V) 

EMU2t 5 6 GNO Pin width: 0.025-in. square post 

PO{Vcc) 7 no pin (key)* 
Pin length: 0.235-in. nominal 

EMU3 9 10 GNO 

H3 11 12 GNO 

t These signals should always be pulled up with separate 20-kQ resistors to V cc. * While the corresponding female position on the cable connector is plugged to prevent improper 
connection, the cable lead fot pin 8 is pres.nt in the cable and is grounded as shown in the 
schematics and wiring diagrams in this document. 

Table 12-3. 12-Pin Header Signal Descriptions and Pin Numbers 

XDS51 0 'C30 'C31 
Signal Description Pin Number Pin Number 

EMUO Emulation pin 0 F14 124 

EMU1 Emulation pin 1 E15 125 

EMU2 Emulation pin 2 F13 126 

EMU3 Emulation pin 3 E14 123 

H3 'C3xH3 A1 82 

PO Presence detect. Indicates that the emulation cable is con-
nected and that the target is powered up. PO should be tied to 
V~~ in the target system. 

Although you can use other headers, recommended parts include: 

straight header, unshrouded DuPont Connector Systems 
part numbers: 65610-112 

65611-112 
37996-112 
67997-112 

Hardware Applications 12-39 



XDS Target Design Considerations 

Figure 12-23 shows a portion of logic in the emulator pod. Note that 33-0 re­
sistors have been added to the EMUO, EMU1, and EMU21ines; this minimizes 
cable reflections. 

Figure 12-23. Emulator Cable Pod Interface 

74LVT240 
1~0 

vvv- EMU1 (Pin 1) 

330 
J\l"vv EMUO (Pin 2) 

330 
-'\I'''v 

i+5V ~ 1800 2700 74F175 

EMU2 (Pin 3) 

H3 (Pin 11) 

~ 2 JP1 
0 

~ 1800 2700 

2 JP2 74AS1004 

-

EMU3 (Pin 9) 

111 ... .1 
..... 1 

~ 1000 A 
RESIN 

TL7705A 

PO (Vee Pin 7) 

GNO (Pins 2,4,6,8,10,12) 
V 

12.7.2 MPSD Emulator Cable Signal Timing 

12-40 

Figure 12-24 shows the signal timings for the emulator pod. Table 12-4 de­
fines the timing parameters. The timing parameters are calculated from values 
specified in the standard data sheets for the emulator and cable pod and are 
for reference only. Texas I nstruments does not test or guarantee these timings. 



XDS Target Design Considerations 

Figure 12-24. Emulator Cable Pod Timings 

H3 

EMUO 
EMU1 
EMU2 

EMU3 

14 .1 
1 1 

-t----~\ t-----\ 
:14-~-- 2 ---.t.~ 3 .1 

------------~¥----------
I+- 4 --./ I 

5~14-6~ 
----------~ *~-

Table 12-4. Emulator Cable Pod Timing Parameters 

No. Reference Description Min Max Unit 

tH3 min H3 period 35 200 ns 
tH3 max 

2 tH3 high min H3 high pulse duration 15 ns 

3 tH310w min H3 low pulse duration 15 ns 

4 lei (EMUO, 1, 2) EMUO, 1, 2 valid from H3 low 7 23 ns 

5 tsu (EMU3) EMU3 setup time to H3 high 3 ns 

6 thd (EMU3) EMU3 hold time from H3 high 11 ns 

12.7.3 Connections Between the Emulator and the Target System 

It is extremely important to provide high-quality signals between the emulator 
and the 'C3x on the target system. In many cases, the signal must be buffered 
to produce high quality. The need for signal buffering can be divided into three 
categories, depending on the placement of the emulation header: 

o No signals buffered. In this situation, the distance between the emulation 
header and the 'C3x should be no more than two inches. (See 
Figure 12-25.) 

Hardware Applications 12-41 



XDS Target Design Considerations 

Figure 12-25. Signals Between the Emulator and the 'C3x With No Signals Buffered 

12 inches or less --, 

Vcc 

TMS320C3x Em,'_Header ~ 
3 

PO 
EMUO EMUO 

EMU1 
1 

EMU1 GNO --L-
5 GNO 4 

EMU2 EMU2 
GNO 6 

GNO 8 

EMU3 
9 

EMU3 GNO 10 

11 GNO 12 
H3 H3 

~7 
GN o 

o Transmission signals buffered. In this situation, the distance between 
the emulation header and the 'C3x is greater than two inches but less than 
six inches. The transmission signals, H3 and EMU3, are buffered through 
the same package. {See Figure 12-26.} 

Figure 12-26. Signals Between the Emulator and the 'C3x With Transmission Signals 
Buffered r- 2 to 6 inches -, 

VCC 

TMS320C3x Em"_H"' .. U 
3 

PO 
EMUO EMUO 

EMU1 
1 

EMU1 GNO r-L-
EMU2 

5 
EMU2 GNO ~ 

GNO ~ 
GNO ~ 

..... 9 GNO 10 
EMU3 EMU3 

~ 11 GNO 12 
H3 H3 V" 7 

GN o 

12-42 



XDS Target Design Considerations 

o All signals buffered. The distance between the emulation header and the 
'C3x is greater than 6 inches but less than 12 inches. All 'C3x emulation 
signals, EMUO, EMU1, EMU2, EMU3, and H3, are buffered through the 
same package. (See Figure 12-27.) 

Figure 12-27. All Signals Buffered 

r- 6 to 12 inches -, 

TMS320C3x 

EMUO 

EMU1 

EMU2 

EMU3 

H3 

H3 Buffer Restrictions 

Don't connect any devices be­
tween the buffered H3 output 
and the header! Otherwise, 
you will degrade the quality 
of the signal. 

3 

5 

9 

11 

Emulator Header 
PD 

EMUO 

GND 2 
EMU1 

GND 4 
EMU2 6 GND 

GND 8 

GND 10 
EMU3 

GND 12 
H3 

GND 

12.7.4 Mechanical Dimensions for the 12-Pin Emulator Connector 

The 'C3x emulator target cable consists of a three-foot section of jacketed 
cable, an active cable pod, and a short section of jacketed cable that connects 
to the target system. The overall cable length is approximately three feet, ten 
inches. Figure 12-28 and Figure 12-29 show the mechanical dimensions for 
the target cable pod and short cable. Note that the pin-to-pin spacing on the 
connector is 0.100 inches in both the X and Y planes. The cable pod box is 
nonconductive plastic with four recessed metal screws. 

Hardware Applications 12-43 



XDS Target Design Considerations 

Figure 12-28. Pod/Connector Dimensions 

Refer to Figure 12-29. 

Note: All dimensions are in inches and are nominal unless otherwise specified. 

12-44 



Figure 12-29. 12-Pin Connector Dimensions 

Cable 

0.100 

Cable 

XDS Target Design Considerations 

r020 
----I 

0.38 

~ 
Connector, Side View 

II Key, Pin 8 

0.70 

-TO.100 

~ ~onnector, Front View 

Pin 1,3,5,7,9,11 Pin 2, 4,6,8,10,12 

Note: All dimensions are in inches and are nominal unless otherwise specified. 

12.7.5 Diagnostic Applications 

For system diagnostics applications, or to embed emulation compatibility on 
your target system, you can connect a 'C3x device directly to a TI ACT8990 
test bus controller (TBC) as shown in Figure 12-30. The TBC is described in 
the Texas Instruments Advanced Logic and Bus Interface Logic Data Book (lit­
erature number SCYD001). A TBC can connect to only one 'C3x device. 

Hardware Applications 12-45 



XDS Target Design Considerations 

Figure 12-30. TBe Emulation Connections for 'C3x Scan Paths 

vcc 

1 
~22kC 

TBC ~22kC ~ 22kC 
;> 

TMSO 

TMS1 

TOO 

TCKO r- '--

TCKI 

TOIO 

TOl1 I-- -
.,... •• l"'III'\ ,,..\ , ... .,.." 
IIVI";;)~I;;VI"4IU -
TMS3/EVNT1 ---
TMS4/EVNT2 -
TMS5/EVNT3 -

C3x 

EMUO 

EMU1 

EMU2 

EMU4 

H1 (Clock) 

EMU3 

EMU5 

Etv1U8 

Notes: 1) In a 'C3x design, the TBC can connect to only one 'C3x device. 

12-46 

2) The 'C3x device's H1 clock drives TCKI on the TBC. This is different from the 
emulation header connections where H3 is used. 



• I 

Chapter 13 

TMS320C3x Signal Descriptions 
and Electrical Characteristics 

11111 II -
This chapter covers the TMS320C3x pinouts, signal descriptions, and 
electrical characteristics. 

Major topics discussed in this chapter are as follows: 

Topic Page 

13-1 



Pinout and Pin Assignments 

13.1 Pinout and Pin Assignments 

13.1.1 TMS320C30 Pinouts and Pin Assignments 

13-2 

The TMS320C30 digital signal processor is available in a 181-pin grid array 
(PGA) package. Figure 13-1 and Figure 13-2 show the pinout for this pack­
age. Figure 13-3 shows the mechanical layout. Table 13-1 shows the 
associated pin assignments alphabetically; Table 13-2 shows the pin assign­
ments numerically. 



Pinout and Pin Assignments 

Figure 13-1. TMS320C30 Pinout (Top View) 

A 

B 

C 

D 

E 

F 

G 

H 

J 

K 

L 

M 

N 

p 

R 

2 3 

H3 02 03 

X2/CLKIN CVss H1 

EMU5 X1 OVss 

4 

07 

04 

00 

r<. 
v 

5 

010 

08 

05 

xpjij XROY Veep OOVOO 01 
,.... 
v 

r<. 
v 

,.... 
v 

ROY HOLOA MSTRB VsuesLOCATOR 

XFO 
,.... 
v 

XF1 

r<. 
v 

r<. 
v 

r<. 
v 

,.... 
v 

Vss VOO MOVOO 
,.... 
v 

,.... 
v 

,.... 
v 

INT3 RSVO RSVl 
,.... 
v 

,.... 
v 

RSV2 RSV3 RSV5 RSV7 

RSV4 RSV6 RSV9 CLKRl 
,.... 
v 

,.... 
v 

,.... 
v 

,.... 
v 

6 

013 

011 

09 

06 

r<. 
v 

7 

016 

015 

r<. 
v 

014 

012 

r<. 
v 

8 

017 

018 
,.... 
v 

VSS 

VOO 
r<. 
v 

OOVOO 

r<. 
v 

9 

019 

020 

021 

023 
,.... 
v 

TMS320C30 
Top View 

IOOVOO 

10 

022 

024 

026 

029 

11 12 13 

025 028 XAO 

027 031 XA4 

030 XA3 OVss 

XA2 ADVOO XA8 
,.... 
v 

r<. 
v 

r<. 
v 

14 

XA1 

IVSS 

XA7 

15 

XA5 

XA6 
,.... 
v 

XA10 

XA11 MC/MP 

XA8 XA12 EMU3 EMU1 

EMU4/SHz EMU2 EMUO 

A1 

ADVOO VOO 

A11 

A17 

A22 

r<. 
v 

A2 

Vss 

A9 
,.... 
v 

A14 
,.... 
v 

A18 

A3 
,.... 
v 

AS 

AS 
,.... 
v 

A12 

A15 
,.... 
v 

AO 

A4 
,.... 
v 

AS 
,.... 
v 

A7 

Al0 

A13 
,.... 
v 

RSV8 RSV10 FSR1 POVOO CLKXO EMU6 X05 VOO X016 XD22 X027 IOOVOO A21 A19 A16 
,.... 
v 

r<. 
v 

OR1 CLKX1 OVSS CLKRO TCLKl X02 

FSXl OX1 

ORO FSXO 

FSRO TCLKO XOl 
,.... 
v 

OXO 

,.... 
v 

XOO XD3 

X04 

X06 

X07 

X08 

XD9 

VSS X014 XD19 X023 XD28 OVSS 
,.... 
v 

,.... 
v 

A23 A20 
,.... 
v 

X010 X013 X017 X020 XD24 XD29 CVss X031 

XOll XD12 X015 X018 X021 X025 X026 XD30 
,.... 
v 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-3 



Pinout and Pin Assignments 

Figure 13-2. TMS320C30 Pinout (Bottom View) 

13-4 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

XA5 XAl XAO 028 025 022 019 017 016 013 010 07 03 

• 
02 H3 

• • • • • • • • • • 
XA6 IVSS XA4 031 027 024 020 018 015 011 

• • • • • • • • • • 
XAl0 XA7 OVSS XA3 030 026 021 Vss 014 

• • 
MC/MP XAl1 

• • 
• 

XA9 

• 
• 

ADVOO 

• 
EMUl EMU3 XA12 XA6 

• • • • 
AO EMUO EMU2 EMU4ISHZ 

A4 

• 
A3 

• 
A2 

• 
Al 

• 

• 
XA2 

• 

AS 

• 
AS 

• 
VSS 

• 
VOO ADVOO 

• • 
A7 

• 
AS 

• 
AS 

• 
All 

• 
Al0 A12 A14 A17 

• • • • 
A13 A15 AlB A22 

• • • • 

• 
029 

• 
• 

.023 

• 
• 

VOO 

• 
OOVOO 

• 

• 
012 

• 

TMS320C30 
Bottom View 

DB 

• 
08 

• 

• 
DB 

• 
05 

• 
01 

• 

• • • 
04 Hl CVSS X2/CLKIN 

• • • • 
DO OVSS Xl EMU5 

• • • 
OOVOO VBBP XROY 

• • • 
• 

xRiW 

• 
LOCATOR VSUBS MSTRB HOLDA ROY 

• • • • • 
IOSTRB HOLD STAB REsET 

RiW XFl XFO lACK 

• • • • 
MOVOO VOO 

• • 
VSS 

• • • 
RSVl RSVO 1NT3 INT2 

• • • • 
RSV7 RSV5 RSV3 RSV2 

• • • • 
CLKRl RSVS RSV8 RSV4 

• • • • 
AlB AlB 

• 
A21 IOOVOO XD27 XD22 X016 

IOOVOO 

• 
VOO X05 EMU8 CLKXO POVOO FSRl RSV10 RSVS 

• • • • • • • • • • • • • • 
A20 A23 OVSS XD28 XD23 X01B X014 VSS XD7 XD2 TCLKl CLKRO OVSS CLKXl ORl 

• • • • • • • • • • • • • • • 
XD31 CVSS XD29 XD24 XD20 X017 X013 XDl0 X08 XD4 XDl TCLKO FSRO OX1 FSXl 

• • • • • • • • • • • • • • • 
XD30 XD26 X025 XD21 X018 X015 XD12 XD11 XOS XD6 XD3 XOO OXO FSXO ORO 

• • • • • • • • • • • • • • • 

A 

B 

C 

o 

E 

F 

G 

H 

J 

K 

L 

M 

N 

p 

R 



Pinout and Pin Assignments 

Figure 13-3. TMS320C30 181-Pin PGA Dimensions-GEL Package 

40.38 (1.590) 
39.62 (1.560) 

Thermal Resistance Characteristics 

Parameter ·cm Air Flow 
LFPM 

RaJC 2.0 N/A 1-------------
RaJA 21.8 0 
RaJA N/A 200 

RaJA N/A 400 

RaJA N/A 600 

RaJA N/A 800 

RaJA N/ A 1000 L~ 
I.-- 40.38 (1.590) .1 

39.62 (1.560) 

1.52 (0.060) 
5.02 (0.198) 
3.88 (0.152) "1 

,.lL----:-f*---r='f=ij =ij ij=..t::'ij =ij ~=ij=ij =ij ijl..-' ij -~ ~---, Iffill'==f 1.02 (0.040) 

.510 (.020) Il -.I 1,27 (0.050) Nom 
3.68 (.145) .410 (.016) -. Dia (4 Places) 
2.92 (.115) (181 Places) 

2,54 (0.100) T.P. ---l j4-
~~----------------~~ 

r
R~~@@@@@@@@@@@~~ 
P@@@@@@@@@@@@@@@ 
N@@@@@@@@@@@@@@@ 
M@@@@@@@@@@@@@@@ 
L @@@@ @ @@@@ 
K @@@@ Bottom @@@@ 
J @@@@ View @@@@ 

35.86 (1.412) H @@@@@ @@@@@ 
35.26 (1.388) G @ @ @ @ r Locator @ @ @ @ L F @@@@ @@@@ 

E@@@@@ @ @@@@ 
D@@@@@@@@@@@@@@@ 
C @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ .r 2,54 (0.100) TYP 
B@@@@@@@@@@@@ @ @~ ~.fi-----Z. 
A @@@@@@@@@@@@@@@i}I---.-r 

1 2 3 4 5 6 7 8 9 101112131415 I 

All linear dimensions are in millimeters and parenthetically in inches. 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-5 



Pinout and Pin Assignments 

Table 13-1. TMS320C30-PGA Pin Assignments (AlphabeticaOt 

Signal Pin Signal 
AO F15 08 
A1 G12 09 
A2 G13 010 
A3 G14 011 
A4 G15 012 
A5 H15 013 
A6 H14 014 
A7 J15 015 
A8 J14 016 
A9 J13 017 
A10 K15 018 
A11 J12 019 
A12 K14 020 
A13 L15 021 
A14 K13 022 
A15 L14 023 
A16 M15 024 
A17 K12 025 
A18 L13 026 
A19 M14 027 
A20 M13 028 
A21 N15 029 
A22 L12 030 
A23 N14 031 
AOVoo 012 OOVoo 
AOVDD H11 OOVDD 
CLKRO N4 ORO 
CLKR1 L4 OR1 
CLKXO M5 DVss 
CLKX1 N2 OVss 
CVss B2 OVSS 
CVSS P14 OVss 
DO C4 OXO 
01 05 OX1 
02 A2 EMU1 
03 A3 EMU2 
04 B4 EMU3 
05 C5 EMU4/SHZ 
06 06 EMU5 
07 A4 EMU6 

tADV CV DDV DV DO. ss. DO. ss. 
device. 

IOOV 

13·6 

Pin 
B5 
C6 
A5 
B6 
07 
A6 
C7 
B7 
A7 
A8 
B8 
A9 
B9 
C9 
A10 
09 
B10 
A11 
C10 
B11 
A12 
010 
C11 
B12 
04 
E8 
R1 
N1 
C3 
C13 
N3 
N13 
R3 
P2 
E15 
F13 
E14 
F12 
C1 
M6 

IV DO. ss. 

Signal Pin Signal Pin Signal Pin 

EMU8 F14 VBBP 03 X015 R10 
FSRO P3 Voo 08 X016 M9 
FSR1 M3 Voo H4 X017 P10 
FSXO R2 Voo H12 X018 R11 
FSX1 P1 Voo M8 X019 N10 
H1 B3 Vss C8 X020 P11 
H3 A1 Vss H3 X021 R12 
HOLD F3 Vss H13 X022 M10 
HOLDA E2 Vss N8 X023 N11 
lACK G1 VSUBS E4 X024 P12 
INTO H2 X1 C2 X025 R13 
INT1 H1 X21CLKIN B1 X026 R14 
INT2 J1 XAO A13 X027 M11 
INT3 J2 XA1 A14 XD28 N12 
IOOVoo La XA2 011 X029 P13 
IOOVoo M12 XA3 C12 X030 R15 
IOSTRB F4 XA4 B13 X031 P15 
IVss B14 XA5 A15 XFO G2 
LOCATOR E5 XA6 B15 XF1 G3 
MC/MP 015 XA7 C14 XROY 02 
MOVoo H5 XA8 E12 XR/W 01 
MSTRB E3 XA9 013 
POVoo M4 XA10 C15 
ROY E1 XA11 014 
RESET F1 XA12 E13 
RSVO J3 XOO R4 
RSV1 J4 X01 P5 
RSV2 K1 X02 N6 
RSV3 K2 XD3 R5 
RSV4 L1 X04 P6 
RSV5 K3 X05 M7 
RSV6 L2 X06 R6 
RSV7 K4 X07 N7 
RSV8 M1 X08 P7 
RSV9 L3 X09 R7 
RSV10 M2 X010 P8 
R/W G4 X011 R8 
STRB F2 X012 R9 
TCLKO P4 X013 P9 
TCLK1 N5 X014 N9 

MOV POV V DO. DO. DO. andV SSP ins are on a common lane internal to the P 



Pinout and Pin Assignments 

Table 13-2. TMS320C30-PGA Pin Assignments (Numerical)t 

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin 
H3 A1 D30 C11 XF1 G3 A13 L15 XD17 P10 
D2 A2 XA3 C12 R/W G4 RSV8 M1 XD20 P11 
D3 A3 DVss C13 A1 G12 RSV10 M2 XD24 P12 
D7 A4 XA7 C14 A2 G13 FSR1 M3 XD29 P13 
D10 A5 XA10 C15 A3 G14 PDVoo M4 CVss P14 
D13 A6 XR/W D1 A4 G15 CLKXO M5 XD31 P15 
D16 A7 XRDY D2 INT1 H1 EMU6 M6 DRO R1 
D17 A8 VBBP D3 INTO H2 XD5 M7 FSXO R2 
D19 A9 DDVoo D4 Vss H3 Voo M8 DXO R3 
D22 A10 D1 D5 Voo H4 XD16 M9 XDO R4 
D25 A11 D6 D6 MDVoo H5 XD22 M10 XD3 R5 
D28 A12 D12 D7 ADVoo H11 XD27 M11 XD6 R6 
XAO A13 Voo D8 Voo H12 IODVoo M12 XD9 R7 
XA1 A14 D23 D9 Vss H13 A20 M13 XD11 R8 
XA5 A15 D29 D10 A6 H14 A19 M14 XD12 R9 
X2/CLKIN B1 XA2 D11 A5 H15 A16 M15 XD15 R10 
CVss B2 ADVoo D12 INT2 J1 DR1 N1 XD18 R11 
H1 B3 XA9 D13 INT3 J2 CLKX1 N2 XD21 R12 
D4 B4 XA11 D14 RSVO J3 DVss N3 XD25 R13 
D8 B5 MC/MP D15 RSV1 J4 CLKRO N4 XD26 R14 
D11 B6 RDY E1 A11 J12 TCLK1 N5 XD30 R15 
D15 B7 HOLDA E2 A9 J13 XD2 N6 
D18 B8 MSTRB E3 A8 J14 XD7 N7 
D20 B9 VSUBS E4 A7 J15 Vss N8 
D24 B10 LOCATOR E5 RSV2 K1 XD14 N9 
D27 B11 DDVoo E8 RSV3 K2 XD19 N10 
D31 B12 XA8 E12 RSV5 K3 XD23 N11 
XA4 B13 XA12 E13 RSV7 K4 XD28 N12 
IVss B14 EMU3 E14 A17 K12 DVss N13 
XA6 B15 EMU1 E15 A14 K13 A23 N14 
EMU5 C1 RESET F1 A12 K14 A21 N15 
X1 C2 STRB F2 A10 K15 FSX1 P1 
DVss C3 HOLD F3 RSV4 L1 DX1 P2 
DO C4 IOSTRB F4 RSV6 L2 FSRO P3 
D5 C5 EMU4/SHZ F12 RSV9 L3 TCLKO P4 
D9 C6 EMU2 F13 CLKR1 L4 XD1 P5 
D14 C7 EMU8 F14 IODVoo L8 XD4 P6 
Vss C8 AO F15 A22 L12 XD8 P7 
D21 C9 lACK G1 A18 L13 XD10 P8 
D26 C10 XFO G2 A15 L14 XD13 P9 

T v V V an AOVOO, CVSS, DO DO, OVSS, 100 DO, IVSS, MOVOO, POVOO, DO, d VSS P 
device. 

ins are on ac ommon lane intern alto the p 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-7 



Pinout and Pin Assignments 

13.1.2 TMS320C30 PPM Pinouts and Pin Assignments 

A22 
A2l 
A20 
A19 
A18 
A17 
A18 
A15 
A14 

ADVeo 
ADVoo 

A13 
A12 
All 
Al0 
A9 
A9 
A7 
AS 

Voo 
Veo 
Vss 
Vss 
AS 
A4 
A3 
A2 
Al 
AD 

EMUO 
EMUl 
EMU2 
EMU3 
EMU4 

MC/QI' 
XA12 
XAll 
XAl0 

XA9 
XA9 
XA7 
XA6 
IVss 
IVss 
DVss 
DVss 

13-8 

The TMS320C30 PPM device is packaged in a 208-pin plastic quad flat pack 
(PQFP) JDEC standard package. Figure 13-4 shows the pinoutsforthis pack­
age, and Figure 13-5 shows the mechanical layout. Table 13-3 shows the as­
sociated pin assignments alphabetically; Table 13-4 shows the assignments 
numerically. 

FSRl 
DRl 
RSV10 
RSW 
RSV8 
RSV7 
RSV8 
RSYS 
RSV4 
RSV3 
RSV2 
RSVl 
RSVO 
1N'r.J 
IIrn! 
11m 
Vss 
Vss 
NC 
Voo 
Veo 
lm'O 
lACK 
XFO 
XFl 
RESET 
RlW 
STR'S 
ROY 
MDVoo 
MDVoo 
R'OlD 
IlOllllt 
xR/W 
XSTR8 
IilSTRl! 
XROV 
EMU5 
Vssp 
Vsuss 
Xl 
X2 
CVss 
CVss 
DVss 
DVss 



Pinout and Pin Assignments 

Figure 13-5. TMS320C30 PPM 20B-Pin Plastic Ouad Flat Pack-POL Package 

28,1 (1.106) SQ.-----.t 
27,9 (1.098) 

0,28 (0.01102) 
[ 0,18 (1.00709) 

=*t 

(0.01968) TYP 

0,25 (0.001) MIN 
Seatll1g Plane 

i~ 
Notes: 1) All linear dimensions are in millimeters and parenthetically in inches. 

2) This drawing is subject to change without notice. 

0,20 (0.008) 
0,12 (0.005) 

4040016/A-10/93 

3) Contact a field sales office to determine if a tighter coplanarity requirement Is available for this package. 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-9 



Pinout and Pin Assignments 

Table 13-3. TMS320C3D-PPM Pin Assignments (Alphabetical)t 

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin 

AO 139 D6 197 EMUO 140 RSV3 37 XA10 148 
Ai 138 D7 196 EMU1 141 RSV4 38 XA11 147 
A2 137 D8 195 EMU2 142 RSV5 39 XA12 146 
A3 136 D9 194 EMU3 143 RSV6 40 XDO 64 
A4 135 D10 193 EMU4/SHZ 144 RSV7 41 XD1 65 
A5 134 D11 192 EMU5 9 RSV8 42 XD2 66 
A6 129 D12 191 EMU6 63 RSV9 43 XD3 69 
A7 128 D13 190 FSRO 56 RSV10 44 XD4 70 
A8 127 D14 189 FSR1 46 R/W 20 XD5 71 
A9 126 D15 188 FSXO 59 STRB 19 XD6 72 
A10 125 D16 187 FSX1 49 TClKO 61 XD7 73 
A11 124 D17 186 Hi 204 TClK1 62 XD8 74 
A12 123 D18 180 H3 205 Vssp 8 XD9 75 
A13 122 D19 179 HOLD 15 Voo 26 XD10 76 
A14 119 D20 178 HOLDA 14 Voo 27 XD11 82 
A15 118 D21 177 lACK 24 Voo 77 XD12 83 
A16 117 D22 176 INTO 25 Voo 78 XD13 84 
Ai7 116 D23 175 INTi 31 Voo 130 XD14 85 
A18 115 D24 174 INT2 32 Voo 131 XD15 86 
A19 114 D25 173 INT3 33 Voo 181 XD16 87 
A20 113 D26 170 IODVoo 67 Voo 182 XD17 88 
A21 112 D27 169 IODVoo 68 Vss 29 XD18 89 
A22 111 D28 168 IODVoo 102 Vss 30 XD19 90 
A23 110 D29 167 IODVoo 103 Vss 80 XD20 91 
ADVoo 120 D30 166 IVss 153 Vss 81 XD21 92 
ADVoo 121 D31 165 1Vss 154 Vss 132 XD22 93 
ADVoo 157 DDVoo 171 MC/MP 145 Vss 133 XD23 94 
ADVoo 158 DDVoo 172 MDVoo 16 Vss 184 XD24 95 
ClKRO 57 DDVoo 206 MDVoo 17 Vss 185 XD25 96 
ClKR1 47 DDVoo 207 MSTRB 11 VSUBS 7 XD26 97 
ClKXO 58 DRO 55 NC 28 Xi 6 XD27 98 
ClKX1 48 DR1 45 NC 79 X2/CLKIN 5 XD28 99 
CVss 3 DVss 1 NC 104 XAO 164 XD29 100 
CVss 4 DVss 2 NC 183 XA1 163 XD30 101 
CVss 107 DVss 51 NC 208 XA2 162 XD31 109 
CVss 108 DVss 52 PDVoo 53 XA3 161 XFO 23 
DO 203 DVss 105 PDVoo 54 XA4 160 XF1 22 
D1 202 DVss 106 RDY 18 XA5 159 XRDY 10 
D2 201 DVss 155 RESET 21 XA6 152 XR/W 13 
D3 200 DVss 156 RSVO 34 XA7 151 XSTRB 12 
D4 199 DXO 60 RSV1 35 XA8 150 
D5 198 DX1 50 RSV2 36 XA9 149 

t AOVoo. CVss. OOVoo, OVSS.IOOVoo.1Vss. MOVoo. POVoo. Voo. andVss pins are on acommon plane internaltothe 
device. 

13-10 



Pinout and Pin Assignments 

Table 13-4. TMS320C30-PPM Pin Assignments (Numericaljt 

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal 
1 OVss 43 RSV9 85 X014 127 A8 169 027 
2 OVss 44 RSV10 86 X015 128 A7 170 026 
3 CVss 45 OR1 87 X016 129 A6 171 OOVoo 
4 CVss 46 FSR1 88 X017 130 Voo 172 OOVoo 
5 X2 47 CLKR1 89 X018 131 Voo 173 025 
6 X1 48 CLKX1 90 X019 132 Vss 174 024 
7 Vsues 49 FSX1 91 X020 133 Vss 175 023 
8 Veep 50 OX1 92 X021 134 A5 176 022 
9 EMU5 51 OVss 93 X022 135 A4 177 021 
10 XROY 52 OVss 94 X023 136 A3 178 020 
11 MSTRB 53 POVoo 95 X024 137 A2 179 019 
12 XSTRB 54 POVoo 96 X025 138 A1 180 018 
13 XR/W 55 ORO 97 X026 139 AO 181 Voo 
14 HOLOA 56 FSRO 98 X027 140 EMUO 182 Voo 
15 HOLO 57 CLKRO 99 X028 141 EMU1 183 NC 
16 MOVoo 58 CLKXO 100 X029 142 EMU2 184 Vss 
17 MOVoo 59 FSXO 101 X030 143 EMU3 185 Vss 
18 ROY 60 OXO 102 IOOVoo 144 EMU4/SHZ 186 017 
19 STRB 61 TCLKO 103 IOOVoo 145 MC/MP 187 016 
20 Rm 62 TCLK1 104 NC 146 XA12 188 015 
21 RESET 63 EMU6 105 OVss 147 XA11 189 014 
22 XF1 64 XOO 106 OVss 148 XA10 190 013 
23 XFO 65 X01 107 CVss 149 XA9 191 012 
24 lACK 66 X02 108 CVss 150 XA8 192 011 
25 INTO 67 IOOVoo 109 X031 151 XA7 193 010 
26 Voo 68 IOOVoo 110 A23 152 XA6 194 09 
27 Voo 69 X03 111 A22 153 IVss 195 08 
28 NC 70 X04 112 A21 154 IVss 196 07 
29 Vss 71 X05 113 A20 155 OVss 197 06 
30 Vss 72 XD6 114 A19 156 OVss 198 05 
31 INT1 73 X07 115 A18 157 AOVoo 199 04 
32 INT2 74 X08 116 A17 158 AOVoo 200 03 
33 INT3 75 X09 117 A16 159 XA5 201 02 
34 RSVO 76 X010 118 A15 160 XA4 202 01 
35 RSV1 77 Voo 119 A14 161 XA3 203 00 
36 RSV2 78 Voo 120 AOVoo 162 XA2 204 H1 
37 RSV3 79 NC 121 AOVoo 163 XA1 205 H3 
38 RSV4 80 Vss 122 A13 164 XAO 206 OOVoo 
39 RSV5 81 Vss 123 A12 165 031 207 ODVoo 
40 RSV6 82 X011 124 A11 166 030 208 NC 
41 RSV7 83 XD12 125 A10 167 029 
42 RSV8 84 X013 126 A9 168 028 

t AOVOO. CVss. OOVoo. OVss. IOOVOO. IVss. MOVOO. POVoo. VOO. and VSS pins are on a common plane internaltothe 
device. 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-11 



Pinout and Pin Assignments 

13.1.3 TMS320C31 Pinouts and Pin Assignments 

The TMS320C31 device is packaged in a 132-pin plastic quad flat pack 
(PQFP) JDEC standard package. Figure 13-6 shows the pinouts forthis pack­
age, and Figure 13-7 shows the mechanical layout. Table 13-5 shows the as­
sociated pin assignments alphabetically; Table 13-6 shows the pin assign­
ments numerically. 

Figure 13-6. TMS320C31 Pinout (Top View) 

A9 18 • 116 OXO 
VSS ;9 HS Vee 

A8 20 114 FSXO 
A7 21 113 VSS 
A6 22 112 CLKXO 
A5 23 111 CLKRO 

VOO 24 110 FSRO 
A4 25 109 VSS 
A3 26 108 ORO 
A2 27 107 INT3 
A1 28 106 INT2 
AO 29 105 VOO 

VSS 30 104 VOO 
031 31 103 INT1 

VOO 32 102 VSS 
VOO 33 101 VSS 
030 34 100 INTO 

VSS 35 99 lACK 
VSS 36 98 XF1 
VSS 37 97 VOO 
029 36 96 XFO 
028 39 95 RESET 

VOO 40 94 RiW 
027 41 93 STRB 

VSS 42 92 ROY 
026 43 91 VOO 
025 44 90 HOLD 
024 45 89 HOLDA 
023 46 88 X1 
022 47 87 X2/CLKIN 
021 48 86 VSS 

VOO 49 95 VSS 
020 50 84 VSS 

~~~~~86~868950~~93849588~8989ronnnN~~n~n 80 81 82 93 

13-12

Pinout and Pin Assignments

Figure 13-7. TMS320C31 132-Pin Plastic Ouad Flat Pack-POL Package

27,56 (1.085)
27,31 (1.075)

0,254 (0.010) Nom T
0,635 (0.025) Nom 11+-

24,18 (0.952)
24,08 (0.948)

24,18 (0.952)
24,08 (0.948)

27,56 (1.085)
27,31 (1.075)

Thermal Resistance Characteristics

Parameter °C/VII
Air Flow
LFPM

RaJC 11.0 N/A ----- ---- ----
RaJA 49.0 0

RaJA 35.5 200

RaJA 28.0 400

RaJA 23.5 600

RaJA 21.6 800

RaJA 20.0 1000

4,45 (0.175)

4,19 (0.165) n
0,76 (0.030) NO~ 11---

All linear dimensions are in millimeters and parenthetically in inches.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-13

Pinout and Pin Assignments

Table 13-5. TMS320C31 Pin Assignments (Alphabetical)t

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
AO 29 04 76 EMUO 124 Voo 40 Vss 84
A1 28 05 75 EMU1 125 Voo 49 VSS 85
A2 27 06 74 EMU2 126 Voo 59 Vss 86
A3 26 07 73 EMU3 123 Voo 65 VSS 101
A4 25 08 68 FSRO 110 Voo 66 Vss 102
A5 24 09 67 FSXO 114 Voo 74 Vss 109
A6 23 010 64 H1 81 Voo 83 VSS 113
A7 22 011 63 H3 82 Voo 91 Vss 117
A8 21 012 62 HOLO 90 Voo 97 VSS 119
A9 20 013 60 HOLOA 89 Voo 104 Vss 128
A10 19 014 58 lACK 99 Voo 105 Xi 88
A11 18 015 56 INTO 100 VDD 115 X2/CLKIN 87
A12 17 016 55 INT1 103 Voo 121 XFO 96
A13 16 017 54 INT2 106 Voo 131 XF1 98
A14 15 018 53 INT3 107 Voo 132
A15 14 019 52 MCBljMP 127 Vss 3
A16 13 020 50 ROY 92 Vss 4
A17 12 021 48 RESET 95 Vss 17
A18 11 022 47 R/W 94 VSS 19
A19 10 023 46 SHZ 118 VSS 30
A20 9 024 45 STRB 93 VSS 35
A21 8 025 44 TCLKO 120 Vss 36
A22 7 026 43 TCLK1 122 VSS 37
A23 6 027 41 VSS 42
CLKRO 5 028 39 VSS 51
CLKXO 4 029 38 Voo 6 VSS 57
00 3 030 34 Voo 15 VSS 61
01 2 031 31 Voo 24 VSS 69
02 1 ORO 108 Voo 32 Vss 70
03 130 OXO 116 Von 33 Vss 71

tvoo and VSS pins are on a common plane internal to the device.

13-14

Pinout and Pin Assignments

Table 13-6. TMS320C31 Pin Assignments (NumericaQt

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal
1 A21 31 031 61 Vss 91 Voo 121 Voo
2 A20 32 Voo 62 012 92 ROY 122 TClK1
3 Vss 33 Voo 63 011 93 STRB 123 EMU3
4 Vss 34 030 64 010 94 RNI 124 EMUO
5 A19 35 Vss 65 Voo 95 RESET 125 EMU1
6 Voo 36 Vss 66 Voo 96 XFO 126 EMU2
7 A18 37 Vss 67 09 97 Voo 127 MCBLJMP
8 A17 38 029 68 08 98 XF1 128 Vss
9 A16 39 028 69 Vss 99 lACK 129 A23
10 A15 40 Voo 70 Vss 100 INTO 130 A22
11 A14 41 027 71 Vss 101 Vss 131 Voo
12 A13 42 Vss 72 07 102 Vss 132 Voo
13 A12 43 026 73 06 103 INT1
14 A11 44 025 74 Voo 104 Voo
15 Voo 45 024 75 05 105 Voo
16 A10 46 023 76 04 106 INT2
17 Vss 47 022 77 03 107 INT3
18 A9 48 021 78 02 108 ORO
19 Vss 49 Voo 79 01 109 Vss
20 A8 50 020 80 00 110 FSRO
21 A7 51 Vss 81 H1 111 ClKRO
22 A6 52 019 82 H3 112 ClKXO
23 A5 53 018 83 Voo 113 Vss
24 Voo 54 017 84 Vss 114 FSXO
25 A4 55 016 85 Vss 115 Voo
26 A3 56 015 86 Vss 116 OXO
27 A2 57 Vss 87 X2/ClKIN 117 Vss
28 A1 58 014 88 X1 118 SHZ
29 AO 59 Voo 89 HOlOA 119 Vss
30 Vss 60 013 90 HOlO 120 TClKO

t VOO and VSS pins are on a common plane internal to the device.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-15

Signal Descriptions

13.2 Signal Descriptions

13.2.1 TMS320C30 Signal Descriptions

13-16

Table 13-7 describes the signals that the TMS320C30 device uses in the
microprocessor mode. It lists the signal/port/bit name; the number of pins allo­
cated; the input (I), output (O), or high-impedance state (Z) operating modes;
a brief description of the signal's function; and the condition that places an out­
put pin in high impedance. A line over a signal name (for example, RESET)
indicates that the signal is active (low) (true at a logic 0 level). Pins labeled NC
are not to be connected by the user. The signals are grouped according to
function.

Signal Descriptions

Table 13-7. TMS320C30 Signal Descriptions

Condition When
Signal/Port #Plns I/O/Zt Description Signal Is In High Z*

Primary Bus Interface (61 Pins)

D31-DO 32 I/O/l 32-bit data port of the primary bus interface S H R

A23-AO 24 O/Z 24-bit address port of the primary bus inter- S H R
face

RNI O/Z Read/write signal for primary bus interface. This S H R
pin is high when a read is performed and low
when a write is performed over the parallel inter-
face.

STRB O/l External access strobe for the primary bus S H
interface

RDY Ready signal. This pin indicates that the exter- S
nal device is prepared for a primary bus inter-
face transaction to complete.

HOLD Hold signal for primary bus interface. When
HOLD is a logic low, any ongoing transaction is
cO'!!!pleted. The A23-AO, D31-DO, STRB, and
RNI signals are placed in a high-impedance
state, and all transactions over the primary bus
interface are held until HOLD becomes a logic
high or the NOHOLD bit of the primary bus con-
trol register is set.

HOLDA O/Z Hold acknowledge signal for primary bus inter- S
face. This signal is generated in response to a
logiclowon HOLDj!signalsthatA23-AO, D31-
DO, STRB, and RNV are placed in a high-impe-
dance state and that all transactions over the
bus will be held. HOLDA will be high in response
to a logic high of HOLD or when the NOHOLD
bit of the primary bus control register is set.

Expansion Bus Interface (49 Pins)

XD31-XDO 32 I/O/l 32-bit data port of the expansion bus interface S R

XA12-XAO 13 O/Z 13-bit address port of the expansion bus inter- S R
face

XRNI O/l Read/write signal for expansion bus interface. S R
When a read is performed, this pin is held high;
when a write is performed, this pin is low.

MSTRB O/Z External memory access strobe for the expan- S
sion bus interface

t Input (I). output (0). high-impedance state (Z)
:j: S = SHZ active, H = HOLD active. R = RESET active

TMS320C3x Signal Descriptions and Electrical Characteristics 13-17

Signal Descriptions

Table 13-7. TMS320C30 Signal Descriptions (Continued)

Condition When
Signal/Port # Pins I/O/Zt Description Signal Is In High Z*

Expansion Bus Interface (49 Pins) (Continued)

10STRB 0/2 External I/O access strobe for expansion bus S
interface

XRDY Ready signal. This pin indicates that the exter-
nal device is prepared for an expansion bus in-
terface transaction to complete.

Control Signals (9 Pins)

RESET Reset. When this pin is a logic low, the device is
placed in the reset condition. After reset be-
comes a logic high, execution begins from the
location specified by the reset vector.

I NT3-1NTO 4 External interrupts

lACK 0/2 Interrupt acknowledge signal. lACK is set to 1 S
(logic high) by the lACK instruction. This can be
used to indicate the beginning or end of an in-
terrupt service routine.

MC/MP Microcomputer/microprocessor mode pin

XF1, XFO 2 1/0/2 External flag pins. They are used as general- S R
purpose I/O pins or to support interlocked pro-
cessor instructions.

Serial Port 0 Signals (6 Pins)

CLKXO 1/0/2 Serial port 0 transmit clock. Serves as the serial S R
shift clock for the serial port 0 transmitter.

DXO 1/0/2 Data transmit output. Serial port 0 transmits se- S R
rial data on this pin.

FSXO 1/0/2 Frame synchronization pulse for transmit. The S R
FSXO pulse initiates the transmit data process
over pin DXO.

CLKRO 1/0/2 Serial port 0 receive clock. Serves as the serial S R
shift clock for the serial port 0 receiver.

DRO 1/0/2 Data receive. Serial port 0 receives serial data S R
via the DRO pin.

FSRO 1/0/2 Frame synchronization pulse for receive. The S R
FSRO pulse initiates the receive data process
over DRO.

t Input (I), output (0), high-impedance state (Z)
:j: S = SHZ active, H = HOLD active, R = RESET active

13-18

Table 13-7. TMS320C30 Signal Descriptions (Continued)

SlgnallPort

ClKX1

DX1

FSX1

ClKR1

DR1

FSR1

TClKO

TClK1

V003-VOOO

IODV001. IODVooo

ADV001. ADVooo

PDVOO

Pins

4

2

2

1

VO/Zt Description

Serial Port 1 Signals (6 Pins)

I/O/Z Serial port 1 transmit clock. Serves as the seri-
al shift clock for the serial port 1 transmitter.

I/O/Z Data transmit output. Serial port 1 transmits
serial data on this pin.

I/O/Z Frame synchronization pulse for transmit. The
FSX1 pulse initiates the transmit data process
over pin DX1.

I/O/Z Serial port 1 receive clock. Serves as serial
shift clock for the serial port 1 receiver.

I/O/Z Data receive. Serial port 1 receives serial data
via the DR1 pin.

I/O/Z Frame synchronization pulse for receive. The
FSR1 pulse initiates the receive data process
over DR1.

TImer 0 Signals (1 Pin)

I/O/Z Timer clock. As input. TClKO is used by timer 0
to count external pulses. As output pin. TClKO
outputs pulses generated by timer O.

Timer 1 Signals (1 Pin)

I/O/Z Timer clock. As input. TClK1 is used by timer 1
to count external pulses. As output pin. TClK1
outputs pulses generated by timer 1.

Supply and Oscll/ator Signals (29 Pins)

Four +5-V supply pins §

Two +5-V supply pins §

Two +5-V supply pins §

One +5-V supply pin §

t Input (I), output (0), high-impedance state (Z)
:j: S = SHZ active, H = HOLD active, R = RESET active
§ The recommended decoupling capacitor is 0.1 J.lF.

Signal Descriptions

Condition When
Signal Is In High Z*

S R

S R

S R

S R

S R

S R

S R

S R

TMS320C3x Signal Descriptions and Electrical Characteristics 13-19

Signal Descriptions

Table 13-7. TMS320C30 Signal Descriptions (Continued)

Signal/Port

DDV001, DDVooo

MDVoo

VSS3-VSSO

DV SS3-DV sso

CVSS1,CVSSO

IVss

VBBP

VSUBS

X1

X2/ClKIN

H1

H3

Pins I/O/Zt Description

2

Supply and Oscillator Signals (29 Pins) (Continued)

Two +5-V supply pins §

One +5-V supply pin §

4 Four ground pins

4 Four ground pins

2 Two ground pins

One ground pin

NC VBB pump oscillator output

Suusiraie pin. 11e to giound.

o Output pin from internal oscillator for the crystal.
If crystal not used, pin should be left uncon­
nected.

Input pin to internal oscillator from a crystal or a
clock

Condition When
Signal Is In High Z*

1 O/Z External H1 clock-has a period equal to twice S
ClKIN.

O/Z External H3 clock-has a period equal to twice S
ClKIN.

f Input (I), output (0), high-impedance state (Z)
:t: S = SHZ active, H = HOLO active, R = RESET active
§ Follow the connections specified for the reserved pins. 18- to 22-kQ pull-up resistors are recommended. All +5-volt supply pins

must be connected to a common supply plane, and all ground pins must be connected to a common ground plane.

13-20

Table 13-7. TMS320C30 Signal Descriptions (Continued)

Signal/Port

EMU2-EMUO

EMU3

EMU4/SHZ

EMU6, EMU5

RSV1o-RSV5

RSV4-RSVO

Pins I/O/Zt Description

Reserved (18 Pins) §

3 ReseNed. Use pull-ups to +5 volts. See Sec­
tion 12.7 on page 12-39.

2

6

5

a ReseNed. See Section 12.7 on page 12-39.

Shutdown high impedance. An active low shuts
down the TMS320C30 and places all pins in a
high-impedance state. This signal is used for
board-level testing to ensure that no dual drive
conditions occur. CAUTION: An active low on
the SHZ pin corrupts TMS320C30 memory and
register contents. Reset the device with an
SHZ=1 to restore it to a known operating condi­
tion.

NC ReseNed.

I/O ReseNed. Use pull-ups on each pin to +5 volts.

ReseNed. Tie pins directly to +5 volts.

Locator (1 Pin)

Locator NC Reserved. See Rgure 13-1 on page 13-3 and
Table 13-1 on page 13-6.

f Input (I), output (0), high-impedance state (Z) * S = SHZ active, H = HOLD active, R = RESET active

Signal Descriptions

Condition When
Signal Is In High Z*

§ Follow the connections specified for the reserved pins. 18- to 22-kQ pull-up resistors are recommended. All +5-volt supply pins
must be connected to a common supply plane, and all ground pins must be connected to a common ground plane.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-21

Signal Descriptions

13.2.2 TMS320C31 Signal Descriptions

Table 13-8 describes the signals that the TMS320C31 device uses in the
microprocessor mode. They are listed according to the signal name; the num­
ber of pins allocated; the input (I), output (0), or high-impedance state (Z) op­
erating modes; a brief description of the signal's function; and the condition
that places an output pin in high impedance. A line over a signal name {for ex­
ample, RESET} indicates that the signal is active (low) (true at a logic 0 level).

Table 13-8. TMS320C31 Signal Descriptions

Signal/Port # Pins

031-00 32

A2.3-AO 24

I/O/Zt Description

Primary Bus Interface (61 Pins)

I/O/Z 32-bit data port

O/Z 24-bit address pert

Hold signal. When HOLD is a logic low, any on­
going transaction is comJ?leted. The A2.3--AO,
031-00, STRB, and R/W signals are placed in
a high-impedance state, and all transactions
over the primary bus interface are held until
HOLD becomes a logic high or until the NO­
HOLD bit of the primary bus control register is
set.

Condition When
Signal Is In High Z*

S

s
H

H

R

R

HOLDA O/Z Hold acknowledge signal. This signal is gener- S

R/W O/Z

ated in response to a logic low on HOLD. !!§ig-
nals that A2.3--AO, 031-00, STRB, and R/W are
placed in a high-impedance state and that all
transactions over the bus will be held. HOLDA
will be high in response to a logic high of HOLD
or until the NOHOLD bit of the primary bus con-
trol register is set.

Read/write signal. This pin is high when a read
is performed and low when a write is performed
over the parallel interface.

Ready signal. This pin indicates that the exter­
nal device is prepared for a transaction comple­
tion.

STRB O/Z External access strobe

t Input (I), output (0), high-impedance (Z) state
:j: S = SHZ active, H = HOLD active, R = RESET active

13-22

S H R

S H

Signal Descriptions

Table 13-8. TMS320C31 Signal Descriptions (Continued)

Condition When
Signal/Port # Pins I/O/Zt Description Signal Is In High Z*

Control SIgnals (10 Pins)

INT3-INTO 4 External interrupts

lACK O/Z Interrupt acknowledge signal. lACK is set to 1 S
by the lACK instruction. This can be used to in-
dicate the beginning or end of an interrupt ser-
vice routine.

MCBL)MP Microcomputer boot loader/microprocessor
mode pin

RESET Reset. When this pin is a logic low, the device is
placed in the reset condition. When reset be-
comes a logic 1, execution begins from the loca-
tion specified by the reset vector.

SHZ Shut down high Z. An active (low) shuts down
the TMS320C31 and places all pins in a high-
impedance state. This signal is used for board-
level testing to ensure that no dual drive condi-
tions occur. CAUTION: An active (low) on the
SHZ pin corrupts TMS320C31 memory and reg-
ister contents. Reset the device with an SHZ = 1
to restore it to a known operating condition.

XF1, XFO 2 I/O/Z External flag pins. These are used as general- S R
purpose I/O pins or to support interlocked pro-
cessor instructions.

Serial Port 0 Signals (6 Pins)

CLKRO I/O/Z Serial port 0 receive clock. This pin serves as S R
the serial shift clock for the serial port 0 receiver.

CLKXO I/O/Z Serial port 0 transmit clock. Serves as the serial S R
shift clock for the serial port 0 transmitter.

ORO I/O/Z Data receive. Serial port 0 receives serial data S R
via the ORO pin.

OXO I/O/Z Data transmit output. Serial port 0 transmits se- S R
rial data on this pin.

FSRO I/O/Z Frame synchronization pulse for receive. The S R
FSRO pulse initiates the receive data process
over ORO.

T Input (I), output (0), high-impedance state (Z)
:j: 8 = 8HZ active, H = HOLD active, R = RESET active

TMS320C3x Signal Descriptions and Electrical Characteristics 13-23

Signal Descriptions

Table 13-8. TMS320C31 Signal Descriptions (Continued)

Signal/Port

FSXO

TClKO

TClK1

H1

H3

Voo

VSS

X1

X2/ClKIN

EMU2-EMUO

EMU3

Pins I/O/Zt Description

Serial Port 0 Signals (6 Pins) (Continued)

I/O/Z Frame synchronization pulse for transmit. The
FSXO pulse initiates the transmit data process
over pin DXO.

Timer Signals (2 Pins)

I/O/Z Timer clock O. As an input. TClKO is used by
timer 0 to count external pulses. As an output
pin. TClKO outputs pulses generated by timer
O.

I/O/Z Timer clock 1. As an input. TClKO is used by
timer 1 to count external pulses. As an output
pin. TCLK1 outputs pulses geneiated by timei
1.

Supply and Oscillator Signals (49 Pins)

O/Z External H1 clock. This clock has a period
equal to twice ClKIN.

O/Z External H3 clock. This clock has a period
equal to twice ClKIN.

20 +5-VoC supply pins. All pins must be con­
nected to a common supply plane. §

25 Ground pins. All ground pins must be con­
nected to a common ground plane.

3

O/Z Output pin from the internal crystal oscillator. If
a crystal is not used. this pin should be left un­
connected.

o

The internal oscillator input pin from a crystal or
a clock.

Reserved (4 Pins) f

Reserved. Use 20-kQ pull-up resistors to +5
volts.

Reserved.

t Input (I), output (0). high-impedance state (Z) * S = SHZ active, H = HOLO active, R = RESET active
§ The recommended decoupling capacitor value is 0.1 !-IF.

Condition When
Signal Is In High Z*

S R

S

S

S

S

~ Follow the connections specified for the reserved pins. 18-to 22-kQ pull-up resistors are recommended. All +5-volt supply pins
must be connected to a common supply plane, and all ground pins must be connected to a common ground plane.

13-24

Electrical Specifications

13.3 Electrical Specifications

Table 13-9, Table 13-10, Table 13-11, and Figure 13-8 show the electrical
specifications for the TMS320C3x.

Table 13-9.Absolute Maximum Ratings Over Specified Temperature Range
Condition/Characteristic

Supply voltage range, Voo

Input voltage range

Output voltage range

Continuous power dissipation (worst case)

Operating case temperature range

Storage temperature range

'C30/'C31 Range

-0.3Vto 7V

-0.3Vt07V

-0.3 Vto 7 V

3.15 W for TMS320C30-33
1.7 W for TMS320C31-33
(See Note 3)

TMS320C30GEL 0 ° C to 85°C
TMS320C31PQL O°C to 85°C
TMS320C31PQA -40°C to +125°C

Note.: 1) All voltage values are with respect to VSS.

'LC31 Range

-0.3 Vto 5 V

-0.3 Vto 5 V

-0.3Vt05V

1.1 W
(See Note 3)

2) Stresses beyond those listed above may cause permanent damage to the device. This is a stress rating only;
functional operation of the device at these or any other conditions beyond those indicated in Table 13-10 is not im­
plied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

3) Actual operating power will be less than stated. These values were obtained under specially produced worst-case
test conditions, which are not sustained during normal device operation. These conditions consist of continuous
parallel writes of a checkerboard pattern to both primary and expansion buses at the maximum rate possible. See
nominal (100) current specification in Table 13-11.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-25

Electrical Specifications

Table 13-10. Recommended Operating Conditions
'C30rC31 'LC31-33

Parameter Min Nom Max Min Nom Max Unit

Voo Supply voltages (DDVoo, etc.) 4.75 5 5.25 3.13 3.3 3.47 V

Vss Supply voltages (CVss, etc.) 0 0 V

VIH High-level input voltage 2 Voo 1.8 Voo V
+ 0.3t + 0.3t

VIL Low-level input voltage -0.3 0.8 -O.3t 0.6 V

IOH High-level output current -300 -300 !LA

IOL Low-level output current 2 2 mA

T Operating case temperature 0 85 0 85 °C
range

VTH ClKIN high-level input voltage 2.6 Voo 2.5 Voo V
forClKIN + 0.3t + 0.3t

t Guaranteed from characterization but not tested

Note: All voltage values are with respect to VSS. All input and output voltages except those for CLKIN are TTL compatible.
CLKIN can be driven by a CMOS clock.

13-26

Electrical Specifications

Table 13-11. Electrical Characteristics Over Specified Free-Air Temperature Ranget

Electrical Characteristic

VOH High-level output voltage (Voo = Min, IOH =
Max)

VOL§ low-level output voltage (Voo = Min, IOL =
Max)

IZ Three-state current (Voo = Max)

II Input current (VI = VSS to VOO)

lIP Input current (Inputs with internal pull-ups) 11

ICC Supply current (T A = 'C30-33
25 0 C, V~o = Max, fx 'C30-27
= Max) # 'C30-40

'C31-27
'C31-33
'C31-33 (ext. temp)
'C31-40
'C31-50
'C30 PPM

100 Supply current, standby; IDlE2, clocks shut
off

Cj Input capacitance All inputs except
ClKIN

ClKIN

Co Output capacitance

t All input and output voltage levels are TTL compatible. * All nominal values are at VOO = 5 V, TA = 25°C.
§ For 'C30 PPM: VOL{max)=O.6 V, except for the following:

VOL{max)=l V for A{0-31)
VOL{max)=0.9VforXA{Q-12),0(0-31)

Min

2.4

-20

-10

-400

VoL{max)=0.7 V for STRB, XSTRB, MSTRB, FSXO/I, CLKXO/1,
CLKRO/1, OXO/1 R/W, XR/W

'C301'C31 'LC31-33

Nom* Max Min Nom* Max Unit

3 2.0 V

0.3 0.6
0.4

V

20 -20 20 ~

10 -10 10 ~

20 -400 10 ~

200 600 120 300 rnA
175 500
170 600
120 260
150 325
150 325
160 390
200 425
170 600

50 21
mA

15* 15* pF

25 25

20* 20* pF

11 Pins with internal pull-up devices: INT3-INTO, MC/MP, RSV1 O-RSVO. Although RSVl Q-RSVO have internal pullup devices,
external pullups should be used on each pin as described in Table 13-7 beginning on page 13-17.

Actual operating current will be less than this maximum value. This value was obtained under specially produced worst-case
test conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes
of a checkerboard pattern to both primary and expansion buses at the maximum rate possible. See Calculation ofTMS320C30
Power Dissipation, Appendix O.

II fx is the input clock frequency. The maximum value is 40 MHz.
* Guaranteed by design but not tested

TMS320C3x Signal Descriptions and Electrical Characteristics 13-27

Electrical Specifications

Figure 13-8. Test Load Circuit

13-28

Tester Pin
Electronics

Where: IOL = 2.0 rnA (aU outputs)
IOH = 300 I!A (aU outputs)
VLoad = 2.15 V
CT = 80 pF typlca! load circuit capacitance

Output
Under
Test

Signal Transition Levels

13.4 Signal Transition Levels

13.4.1 TTL-Level Outputs

TTL-compatible output levels are driven to a minimum logic-high level of 2.4
volts and to a maximum logic-low level of 0.6 volt. Figure 13-9 shows the TTL­
level outputs.

Figure 13-9. TTL-Level Outputs

=:::J ~------ ----------- ----

--- -----------------

2.4 V
2.0V

1.0V
0.6V

TTL-output transition times are specified as follows:

o For a high-to-Iow transition, the level at which the output is said to be no
longer high is 2.0 volts, and the level at which the output is said to be low
is 1.0 volt.

o For a low-to-high transition, the level at which the output is said to be no
longer low is 1.0 volt, and the level at which the output is said to be high
is 2.0 volts.

13.4.2 TTL-Level Inputs

Figure 13-10 shows the TTL-level inputs.

Figure 13-10. TTL-Level Inputs ----I ~----- 2.0V ----- ------------- ---- 00%

--- ---------------- --- 10%
'---- O.SV

TTL-compatible input transition times are specified as follows:

o For a high-to-Iow transition on an input signal, the level at which the input
is said to be no longer high is 2.0 volts, and the level at which the input is
said to be low is 0.8 volt.

o For a low-to-high transition on an input signal, the level at which the input
is said to be no longer low is 0.8 volt, and the level at which the input is said
to be high is 2.0 volts.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-29

Timing

13.5 Timing

Timing specifications apply to the TMS320C30 and TMS320C31.

13.5.1 X2/CLKIN, H1, and H3 Timing

Table 13-12 defines the timing parameters for the X2/ClKIN, H1, and H3 in­
terface signals. The numbers shown in parentheses in Figure 13-11 and
Figure 13-12 correspond with those in the No. column of Table 13-12. Refer
to the RESET timing in Figure 13-23 on page 13-48 for ClKI N to H 1 /H3 delay
specification.

Table 13-12. Timing Parameters for X2/CLKIN, H1, and H:fi

'C3D-27/
'C31-27

No. Name Description Min Max

(1) t,(CI) elKIN fall time 6*

(2) iw(CIL) elKIN low pulse
duration 14
tc(CI) = min

(3) iw(CIH) elKIN high pulse
duration 14
tc(CI) = min

(4) tr(CI) elKIN rise time 6*

(5) tc(CI) elKIN cycle time 37 303

(6) tf(H) H1/H3 fall time 4

(7) iw(HL) H1/H31ow pulse P-6 duration

(8) iw(HH) H1/H3 high pulse P-7
duration

(9) tr(H) H1/H3 rise time 5

(9.1) ~(HL-HH) Delay from H1 (H3)
ot low to H3(H1) high 6

(10) tc(H) H1/H3 cycle time 74 606

t Guaranteed from characterization but not tested * Guaranteed by design but not tested
§ p = tc(CI)

13-30

'C3D-33/
'C31-33/ 'C3D-40/

'LC31 'C31-40 'C31-50

Min Max Min Max Min Max Unit

5* 5* 5* ns

10 9 7 ns

10 9 7 ns

5* 5* 5* ns

30 303 25 303 20 303 ns

3 3 3 ns

P-6 P-5 P-5 ns

P-7 P-6 P-6 ns

4 3 3 ns

ot 5 ot 4 ot 4 ns

60 606 50 606 40 606 ns

Figure 13-11. Timing for X2/CLKIN

X2/CLKIN

I
(1)---1

1
1 1
14- (2) ~

Figure 13-12. Timing for H1/H3

14 (10) tI
1 1 -1 14- (9) -.., 14- (6) I o N j---

--- ~ (8) ----tI 1_ \
I r-- (7) ----+\

-+I j4- (9.1) -tj 14- (9.1)
I I

H~ /1-1--"
1"--------::11 I I I~--
1 ~ If- (9) -.! t4- (6)

1·"-- (7) --.-oil ~ (8) ---.l 1

H1

14 (10) tI

Timing

TMS320C3x Signal Descriptions and Electrical Characteristics 13-31

Timing

13.5.2 Memory Read/Write Timing

13-32

Table 13-13 defines memory read/write timing parameters for (M) STRB. The
numbers shown in parentheses in Figure 13-13 and Figure 13-14 corre­
spond with those in the No. column of Table 13-13.

Timing

Table 13-13. Timing Parameters for a Memory ((M)STRB) = 0) Reaci;Write

'C30-33
'C30-27 'C31-33 'C30-40
'C31-27 'LC31 'C31-40 'C31-50

No. Name Description Min Max Min Max Min Max Min Max Unit

(11) td(H1 L-(M)SL) H1 low to (M)STRB 0* 13 0* 10 0* 6§ 0* 4 ns
low delay

(12) td(H1 L-(M)SH) H1 low to (M)STRB 0* 13 0* 10 0* 6 0* 4 ns
high delay

(13.1) td (H 1 H-RWL) H1 high to R/W low 0* 13 0* 10 0* 9 0* 7 ns
delay

(13.2) ~(H1 H-XRWL) H1 high to XR/W 0* 19 0* 15 0* 13 ns
low delay

(14.1) td(H1L-A) H1 low to A valid 0* 16 0* 14 0* 11 0* 9 ns
delay

(14.2) ~(H1L-XA) H1 low to XA valid 0* 12 0* 10 0* 9 ns
delay

(15.1) tsu(O)R D setup before H 1 18 16 14 10 ns
low (read)

(15.2) tsu(XO)R XD setup before H1 21 18 16 ns
low (read)

(16) th((X)O)R (X)D hold time after 0 a 0 0 ns
H 1 low (read)

(17.1) tsu(ROy) RDY setup before 10 8 8 6 ns
H1 high

(17.2) tsu(XROy) XRDY setup before 11 9 9 ns
H1 high

(18) th((X)ROy) (X)RDY hold time a 0 0 a ns
after H1 high

(19) td(H1 H-(X)RWH) H1 high to (X)R/W 13 10 9 7 ns
high (write) delay

(20) tv((X)O)W (X) D valid after H 1 25 20 17 14 ns
low (write)

(21) th((X)O)W (X) D hold time after 0* 0* 0* 0* ns
H1 high (write)

* Guaranteed by design but not tested
§ For 'C30 PPM, ~(H1 L-(M)SL) (max)=7ns

TMS320C3x Signal Descriptions and Electrical Characteristics 13-33

Timing

Table 13-13. Timing Parameters for a Memory ((M)STRB) = 0) Read/Write (Continued)

No. Name Description

(22.1) ~(H1H-A) H1 high to A valid
on back-to-back
write cycles (write)
delay

(22.2) td(H1H-XA) H1 high to XA valid
on back-to-back
write cycles (write)
delay

(26) td(A-(X)RDy) (X)RDY delay from
A valid delay

t Guaranteed from characterization but not tested
:j: Guaranteed by design but not tested
§ For 'C30 PPM, td(H1 L-(M)SL) (max)=7ns

'C30-33
'C3D-27 'C31-33 'C30-40
'C31-27 'LC31 'C31-40

Min Max Min Max Min Max

23 1S 15

32 25 21

10t st 7t

Figure 13-13. Timing for Memory ((M)STRB = 0) Read

H3

H1
I I

~
I ~(1J) (11) I
I :L : (M)STRB I
I I I I I I

(X)RIW I I I 1\ I I I
"- ~ (i4.1/14.~

I I
~ ~

(X)A X --X
I I (15.1/15.2)

(26) --Q I ~ 14- (16) 110 (X) 0
(17.1/17.2)---\ :.-

~ 14- (18)

(X)RDY \lY
Note: (M)STRB will remain low during back-to-back read operations.

13-34

'C31-50

Min Max

12

6

(13.1/13.2)

Unit

ns

ns

ns

Timing

Figure 13-14. Timing for Memory ((M)STRB = 0) Write

H3

H1

(M)STRB
I 1(11)~ 1+-1 + (12) I
Il\.l 1).Jo+j-__ \ __ I,-+-II -----
I 1 1 liz 1 1 -
I _I 1 I 1 ---' 14- (19)
1 -.. 14-1 (13.1/13.2) 1)
1 'i 1 I 1 .J------(X)R/W

~ j4- (14.1/14.2) 1 1

OQA =X :: ~ t~·,~~
(20) ~ 14-1 ~ 14- (21)

x"'-____ _

MD ---(1-7'1-/1-7'-2)-~-<~::~:~::(1:8)::»---«::::::::»----------
___ ~ 1,--__ ---,.

MRDY ~.v \ I

Table 13-14 defines memory read timing parameters for IOSTRB. The num­
bers shown in parentheses in Figure 13-15 and Figure 13-16 correspond
with those in the No. column of Table 13-14 and Table 13-15.

Table 13-14. Timing Parameters for a Memory (IOSTRB = 0) Read

'C30-27 'C30-33 'C30-40

No. Name Description Min Max Min Max Min Max Unit

(11.1) tcl(H1 H-IOSL) H1 high to IOSTRB low delay ot 13 ot 10 ot 9 ns

(12.1) tcl(H1 H-IOSH) H1 high to IOSTRB high delay ot 13 ot 10 ot 9 ns

(13.1) tcl(H1L-XRWH) H1 low to XRf\N high delay ot 13 ot 10 ot 9 ns

(14.3) tcl(H1L-XA) H 1 low to XA valid delay ot 13 ot 10 0* 9 ns

(15.3) tsu(XD)R XD setup before H1 high 19 15 13 ns

(16.1) th(XD)R XD hold time after H1 high 0 0 0 ns

(17.3) tsu(XRDY) XRDY setup before H1 high 11 9 9 ns

(18.1) th(XRDy) XRDY hold time after H1 high 0 0 0 ns

t Guaranteed by design but not tested

TMS320C3x Signal Descriptions and Electrical Characteristics 13·35

Timing

Figure 13-15. Timing for Memory (IOSTRB = 0) Read

H3

H1
I I

I I I I (11.1) 14 ~ (12.1) 14 ~ I \l il I
IOSTRB I I

I I

-=7 (13.1) I ~ ~ (23)
I '\ I XRJW
I

14 ~ (14.3) I
I

XA X
(15.3)::

>C
H !4- (16.1)

XO

(17.3) ~
I ~ 'J7 (18.11

(X) ROY ~

13-36

Timing

Figure 13-16. Timing for Memory (IOSTRB = 0) Write

H3

H1
I I

IOSTRB _ooo!!_(_11_.1_) -r'"'~~1 __ (1_2'_1)~~f..Jt--;~~~-""'i----
I I I I till ~ (13.1)

(2~ I I I I I

(X)RtvV ~ ! I I :1
~ ~ (14.3) II I

(X)A X~: _' -r-----,.-: >C
14 III (24) ~I ~ (25)

(X)D ----«)>--
(17.3)

Y 14- (18.1) \l 11"-':"""":'--

Table 13-15 defines memory write timing parameters for IOSTRB. The num­
bers shown in parentheses in Figure 13-15 and Figure 13-16 correspond
with those in the No. column of Table 13-14 and Table 13-15.

Table 13-15. Timing Parameters for a Memory (IOSTRB = 0) Write
'C30-27 'C30-33 'C30-40

No. Name Description Min Max Min Max Min Max Unit

(23) ~(H1 L-XRWL) H1 low to XR/W low delay ot 19 ot 15 ot 13 ns

(24) tv(XD)W XD valid after H1 high 38 30 25 ns

(25) th(XD)W XD hold time after H1 low 0 0 0 ns

t Guaranteed by design but not tested

TMS320C3x Signal Descriptions and Electrical Characteristics 13-37

Timing

13.5.3 XFO and XF1 Timing When Executing LOFI or LOll

13-38

Table 13-16 defines the timing parameters for XFO and XF1 during execution
of LOFI or LOll. The numbers shown in parentheses in Figure 13-17 corre­
spond with those in the No. column of Table 13-16.

Table 13-16. Timing Parameters for XFO and XF1 When Executing LOFI or LOll

'C30-33
'C30-27 'C31-33 'C30-40
'C31-27 'LC31 'C31-40 'C31-50

No. Name Description Min Max Min Max Min Max Min

(1) td(H3H-XFOL) H3 high to XFO low delay 19 15 13

(2) tsu(XF1) XF1 setup before H1 low 13 10 9 9

(3) th(XF1) XF1 hold time after H1 low 0 0 0 0

Figure 13-17. Timing for XFO and XF1 When Executing LOFI or LOll

H3

H1

(M)STRB

(X)R/W

(X) A

(X)D

XFO Pin

XF1 Pin

Fetch
LDFI or LDII Decode Read Execute

i\ /
I ~----'
I

--~0-------X---
i -0--
I
I

~r=
(1) ~ I+-

(2)~ ~
~ 14-- (3)

-=\lV
~

Max

12

Timing

Unit

ns

ns

ns

TMS320C3x Signal Descriptions and Electrical Characteristics 13-39

Timing

13.5.4 XFO Timing When Executing STFI and STII

Table 13-17 defines the timing parameters for the XFO and XF1 pins during
execution of STFI or STII. The number shown in parentheses in Figure 13-18
corresponds with the number in the No. column of Table 13-17.

Table 13-17. Timing Parameters for XFO When Executing STFI or STII

No. Name

(1) td{H3H-XFOH)

'C3D-33
'C3D-27 'C31-33 'C3D-40
'C31-27 'LC31 'C31-40 'C31-50

Description Min Max Min Max Min Max Min Max Unit

H3 high to XFO high delay 19 15 13 12 ns

XFO is always set high at the beginning of the execute phase of the inteilock
store instruction. When no pipeline conflicts occur, the address of the store is
also driven at the beginning of the execute phase of the interlock store instruc­
tion. However, if a pipeline conflict prevents the store from executing, the ad­
dress of the store will not be driven until the store can execute.

Figure 13-18. Timing for XFO When Executing an STFI or STII

H3

H1

I
(M)STRB I \ I I

I
(X)RIW -X ;-

I

(X)A ~: >C
{X)D

I -< >-I
I

(X)RDY --.I I+- (1) ~c. I
I

XFOPin
,

13-40

Timing

13.5.5 XFO and XF1 Timing When Executing SIGI

Table 13-18 defines the timing parameters for the XFO and XF1 pins during
execution of SIGI. The numbers shown in parentheses in Figure 13-19 corre­
spond with those in the No. column of Table 13-18.

Table 13-18. Timing Parameters for XFO and XF1 When Executing SIGI
'C30·33

'C30·27 'C31-33
'C31-27 'LC31

No. Name Description Min Max Min Max

(1) tel (H3H-XFOL) H3 high to XFO low delay 19 15

(2) td(H3H-XFOH) H3 high to XFO high delay 19 15

(3) tsu(XF1) XF1 setup before H1 low 13 10

(4) th(XF1) XF1 hold time after H1 low 0 0

Figure 13-19. Timing for XFO and XF1 When Executing SIGI
Fetch
81GI Decode Read

H3

H1

(3) ~~
XFO II

II
--.II+- (4)

XF1 --XV-

'C30-40
'C31-40 'C31·50

Min Max Min Max Unit

13 12 ns

13 12 ns

9 9 ns

0 0 ns

Execute

7 (2)

TMS320C3x Signal Descriptions and Electrical Characteristics 13-41

Timing

13.5.6 Loading When the XF Pin Is Configured as an Output

Table 13-19 defines the timing parameter for loading the XF register when the
XF pin is configured as an output. The number shown in parentheses in
Figure 13-20 corresponds with the number in the No. column of Table 13-19.

Table 13-19. Timing Parameters for Loading the XF Register When Configured as an Output
Pin

'C30-33
'C30-27 'C31-33 'C30-40
'C31-27 'LC31 'C31-40 'C31-50

No. Name Description Min Max Min Max Min Max Min Max

(1) tv(H3H-XF) H3 high to XF valid 19 15 13 12

Figure 13-20. Timing for Loading XF Register When Configured as an Output Pin

13-42

H3

H1

OUTXF
Bit

XFPin

Fetch Load
Instruction Decode Read Execute

~lOCO
~ 14- (1)

--------------------------~X~ __

Unit

ns

Timing

13.5.7 Changing the XF Pin From an Output to an Input

Table 13-20 defines the timing parameters for changing the XF pin from an
output pin to an input pin. The numbers shown in parentheses in Figure 13-21
correspond with those in the No. column of Table 13-20.

Table 13-20. Timing Parameters of XF Changing From Output to Input Mode
'C30·33

'C30·27 'C31·33 'C30-40
'C31·27 'LC31 'C31-40 'C31·50

No. Name Description Min Max Min Max Min Max Min Max

(1) th(H3H-XF01) XF hold after H3 high 19 15 13t 12

(2) tsu(XF) XF setup before H1 low 13 10 9 9

(3) th(XF) XF hold after H1 low 0 0 0 0

t For 'e30 PPM, tn(H3H-XF01) (max)=14ns

Figure 13-21. Timing for Change of XF From Output to Input Mode

H3

H1

IOXF
Bit

XFPin

INXF Bit

I Execute
Load of IOF

Output

From Output Synchronizer Value on Pin Buffers Go I I
to Output Delay Seen in IOF

-.! 14-- (1)

--t ~ (2)

-rJ4- (3)

I I

Unit

ns

ns

ns

TMS320C3x Signal Descriptions and Electrical Characteristics 13-43

Timing

13.5.8 Changing the XF Pin From an Input to an Output

Table 13-21 defines the timing parameter for changing the XF pin from an in­
put pin to an output pin. The number shown in parentheses in Figure 13-22
corresponds with the number in the No. column of Table 13-21.

Table 13-21. Timing Parameters of XF Changing From Input to Output Mode
'C30-33

'C30-27 'C31-33 'C30-40
'C31-27 'LC31 'C31-40

No. Name Description Min Max Min Max Min Max

(1) td(H3H-XFIO) H3 high to XF switching 25 20 17
from input to output delay

Figure 13-22. Timing for Change of XF From Input to Output Mode

H3

H1

IOXF
Bit

XFPin

13-44

Execution of
Load oflOF

'C31-50

Min Max Unit

17 ns

I
I
I
I
I
I.- ~

(
(1)

13.5.9 Reset Timing

Timing

RESET is an asynchronous input that can be asserted at any time during a
clock cycle. If the specified timings are met, the exact sequence shown in
Figure 13-23 on page 13-48 will occur; otherwise, an additional delay of one
clock cycle is possible.

The asynchronous reset signals include XFO/1, CLKXO/1, DXO/1, FSXOI1,
CLKRO/1, DRO/1, FSROI1, and TCLKO/1.

Table 13-22 ('C30) and Table 13-23 ('C31) define the timing parameters for
the RESET signal. The numbers shown in parentheses in Figure 13-23 corre­
spond with those in the No. column of Table 13-22 or Table 13-23.

Resetting the device initializes the primary and expansion bus control regis­
ters to seven software wait states and therefore results in slow external ac­
cesses until these registers are initialized.

Note also that HOLD is an asynchronous input and can be asserted during
reset.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-45

Timing

Table 13-22. Timing Parameters for RESET for the TMS320C30

'C30·27 'C3O-33 'C3O-40

No. Name Description Min Max Min Max Min Max Unit

(1) isu(RESET) Setup for RESET before 28 pt§ 10 pt 10 pt§ ns
ClKIN low

(2.1) tci(CLKINH-H1 H) ClKlN high to H1 high delay* 6 20 4 14 2 12 ns

(2.2) tci(CLKINH-H1 L) ClKlN high to H1 low delay* 6 20 4 14 2 12 ns

(3) isu(RESETH-H1 L) Setup for RESET high 13 10 9 ns
before H 1 low and after 1 0 H 1
clock cycles

(5.1) tci(CLKINH-H3L) ClKIN high to H310w delay* 6 20 4 14 2 12 ns

(5.2) tci(CLKINH-H3H) ClKIN high to H3 high delay* 6 20 4 14 2 12 ns

(8) tciis(H1 H-(X)D) H1 high to (X)O disabled (high 19t 15t 13t ns
impedance)

(S) tciis(H3H-(X)A) H3 high to (X)A disabled (high 13t 10t st ns
impedance)

(10) tci(H3H-CONTROLH) H3 high to control signals high 13t 10t st ns
delay

(11) tci(H1 H-RWH) H1 high to R/W high delay 13t 10t st ns

(13) tci(H1 H-IACKH) H1 high to lACK high delay 13t 10t st ns

(14) tciis(RESETL-ASYNCH) RESET low to asynchronous- 31t 25t 21t ns
Iy reset signals disabled (high
impedance)

t Characterized but not tested * See Figure 13-24 for temperature dependence for the 33-MHz TMS320C30. See Figure 13-25 for temperature dependence
for the 40-MHz TMS320C30.

§ p = tc(CI)

13-46

Timing

Table 13-23. Timing Parameters for RESET for the TMS320C31
'C31-33

'C31-27 'LC31 'C31-40 'C31-50

No. Name Description Min Max Min Max Min Max Min Max Unit

(1) tsu(RESEi) Setup for RESET 2S pn 10 pn 10 pn 10 pn ns
before ClKIN low

(2.1) td(CLKINH-H1 H) ClKIN high to H1 2 12 2 12* 2 12 2 10 ns
high delay §#

(2.2) ~(CLKINH-H1 L) ClKIN high to H1 2 12 2 12* 2 12 2 10 ns
low delay §#

(3) tsu(RESETH-H1 L) Setup for RESET 13 10 9 7 ns
high before H1
low and after 1 0
H 1 clock cycles

(5.1) td (CLKI N H-H3L) ClKIN high to H3 2 12 2 12* 2 12 2 10 ns
low delay §#

(5.2) td(CLKINH-H3H) ClKIN high to H3 2 12 2 12* 2 12 2 10 ns
high delay §#

(S) ~is(H1 H-(X)O) H1 high to D 19t 15t 13t 12t ns
disabled (high
impedance)

(9) tdis(H3H-(X)A) H3 high to A 13t 10t 9t st ns
disabled (high
impedance)

(10) td(H3H-CONTROLH) H3 high to 13t 10t 9t st ns
control signals
high delay

(12) td (H 1 H-RWH) H1 high to R/W 13t 10t 9t st ns
high delay

(13) td(H1 H-IACKH) H1 high to lACK 13t 10t 9t st ns
high delay

(14) tdis(RESETL-ASYNCH) RESET low to 31t 25t 21t 17t ns
asynchronously
reset signals dis-
abled (high im-
pedance)

t Characterized but not tested * 14 ns for the extended temperature 'C31-33
§ See Figure 13-25 for temperature dependence for the TMS320C31-27, TMS320C31-33, and the extended-temperature

TMS320C31-33.
11 P = tc(CI)
See Figure 13-26 for temperature dependence for the TMS320C31-50.

TMS320C3x Signal Descriptions and Electrical Characteristics 13-47

Timing

Figure 13-23. Timing for RESET

H3 ..,..---lI-~
j4 II I 10 H1 Clock Cycles ----tI

(X) 0 I ~~ tr (8) I
(Notes1,7) ~===:;:~):)-t~+---f-II --1111----------&

(X)A (5.2) ...I !.t (9) I II _

(Notes 2,7) (10) I
Control 1- I
Signals -,.. ________ "'" i
~~~ I 

\I 

~ ~(11) 
TMS320C30 :~:::::::::::::::~~j~ ___ Jj-~~\I ____________ ~~~~~~~~~ 

(X) R/W -.! 1f-(12) 

TMS32OC31..,.. ____________ J..,." \I 
RIW "'I ! (! 3) 

lACK ., 
Asynchronous .....,.5=--~(1-4:-) ------------
Reset Signals :::::))---------------~.JJI_.J ---------------

(Note 4) 

Notes: 1) (X)O includes 031-00 and X031-XOO. 

13-48 

2) (X)A includes A23-AO and XA 12-XAO. 

3) Control signals include STRB, MSTRB, and IOSTRB. 

4) Asynchronously reset signals include XFO/1, CLKXO/1, OXOI1, FSXOI1, CLKRO/1, ORO/1, FSROI1, and TCLKO/1. 

5) RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are 
met, the exact sequence shown will occur; otherwise, an additional delay of one clock cycle is possible. 

6) Note that the R/W and XR/W outputs are placed in a high-impedance state during reset and can be provided with 
a resistive pull-up, nominally 18-22 kg, if undesirable spurious writes could be caused when these outputs go low. 

7) In microprocessor mode, the reset vector is fetched twice, with seven software wait states each time. In microcom­
puter mode, the reset vector is fetched twice, with no software wait states. 



Timing 

Figure 13-24. CLKIN to H1/H3 as a Function of Temperature 

Ii) 
.s 
('I) 
J: 
""-.,.... 
J: 
.9 
z 
2 
...J 
(.) 

22 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 

TMS320C30-33 

4.75 V s Voo s 5.25 V 

o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

Case Temperature (CO) 

Figure 13-25. CLKIN to H1/H3 as a Function of Temperature 

22 

20 
_ 18 

.s 16 
('I) 

~ 14 

:I: 12 
.9 z 10 

~ 8 
(.) 6 

4 

2 

TMS320C31-27 
TMS320C31-33 
TMS320C31-33 (extended temperature) 
TMS320C30-40 

4.75 V s Voo s 5.25 V 

O+-.--r~-.--r-~.--r~~~~~'--r-r~~ 

o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105110115120125 

Case Temperature (CO) 

TMS32()C3x Signal Descriptions and Electrical Characteristics 13-49 



Timing 

Figure 13-26. eLKIN to H1/H3 as a Function of Temperature 

20 
Ii) 18 TMS320C31-50 ..s 16 
('I) 4.75 V s Voo s 5.25 V 
~ 14 .... 

12 J: 
0 10 -z 

8 2 
..J 6 () 

4 
2 
0 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 

Case Temperature (CO) 

13-50 



Timing 

13.5.10 SHZ Pin Timing 

Table 13-24 defines the timing parameters for the SHZ pin. The numbers 
shown in parentheses in Figure 13-27 correspond with those in the No. col­
umn of Table 13-24. 

Table 13-24. Timing Parameters for the 8HZ Pin 

'C30 
'C31 
'LC31 

No. Name Description Min 

(1 ) ~is(SHZ) 5HZ low to all 0, I/O pins disabled ot 
(high impedance) 

(2) ten(SHZ) 5HZ high to all 0, I/O pins enabled ot 
(active) 

t Characterized but not tested 

:I: P = tc(CI) 

Figure 13-27. Timing for 8HZ Pin 

H3~~ 

H1~~ 

~ __ ~Ir-----A 
!.- (1) J j (2) I.. 

All 110 Pins 

Max 

2Pt:l: 

2Pt:l: 

Unit 

ns 

ns 

Note: Enabling SHZ destroys TMS320C3x register and memory contents. Assert SHZ = 1 and reset the TMS320C3x to restore 
it to a known condition. 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-51 



Timing 

13.5.11 Interrupt Response Timing 

Table 13-25 defines the timing parameters for the I NT signals. The numbers 
shown in parentheses in Figure 13-28 correspond with those in the No. col­
umn of Table 13-25. 

Table 13-25. Timing Parameters for INT3-INTO 

'C30-33 
'C30-27 'C31-33 'C30-40 
'C31-27 'LC31 'C31-40 'C31-50 

No. Name Description Min Max Min Max Min Max Min Max Unit 

(1) tsu(INT) INT3-INTO setup before H1 19 15 13 10 ns 
low 

(2) tw(INT) Interrupt pulse duration to P 2Pt:j: p 2Pt:j: P 2Pt:j: P 2Pt:j: ns 
guarantee only one interrupt 

t Characterized but not tested 
:j: P = tc(H) 

The interrupt (I Nl) pins are asynchronous inputs that can be asserted at any 
time during a clock cycle. The TMS320C3x interrupts are level-sensitive, not 
edge-sensitive. Interrupts are detected on the falling edge of H1. Therefore, 
interrupts must be set up and held to the falling edge of H 1 for proper detection. 
The CPU and DMA respond to detected interrupts on instruction fetch bound­
aries only. 

For the processor to recognize only one interrupt on a given input, an interrupt 
pulse must be set up and held to: 

o A minimum of one H1 falling edge, and 
o No more than two H1 falling edges. 

The TMS320C3x can accept an interrupt from the same source every two H1 
clock cycles. 

If the specified timings are met, the exact sequence shown in Figure 13-28 will 
occur; otherwise, an additional delay of one clock cycle is possible. 

13-52 TMS320C3x User's Guide 



Timing 

Figure 13-28. Timing for INT3-INTO Response 

H3 

H1 

INT3-INTO 
Pin 

INT3-INTO 
Flag 

ADDR 

Data 

~ 14- (1) 

'\ / 
14---- (2) -----.! 

Reset or 
Interrupt 

Vector Read 

------~~I ----~ ____ ~ ____ _ 

Fetch First 
Instruction of 

Service Routine 

---------------------~()~-------c=r 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-53 



Timing 

13.5.12 Interrupt Acknowledge Timing 

The lACK output goes active on the first half-cycle (HI rising) of the decode 
phase of the lACK instruction and goes inactive at the first half-cycle (HI rising) 
of the read phase of the lACK instruction. 

Table 13-26 defines the timing parameters for the lACK signal. The numbers 
shown in parentheses in Figure 13-29 correspond with those in the No. col­
umn of Table 13-26. 

Table 13-26. Timing Parameters for lACK 

'C30-33 
'C30·27 'C31-33 'C30-40 
'C31-27 'LC31 'C31-40 'C31·50 

No. Name Description Min Max Min Max Min Max Min Max Unit 

(i) td(H 1 H-IACKL) Hi high to iACK iow deiay 13 ." n 7 ns IV w 

(2) td(H1 H-IACKH) H1 high to lACK high delay 13 10 9 7 ns 

Note: The lACK output is active for the entire duration of the bus cycle and is therefore extended if the bus cycle utilizes wait 
states. 

Figure 13-29. Timing for lACK 

H3 

H1 

lACK 

ADDR 

Data 

13-54 

Fetch lACK 
Instruction 

Decode lACK 
Instruction 

X 

lACK Data 
Read 

I 
I 
I.. ~ (2) 

I 
X 

0 



Timing 

13.5.13 Data Rate Timing Modes 

Unless otherwise indicated, the data rate timings shown in Figure 13-30 and 
Figure 13-31 are valid for all serial port modes, including handshake. For a 
functional description of serial port operation, refer to subsection 8.2.12 on 
page 8-30. 

Table 13-27 defines the serial port timing parameters for eight 'C3x devices. 
The numbers shown in parentheses in Figure 13-30 and Figure 13-31 corre­
spond with those in the No. column of Table 13-27. 

Figure 13-30. Timing for Fixed Data Rate Mode 

H1 

I (1)~ If- (3) -. II 
I I I I 

CLKXlR ---./(';-1 --'i A' ~ (3) ~ "N"" \ ;-
I I I I II -tI '-- (5) I 

I I (6) J.... i -tile- (4) I.---.t- (15) 
I I I-j'" • (8) I 

DX~B"O) 
DR _~~"!IW~~~~"!IWW 

FSRi"i _ 

---.l..- 14 ~ I (10) I 
(9) II I I 14 III (9) 

FSX(INT) I I M;j It- (11) 'i \\ 
II~~ 

FSX(EXT)-AI I ~~~ 
I L (11)~ 

(12)" .... 

Notes: 1) Timing diagrams show operations with CLKXP = CLKRP = FSXP = FSRP = O. 

2) Timing diagrams depend on the length of the serial port word, where n = 8, 16, 24, or 32 bits, respectively. 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-55 



Timing 

FSR " I~~ 
(10) .. .:::.j 

DR "l!'!~I!'V'l!"!~"l!"!rl!'n~_1 ~ Bitn-2 ~ Bitn-3 ~~ 
(7) ~(8) 

Notes: 1) Timing diagrams show operation with CLKXP = CLKRP = FSXP = FSRP = O. 

13-56 

2) Timing diagrams depend on the length of the serial port word, where n = 8, 16, 24, or 32 bits, respectively. 

3) The timings that are not specified expressly forthe variable data rate mode are the same as those that are specified 
for the fixed data rate mode. 



Table 13-27. Serial-Port Timing Parameters 

No. Name Description 

(1) ~(H1-SCK) H1 high to internal ClKXIR delay 

(2) tc(SCK) ClKXIR cycle time CLKXIR ext 

CLKXIR int 

(3) lw(scK) ClKXIR high/low pulse CLKXIR ext 
duration 

ClKX/R int 

(4) tr(SCK) ClKXIR rise time 

(5) tf(SCK) ClKX/R fall time 

(6) ~(DX) ClKX to OX valid delay ClKXext 

ClKXint 

(7) tsu(DR) OR setup before ClKR ext 

ClKR low ClKR int 

(8) th(DR) OR hold from ClKR ext 

ClKRlow CLKR int 

(9) ~(FSX) ClKX to internal ClKXext 

FSX high/low delay ClKXint 

(10) tsu(FSR) FSR setup before ClKR 
low 

ClKR ext 

ClKR int 

(11) th(FS) FSX/R input hold from 
ClKXIR low 

ClKXIR ext 

CLKXIR int 

(12) tsu(FSX) External FSX setup be-
fore ClKX 

ClKXext 

ClKXint 

(13) ~(CH-DX)V ClKX to first OX bit, FSX ClKXext 
precedes ClKX high 
delay 

ClKXint 

(14) ~(FSX-DX)V FSX to first OX bit, ClKX precedes FSX 
delay 

(15) ~(DXZ) ClKX high to OX high impedance following 
last data bit delay 

t Guaranteed by design but not tested * Not tested 

Timing 

TMS320C30-27/TMS320C31-27 

Min Max Unit 

19 ns 

tc(H)x2·6t ns 

tc(H)x2 tc(H)x232* 

tc(H)+12t ns 

[tc(SCK)/2]-15 [tc(SCK)/2]+5 

10t ns 

10t ns 

44 ns 

25 

13 ns 

31 

13 ns 

0 

40 ns 

21 

13 ns 

13 

13 ns 

0 

-[tc(H)-8] [tc(SCK)/2]-10* ns 

-[tc(H)-21] tc(SCK)12* 

45 ns 

26 

45 ns 

25t ns 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-57 



Timing 

Table 13-27. Serial-Port Timing Parameters (Continued) 

No. Name Description 

(1 ) tcl(H1-SCK) H1 high to internal CLKXlR delay 

(2) tc(SCK) CLKXlR cycle time CLKXlR ext 

CLKXlR int 

(3) tw(SCK) CLKXlR high/low pulse CLKXlR ext 
duration 

CLKXlR int 

(4) tr(SCK) CLKXlR rise time 

(5) tf(SCK) CLKXlR fall time 

(6) tcl(DX) CLKX to OX valid delay CLKXext 

CLKX int 

(7) tsu(DR) OR setup before CLKR ext 
CLKRlow CLKR int 

(S) th(DR) OR hold from CLKR ext 
CLKR low CLKR int 

(9) tcl(FSX) CLKX to internal CLKXext 
FSX high/low delay CLKX int 

(10) tsu(FSR) FSR setup before CLKR ext 
CLKR low CLKR int 

(11 ) th(FS) FSXlR input hold from CLKXlR ext 
CLKXlR low CLKXlR int 

(12) tsu(FSX) External FSX setup be- CLKX ext 
fore CLKX CLKX int 

(13) tcl(CH-DX)V CLKX to first OX bit, CLKX ext 
FSX precedes CLKX int 
CLKX high delay 

(14) tcl(FSX-DX)V FSX to first OX bit, CLKX precedes FSX 
delay 

(15) tcl{DXZ) CLKX h~h to OX high impedance follow-
ing last ata bit delay 

t Guaranteed by design but not tested * Not tested 

13-5S 

TMS320C30-33/TMS320C31-33/ 
TMS320LC31 

Min Max Unit 

15 ns 

tc(H)x2.6t ns 

tc(H)x2 tc(H)x232* 
tc(H)+12t ns 

[tc(SCK)/2]-15 [tc(SCK)/2]+5 

st ns 

st ns 

35 ns 

20 

10 ns 
25 

10 ns 
0 

32 ns 
17 

10 ns 
10 

10 ns 
0 

-[tc(H)-S] [tC(SCK)/2}-10* ns 
[tc(H)-21] tc(SCK)72 

36 ns 
21 

36 ns 

20t ns 



Table 13-27. Serial-Port Timing Parameters (Continued) 

No. Name Description 

(1 ) ~(H1-SCK) H1 high to internal ClKXIR delay 

(2) tc(SCK) ClKXIR cycle time ClKXIR ext 

ClKXIR int 

(3) tw(SCK) ClKXIR high/low pulse ClKXIR ext 
duration ClKXIR int 

(4) tr(SCK) ClKXIR rise time 

(5) tf(SCK) ClKXIR fall time 

(6) td(DX) ClKX to OX valid delay ClKX ext 
ClKX int 

(7) tsu(DR) DR setup before ClKR ext 

ClKR low ClKR int 

(8) th(DR) DR hold from ClKR ext 

ClKR low ClKR int 

(9) td(FSX) ClKX to internal ClKXext 
FSX high/low delay ClKX int 

(10) tsu(FSR) FSR setup before ClKR ext 
ClKR low ClKR int 

(11 ) th(FS) FSXlR input hold from ClKXIR ext 
ClKXIR low ClKXIR int 

(12) tsu(FSX) External FSX setup be- ClKX ext 
fore ClKX ClKX int 

(13) ~(CH-DX)V ClKX to first OX bit, FSX ClKX ext 
precedes ClKX high ClKX int 
delay 

(14) td(FSX-DX)V FSX to first OX bit, ClKX precedes FSX 
delay 

(15) td(DXZ) elKX h~h to DX high impedance following last 
data bit elay 

t Guaranteed by design but not tested 
* Not tested 

Timing 

TMS320C30-40rrMS320C31-40 

Min Max Unit 

13 ns 

tc(H)x2·6t ns 

tc(H)x2 tc(H)x232* 

tc(H)+ 1 ot [tc(SCK)/2J+5 ns 
[tc(SCK)/2]-5 

7t ns 

7t ns 

30 ns 
17 

9 ns 

21 

9 ns 

0 

27 ns 
15 

9 ns 
9 

9 ns 
0 

-[tc(H)-8] [tc (SCK)/2J-1 0* ns 
- tc(H)-21] tc(SCK)72 

30 ns 
18 

30 ns 

17t ns 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-59 



Timing 

Table 13-27. Serial-Port Timing Parameters (Continued) 

No. Name Description 

(1) 1cl(H1-SCK) H1 high to internal CLKX/R delay 

(2) tc(SCK) CLKX/R cycle time CLKX/R ext 
CLKX/R int 

(3) tw(SCK) CLKX/R high!low pulse dura- CLKX/R ext 
tion CLKX/R int 

(4) tr(SCK) CLKX/R rise time 

(5) it(SCK) ClKX/R fall time 

(S) 1cl(DX) CLKX to OX valid delay CLKXext 
CLKX int 

(7) tsu(DR) OR setup before CLKR low CLKR ext 
CLKR int 

(8) th(DR) OR hold from CLKR low CLKR ext 
CLKR int 

(9) 1cl(FSX) CLKX to internal FSX high/ CLKXext 
low delay CLKX int 

(10) tsu(FSR) FSR setup before CLKR low CLKR ext 
CLKR int 

(11 ) th(FS) FSXlR input hold from CLKX/R ext 
CLKX/R low CLKX/R int 

(12) tsu(FSX) External FSX setup before CLKXext 
CLKX CLKXint 

(13) 1cl(CH-DX)V CLKX to first OX bit, FSX pre- CLKXext 
cedes CLKX high delay CLKXint 

(14) 1cl(FSX-DX)V FSX to first OX bit, CLKX precedes FSX 
delay 

(15) 1cl(DXZ) CLKX high to OX high impedance following 
last data bit delay 

t Assured by design but not tested 
* Not tested 

13-S0 

TMS32OC31-50 

Min Max Unit 

10 ns 

tc(H) x 2.St tc(H) x 232* ns 
tc(H) x 2 

tc(H)+10t [tc(SCI()/2] + 5 ns 
[tc(SCK)/2] -5 

st ns 

st ns 

24 ns 
16 

9 ns 
17 

7 ns 
0 

22 ns 
15 

7 ns 
7 

7 ns 
0 

-[tc(H)~8] [tc(SCK)/2] -1 0* ns 
-[tc(H)-21] tc(SCK)/2* 

24 ns 
14 

24 ns 

14t ns 



Timing 

13.5.14 HOLD Timing 

HOLD is an asynchronous input that can be asserted at any time during a clock 
cycle. If the specified timings are met, the exact sequence shown in 
Figure 13-32 will occur; otherwise, an additional delay of one clock cycle is 
possible. 

Table 13-28 defines the timing parameters for the HOLD and HOLDA signals. 
The numbers shown in parentheses in Figure 13-32 correspond with those in 
the No. column of Table 13-28. 

The NOHOLD bit of the primary bus control register (see subsection 7.1.1 on 
page 7-3) overrides the HOLD signal. When this bit is set, the device comes 
out of hold and prevents future hold cycles. 

Asserting HOLD prevents the processor from accessing the primary bus. Pro­
gram execution continues until a read from or a write to the primary bus is re­
quested. In certain circumstances, the first write will be pending, thus allowing 
the processor to continue until a second write is encountered. 

Figure 13-32. Timing for HOLD/HOLDA 

H3 

H1 

~ I.- (1) I I ~ J..-(1) 

HOLD ~,...~ ___ -+-_{4+-
1
) -......,..1 ~ __ y I 

I I -+j ~ (3) __ -.!~ ~ (3) 

HOLDA -----{7-)~-'i...---i --~-.I .... ~'-I (-8)---{6-)--~r II (9) 

STRB ----.....;--77i1--tl '\;\.~ _____ ~I--.J-) --'l"""\:-
------- I I) I4-*-- (11) 

RtN : 9=:"0 : k 

~ ~ (12) 1<->t::(13) A:::::::::: __ ::~)----------(t::::= 
I (16) 

o ::==1w~r~ite~D~a~ta~==J)~-------------------------------------------------

Note: HOLDA will go low in response to HOLD going low and will continue to remain low until one H1 cycle after HOLD goes 
back high, as shown in Figure 13-32. 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-61 



Timing 

Table 13-28. Timing Parameters for HOLD/HOLDA 

No. Name Description 

(1 ) fsu(HOLD) HOLD setup 
before H1 low 

(3) fv(HOLDA) HOLDA valid 
after H110w 

(4) fw(HOLD§) HOLD lowdu-
ration 

(6) fw(HOLDA) HOLDA low du-
ration 

(7) tcI(H1 L-SH)H) H11owto 
STRB high jor 
a HOLD delay 

(a) tclis(H1 L-S) H11owto 
STRB disabled 
(high-impe-
dance state) 

(9) fen(H1L-S) H11owto 
STRB enabled 
(active) 

(10) tclis(H1 L-RW) H1 low to RJW 
disabled (high-
impedance 
state) 

(11 ) fen(H1 L-RW) H1 low to R/W 
enabled (ac-
tive) 

(12) tclis(H1 L-A) H11owto ad-
dress disabled 
(high-impe-
dance state) 

(13) fen(H1L-A) H1 low to ad-
dress enabled 
(valid) 

(16) tclis(H1 H-O) H1 high to data 
disabled (high-
impedance 
state) 

t Characterized but not tested * Not tested 

'C30-33 
'C30-27 'C31-33 
'C31-27 'LC31 

Min Max Min Max 

19 15 

0* 14 0* 10 

2tc(H) 2tc(H) 

tcH-5t tcH"5t 

0* 13 0* 10 

0* 13t 0* 10t 

0* 13 0* 10 

0* 13t 0* 10t 

0* 13 0* 10 

0* 13t 0* 10t 

0* 19 0* 15 

0* 13t 0* 10t 

'C30-40 
'C31-40 'C31-50 

Min Max Min Max Unit 

13 10 ns 

0* 9 0* 7 ns 

2tc(H) 2tc(H) ns 

tcH-5t tcH-5t ns 

0* 9 0* 7 ns 

0* 9t 0* at ns 

0* 9 0* 7 ns 

0* 9t 0* at ns 

0* 9 0* 7 ns 

0* 0* at ns 

0* 13 0* 12 ns 

0* 9t 0* at ns 

§ HOLD is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact 
sequence shown will occur; otherwise, an additional delay of one clock cycle is possible. 

13-62 



Timing 

13.5.15 General-Purpose I/O Timing 

Peripheral pins include CLKXO/1 , CLKRO/1 , DXO/1, DRO/1 , FSXO/1, FSRO/1, 
and TCLKO/1. The contents of the internal control registers associated with 
each peripheral define the modes for these pins. 

13.5.15.1 Peripheral Pin 110 Timing 

Table 13-29 defines peripheral pin general-purpose I/O timing parameters. 
The numbers shown in parentheses in Figure 13-33 correspond with those in 
the No. column of Table 13-29. 

Table 13-29. Timing Parameters for Peripheral Pin General-Purpose I/O 

'C30-33 
'C30-27 'C31-33 'C30-40 
'C31-27 'LC31 'C31-40 'C31-50 

No. Name Description Min Max Min Max Min Max Min Max Unit 

(1 ) tsu(GPIOH1 L) General-purpose input setup 15 12 10 9 ns 
before H1 low 

(2) th(GPIOH1 L) General-purpose input hold 0 0 0 0 ns 
time after H1 low 

(3) td(GPIOH1 H) General-purpose output 19 15 13 10 ns 
delay after H1 high 

Note: Peripheral pins include CLKXO/1 , CLKRO/1, DXO/1 , DRO/1, FSXO/1 , FSRO/1, and TCLKO/1. The modes ofthese pins are 
defined by the contents of internal control registers associated with each peripheral. 

Figure 13-33. Timing for Peripheral Pin General-Purpose I/O 

13.5.15.2 Changing the Peripheral Pin 110 Modes 

Table 13-30 and Table 13-31 show the timing parameters for changing the 
peripheral pin from a general-purpose output pin to a general-purpose input 
pin and vice versa. The numbers shown in parentheses in Figure 13-34 and 
Figure 13-35 correspond to those shown in the No. column of Table 13-30 
and Table 13-31, respectively. 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-63 



Timing 

Table 13-30. Timing Parameters for Peripheral Pin Changing From General-Purpose Output 
to Input Mode 

'C30-33 
'C30-27 'C31-33 'C3Q-40 
'C31-27 'LC31 'C31-40 'C31-50 

No. Name Description Min Max Min Max Min Max Min Max Unit 

(1) th(H3H) Hold after H1 high 19 15 13 10 ns 

(2) tsu(GPIOH1 L Peripheral pin setup before 13 10 9 9 ns 
H110w 

(3) th(GPIOH1L Peripheral pin hold after H1 0 0 0 0 ns 
low 

Table 13-31. Timing Parameters for Peripheral Pin Changing From General-Purpose Input to 
Output Mode 

'C30-33 
'C30-27 'C31-33 'C3Q-40 
'C31-27 'LC31 'C31-40 'C31-50 

No. Name Description Min Max Min Max Min Max Min Max 

(1 ) ~(GPIOH1H) H1 high to peripheral pin 19 15 13 10 
switching from input to out-
put delay 

Figure 13-34. Timing for Change of Peripheral Pin From General-Purpose Output to 
Input Mode 

13-64 

H3 

H1 

Execution of 
Store of 

Peripheral 
Control 
Register 

10----; 
Control Bit 

Data Bit 

Buffers Go 
From Output 

to Input Synchronizer Delay 

Value on Pin 
Seen in 

Peripheral 
Control 
Register 

Unit 

ns 



Figure 13-35. Timing for Change of Peripheral Pin From General-Purpose Input to 
Output Mode 

H3 

H1 

10 
Control 

Bit 

Execution of Store 
of Peripheral Control 

Register 

I 
I 
~(1) 

Peripheral --------------------fV~---
Pin '\ 

Timing 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-65 



Timing 

13.5.16 Timer Pin Timing 

Valid logic-level periods and polarity are specified by the contents of the inter­
nal control registers. 

Table 13-32 and Table 13-33 define the timing parameters for the timer pin. 
The numbers shown in parentheses in Figure 13-36 correspond with those in 
the No. column of Table 13-32 and Table 13-33. 

Table 13-32. Timing Parameters for Timer Pin 

'C30-27/'C31·27 'C30-33/'C31-33 

No. Name Descrlptlon* Min Max Min Max Unit 

(1 ) tsu(TCLKH1 L TCLKext TCLK 15 12 ns 
setup before ext 
H110w 

(2) ftl(TCLKH1 L TCLKext TCLK 0 0 ns 
hold after ext 
H110w 

(3) tct(TCLKH1 H) H1 high to TCLK 13 10 ns 
TCLKint int 
valid delay 

(4) fc(TcU<) TCLKcycie TCLK fc(H)x2·6t fc(H)x2·6t ns 
time ext 

TCLK fc(H)x2 fc(H)x232t fc(H)x2 fc(H)x232t ns 
int 

(5) fw(TcU<) TCLKhigh/ TCLK fc(H)+12t fc(H)+12t ns 
low pulse ext 
duration 

TCLK ltc(TcLK)I'2}-15 ltc(TcLK)I'21+5 ltc(TcLK)I'2}-15 ltc(TcLK)I'21+5 ns 
int 

t Guaranteed by design but not tested * Timing parameters 1 and 2 are applicable for a synchronous input clock. Timing parameters 4 and 5 are applicable for an 
asynchronous input clock. 

13-66 



Timing 

Table 13-33. Timing Parameters for Timer Pin 

'C30-40/,C31-40 'C31-50 

No. Name Description:!: Min Max Min Max Unit 

(1 ) tsu(TCL.KH1 L) TCLK ext set- TCLK 10 8 ns 
up before H1 ext 
low 

(2) tt,(TCL.KH1 L) TCLK ext hold TCLK 0 0 ns 
after H1 low ext 

(3) fcI(TCL.KH1 H) H1 high to TCLK 9 9 ns 
TCLK int valid int 
delay 

(4) tc(TCLK) TCLKcycie TCLK tc(H)x2.6t tc(H)x2·6t ns 
time ext 

TCLK tc(H)x2 tc(H)x232t tc(H)x2 tc(H)x232t ns 
int 

(5) tw(TCLK) TCLKhigh/ TCLK tc(H)+10t tc(H)+10t ns 
low pulse du- ext 
ration 

TCLK llc(TCLK)12}-5 [tc(TcLK)f2]+5 [tc(TCLK)12}-5 llc(TcLK)f21+5 ns 
int 

t Guaranteed by design but not tested 
:!: Timing parameters 1 and 2 are applicable for a synchronous input clock. Timing parameters 4 and 5 are applicable for an 

asynchronous input clock. 

Figure 13-36. Timing for Timer Pin 

H3 

~~ 
jf- (2) ~ (3) -.I ~ ~! ~ 

(1H J4- L I - I"" (3) 
Peripher~1 X 'X ;C ~~~------

Pin ----J'T.,..---r-,-~-(5)-~""'f ----

Ie (4) ~ 

H1 

TMS320C3x Signal Descriptions and Electrical Characteristics 13-67 



13-68 



Appendix A 

Instruction Opcodes 

The opcode fields for all TMS320C3x instructions are shown in Table A-1. Bits 
in the table marked with a hyphen are defined in the individual instruction de­
scriptions (see Chapter 10). Table A-1, along with the instruction descriptions, 
fully defines the Instruction words. The opcodes are listed in numerical order. 
Note that an undefined operation may occur if an illegal opcode is executed. 

A-1 



Instruction Opcodes 

Table A-1. TMS320C3x Instruction Opcodes 

INSTRUCTION 31 30 29 28 27 26 25 24 23 
ABSF 0 0 0 0 0 0 0 0 0 
ABSI 0 0 0 0 0 0 0 0 1 

ADDC 0 0 0 0 0 0 0 1 0 

ADDF 0 0 0 0 0 0 0 1 1 

ADDI 0 0 0 0 0 0 1 0 0 

AND 0 0 0 0 0 0 1 0 

ANDN 0 0 0 0 0 0 1 1 0 

ASH 0 0 0 0 0 0 1 1 1 

CMPF 0 0 0 0 0 0 0 0 

CMPI 0 0 0 0 0 0 0 1 

FIX 0 0 0 0 0 0 1 0 
FLOAT 0 0 0 0 0 0 1 1 

IDLE 0 0 0 0 0 0 0 

IDLE2 0 0 0 0 0 0 0 

LDE 0 0 0 0 0 1 0 1 

LDF 0 0 0 0 0 1 1 0 

LDFI 0 0 0 0 0 1 1 1 1 

LDI 0 0 0 0 1 0 0 0 0 

LDII 0 0 0 0 1 0 0 0 1 

LDM 0 0 0 0 1 0 0 1 0 

LDP 0 0 0 0 1 0 0 0 0 
LSH 0 0 0 0 1 0 0 1 
LOPOWER 0 0 0 1 0 0 0 0 1 
MAXSPEED 0 0 0 1 0 0 0 0 1 

MPYF 0 0 0 0 1 0 0 0 

MPYI 0 0 0 0 1 0 1 0 1 

NEGB 0 0 0 0 1 0 1 1 0 

NEGF 0 0 0 0 0 1 1 1 

NEGI 0 0 0 0 1 1 0 0 0 

A-2 



Instruction Opcodes 

Table A-1. TMS320C3x Instruction Opcodes (Continued) 

INSTRUCTION 31 30 29 28 27 26 25 24 23 
NOP 0 0 0 0 , 0 0 1 

NORM 0 0 0 0 , 0 0 

NOT 0 0 0 0 0 1 , 
POP 0 0 0 0 0 0 

POPF 0 0 0 0 0 1 

PUSH 0 0 0 0 1 0 

PUSHF 0 0 0 0 1 1 1 1 

OR 0 0 0 0 0 0 0 0 
RND 0 0 0 0 0 0 0 

ROL 0 0 0 0 0 0 1 

ROLC 0 0 0 0 0 0 0 
ROR 0 0 0 0 0 0 1 
RORC 0 0 0 0 0 1 0 

RPTS 0 0 0 0 0 1 1 

STF 0 0 0 0 1 0 0 0 

STFI 0 0 0 0 0 0 1 

STI 0 0 0 0 1 0 0 
STU 0 0 0 0 0 1 

SIGI 0 0 0 1 0 1 0 0 
SUBB 0 0 0 1 0 1 0 1 

SUBC 0 0 0 1 0 0 
SUBF 0 0 0 0 1 1 1 

SUBI 0 0 0 0 0 0 0 

SUBRB 0 0 0 0 0 0 1 

SUBRF 0 0 0 0 0 1 0 
SUBRI 0 0 0 1 0 0 1 1 

TSTB 0 0 0 1 0 0 0 

XOR 0 0 0 1 0 0 1 

lACK 0 0 0 0 1 1 0 

ADDC3 0 0 0 0 0 0 0 0 
ADDF3 0 0 1 0 0 0 0 0 1 

ADDI3 0 0 1 0 0 0 0 0 

AND3 0 0 1 0 0 0 0 1 1 
ANDN3 0 0 1 0 0 0 1 0 0 

ASH3 0 0 0 0 0 0 1 
CMPF3 0 0 0 0 0 0 
CMPI3 0 0 1 0 0 0 

Instruction Opcodes A-3 



Instruction Opcodes 

Table A-1. TMS320C3x Instruction Opcodes (Continued) 

INSTRUCTION 31 30 29 28 27 26 2& 24 23 
LSH3 0 0 1 0 0 1 0 0 0 

MPYF3 0 0 1 0 0 1 0 0 

MPYI3 0 0 1 0 0 1 0 1 0 

OR3 0 0 1 0 0 1 0 1 1 

SUBB3 0 0 1 0 0 1 1 0 0 

SUBF3 0 0 1 0 0 1 1 0 

SUB13 0 0 1 0 0 1 1 0 

TSTB3 0 0 1 0 0 1 1 1 1 

XOR3 0 0 1 0 1 0 0 0 0 

LDFcond 0 1 0 0 

LDlcond 0 1 0 1 

BR(D)t 0 1 0 0 0 0 

CALL 0 1 1 0 0 0 1 

RPTB 0 1 0 0 1 0 

SWI 0 1 0 0 1 

Bcond(D)t 0 1 0 1 0 

DBcond(D)t 0 1 0 1 1 

CALLcond 0 1 0 0 

TRAPcond 0 1 1 0 1 0 

RETlcond 0 1 1 1 0 0 0 0 

RETScond 0 1 1 1 1 0 0 0 1 

MPYF311ADDF3 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 1 

1 0 0 0 0 0 1 0 

1 0 0 0 0 0 1 1 

MPYF311SUBF3 1 0 0 0 0 1 0 0 

1 0 0 0 0 1 0 1 

1 0 0 0 0 1 1 0 

1 0 0 0 0 1 1 1 

MPYI311ADDI3 1 0 0 0 1 0 0 0 

1 0 0 0 1 0 0 1 

1 0 0 0 1 0 1 0 

1 0 0 0 1 0 

t Opcode same for standard and delayed instructions. 

A-4 



Instruction Opcodes 

Table A-1. TMS320C3x Instruction Opcodes (Concluded) 

INSTRUCTION 31 30 29 28 27 28 25 24 23 
MPYl311SUBI3 1 0 0 0 1 0 0 

1 0 0 0 1 1 0 1 

1 0 0 0 1 1 1 0 
1 0 0 0 1 1 1 

STFIISTF 1 1 0 0 0 0 0 

snllSTI 1 1 0 0 0 0 1 

LDFIILDF 1 0 0 0 1 0 

LDIIiLDI 1 0 0 0 1 1 

ABSFIISTF 1 0 0 0 0 

ABSIIiSTI 1 1 0 0 0 1 

ADDF311STF 1 1 0 0 0 

ADDI311sn 1 1 0 0 1 

AND311STI 1 1 0 1 0 0 0 

ASH311STI 1 1 0 1 0 0 1 

Fixlisn 1 1 0 1 0 0 

FLOATIISTF 0 0 1 1 

LDFIISTF 1 1 0 0 0 

LDllisn 1 1 0 0 1 

LSH311sn 1 1 0 1 0 

MPYF311STF 1 1 0 1 1 1 

MPYI311sn 1 1 1 0 0 0 0 

NEGFIISTF 1 1 1 0 0 0 1 

NEGllisn 1 1 1 0 0 0 
NOTllsn 1 1 0 0 1 1 

OR311STI 1 1 0 0 0 
SUBF311STF 1 1 1 0 0 1 

SUBI311STI 1 0 0 

XOR311STI 1 1 1 0 1 

Reserved for reset, 0 1 1 1 1 1 1 
traps, and interrupts 

Instruction Opcodes A-5 



A-6 



Appendix B 

Development Support/Part Ordering Information 
U.llllilil IIIIP II Pin III I 

This appendix provides development support information, device part num­
bers, and support tool ordering information for the TMS320C3x generation. 

Each TMS320C3x support product is described in the TMS320 Family Devel­
opment Support Reference Guide (literature number SPRU011}.In addition, 
more than 100 third-party developers offer products that support the TI 
TMS320 family. For more information, refer to the TMS320 Third-Party Refer­
ence Guide (literature number SPRU052). 

For information on pricing and availability, contact the nearest TI field sales of­
fice or authorized distributor. 

This appendix discusses the following major topics: 

Topic Page 

B-1 



TMS320C3x Development Support Tools 

B.1 TMS320C3x Development Support Tools 

B-2 

Texas Instruments offers an extensive line of development tools for the 
TMS320C3x generation of DSPs, including tools to evaluate the performance 
ofthe processors, generate code, develop algorithm implementations, and ful­
ly integrate and debug software and hardware modules. 

The following products support development of 'C3x applications: 

Code Generation Tools 

o Optimizing ANSI C compiler. Translates ANSI C language directly into 
highly optimized assembly code. You can then assemble and link this code 
with the TI assembler/linker, which is shipped with the compiler. It supports 
both 'C3x and 'C4x assembly cede. This product is currently available fer 
PC (DOS, DOS extended memory, and OS/2), VAXNMS, and SPARC 
workstations. Refer to the TMS320 Floating-Paint DSP Optimizing C 
Compiler User's Guide (SPRU034) for detailed information. 

o Assembler/linker. Converts source mnemonics to executable object code. 
It supports both 'C3x and 'C4x assembly code. This product is currently 
available for PC (DOS, DOS extended memory, and OS/2). The 'C3x1'C4x 
assembler for the VAXNMS and SPARC workstations is only available as 
part of the optimizing 'C3x1'C4x compiler. Refer to the TMS320 Floating­
Point DSP Assembly Language Tools User's Guide (SPRU035) for de­
tailed information. 

System Integration and Debug Tools 

o Simulator. Simulates via software the operation of the 'C3x and can be 
used in C and assembly software development. This product is currently 
available for PC (DOS and Windows) and SPARC workstations. Refer to 
the TMS320C3x C Source Debugger User's Guide (SPRU054) for de­
tailed information. 

o XDS510 emulator. Performs full-speed in-circuit emulation with the 'C3x, 
providing access to all registers as well as to internal and external memory. 
It can be used in C and assembly software development and has the capa­
bility of debugging multiple processors. This product is currently available 
for PC (DOS, Windows, and OS/2) and SPARC workstations. This product 
includes the emulator board (emulator box, power supply, and SCSI con­
nector cables in the SPARC version), the 'C3x C source debugger soft­
ware, and the JTAG cable. 



TMS320C3x Development Support Tools 

Because 'C3x and 'C5x XDS51 0 emulators also come with the same emu­
lator board (or box), you can buy the 'C3x C source debugger software as a 
separate product called 'C3x C Source Debugger Conversion Software. 
This enables you to debug 'C3x/'C4x/'C5x applications with the same 
emulator board. The emulator cable that comes with the 'C5x XDS51 0 
emulator is not compatible with the 'C3x. You need a JTAG emulation con­
version cable. Refer to the TMS320C3x C Source Debugger User's Guide 
(SPRU053) for detailed information on the 'C3x emulator. 

o Evaluation module (EVM). Each EVM comes complete with a PC halfcard 
and software package. The EVM board contains the following: 

• A TMS320C30 and a 33-MFLOPS, 32-bit floating-point DSP 

• A 16K-word, zero-state SRAM, allowing coding of most algorithms di­
rectly on the board 

• A speaker/microphone-ready analog interface for multimedia, 
speech, and audio applications development 

• A multiprocessor serial port interface for connecting to multiple EVMs 

• A host port for PC communications 

The system also comes with all the software required to begin applications 
development on a PC host. Equipped with a C and assembly language 
source level debugger for the DSP, the EVM has a window-oriented, 
mouse-driven interface that enables the downloading, executing, and de­
bugging of assembly code or C code. 

The TMS320C3x assembler/linker is also included with the EVM. For us­
ers who prefer programming in a high-level language, an optimizing ANSI 
C compiler and Ada compiler are offered separately. 

Development Support/Part Ordering Information 8-3 



TMS320C3x Development Support Tools 

o Emulation porting kit (EPK). Enables you to integrate emulation technolo­
gy directly into your system without the need of an XDS51 0 board. This 
product is intended to be used by third parties and high-volume board 
manufacturers and requires a licensing agreement with Texas Instru­
ments. The kit contains host (or PC) source and object code, which lets 
you tailor 'C30 EVM-like capabilities to your TMS320C3x system via the 
SM74ACT8990 test bus controller (TBC). The EPK can be used in such 
applications as program download for system self-test and initialization or 
system emulation and debug to feature resident emulation support. EPK 
software includes the TI high-level language (HLL) debugger in object as 
well as source code for the TBC communication interface. The HLL code 
is the windowed debugger found with many TI DSP simulators, evaluation 
modules (EVMs), and emulators. With the EPK, the HLL user interface 
can be ported directly to the system board. The source code for the TBC 
communication interface consists of such commands as read/write, 
memory run, stop, and reset that communicate with the TMS320C3x de­
vice. Using the EPK reduces system and development cost and speeds 
time to market. For more information on the kit, call the DSP hotline at 
(713) 274-2320. 

8.1.1 TMS320 Third Parties 

6-4 

The TMS320 family is supported by product and service offerings from more 
than 100 independent vendors and consultants, known as third parties. These 
support products take various forms (both software and hardware) from cross­
assemblers, simulators, and DSP utility packages to logic analyzers and emu­
lators. Additionally, TI third parties offer more than 150 algorithms that are 
available for license through the TMS320 software cooperative. These algo­
rithms can greatly reduce development time and decrease time to market. The 
expertise of those involved in support services ranges from speech encoding 
and vector quantization to software/hardware design and system analysis. 

For a more detailed description of services and products offered by third par­
ties, refer to the TMS320 Third Party Support Reference Guide (literature 
number SPRU052) and the TMS320 Software Cooperative Data Sheet Pack­
et (literature number SPRT111). Call the Literature Response Center at (800) 
477-8924 to request a copy. 



TMS320C3x Development Support Tools 

B.1.2 TMS320 Literature 

B.1.3 DSP Hotline 

Extensive DSP documentation is available; this includes data sheets, user's 
guides, and application reports. In addition, DSP textbooks that aid research 
and education have been published by Prentice-Hall, John Wiley and Sons, 
and Computer Science Press. To order literature or to subscribe to the DSP 
newsletter Details on Signal Processing (for up-to-date information on new 
products and services), call the Uterature Response Center at (800) 
477-8924. 

For answers to TMS320 technical questions on device problems, develop­
ment tools, documentation, upgrades, and new products, you can contact the 
DSP hotline via: 

o Phone at (713)274-2320 Monday through Friday from 8:30 a.m. to 5:00 
p.m. central time 

o Fax at(713)274-2324 

o Electronic mail at 4389750@mcimail.com. 

o European fax at 33-1-3070-1032 

o Semiconductor Product Information Center (PIC) at (214) 644-5580 

To ask about third-party applications and algorithm development packages, 
contact the third party directly. Refer to the· TMS320 Third-Party Support Ref­
erence Guide (literature number SPRU052) for addresses and phone 
numbers. 

Extensive DSP documentation is available; this includes data sheets, user's 
guides, and application reports. Call the hotline at (800) 477-8924 for informa­
tion on literature that you can request from the Uterature Response Center. 

The DSP hotline does not provide pricing information. Contact the nearest TI 
field sales office or the TI PIC for prices and availability ofTMS320 devices and 
support tools. 

B.1.4 Bulletin Board Service (BBS) 

The TMS320 DSP Bulletin Board Service (BBS) is a telephone-line computer 
service that provides information on TMS320 devices, specification updates 
for current or new devices and development tools, silicon and development 
tool revisions and enhancements, new DSP application software as it be­
comes available, and source code for programs from any TMS320 user's 
guide. 

Development Support/Part Ordering Information 8-5 



TMS320C3x Development Support Tools 

You can access the BBS via the following: 

o Modem: (300-, 1200-, or 2400-bps) dial (713)274-2323. Set your modem 
to 8 data bits,1 stop bit, no parity. 

o Internet: Use anonymous ftpto ti.com (Internet port address 192.94.94.1). 
The BBS content is located in the subdirectory called mirrors. 

To find out more about the BBS, refer to the TMSS20 Family Development 
Support Reference Guide (literature number SPRU011). 

8.1.5 Technical Training Organization (TIO) TMS320 Workshop 

8-6 

The TMS320C3x DSP design workshop is tailored for hardware and software 
design engineers and decision-makers who will be designing and utilizing the 
TMS320C3x generation of DSP devices. Hands-on exercises throughout the 
course give participants a rapid start in utilizing TMS320C3x design skills. Mi­
croprocessor/assembly language experience is required. Experience with dig­
ital design techniques and C language programming experience is desirable. 
The following topics are covered in the TMS320C3x workshop: 

o TMS320C3x architecture/instruction set 
o Use of the PC-based TMS320C3x software simulator and EVM 
o Floating-point and parallel operations 
o Use of the TMS320C3x assembler/linker 
o C programming environment 
o System architecture considerations 
o Memory and I/O interfacing 
o TMS320C3x development support 

For registration, pricing, or enrollment information on this and other TTO 
TMS320 workshops, call (800) 336-5236, ext. 3904. 



TMS320C3x Part Ordering Information 

B.2 TMS320C3x Part Ordering Information 

This section provides the device and support tool part numbers. Table B-1 
lists the part numbers for the TMS320C30 and TMS320C31; Table B-2 gives 
ordering information for TMS320C3x hardware and software support tools. An 
explanation of the TMS320 family device and development support tool prefix 
and suffix designators follows the two tables to assist in understanding the 
TMS320 product numbering system. 

Table B-1. TMS320C3x Digital Signal Processor Part Numbers 

Operating Typical Power 
Device Technology Frequency Package Type Dissipation 

TMS320C30GEL 0.8-11m CMOS 33 MHz Ceramic 181-pin PGA 1.00W 

TMS320C30GEL27 0.8-11m CMOS 27 MHz Ceramic 181-pin PGA 0.875W 

TMS320C30GEL40 0.8-11m CMOS 40 MHz Ceramic 181-pin PGA 1.25W 

TMS320C30PPM40 0.8-11m CMOS 40 MHz Plastic 208-pin QFP 0.85W 

TMS320C31 PQljPQA 0.8-11m CMOS 33 MHz Plastic 132-pin QFP 0.75W 

TMS320C31 PQL27 0.8-11m CMOS 27 MHz Plastic 132-pin QFP O.SOW 

TMS320C31 PQL40 0.8-11m CMOS 40 MHz Plastic 132-pin QFP 0.90W 

TMS320LC31 PQL 0.8-11m CMOS 33 MHz Plastic 132-pin QFP 0.50W 

TMS320C31 PQL50 0.8-11m CMOS 50 MHz Plastic 132-pin QFP 1.00W 

SMJ320C31SFA27 0.8-11m CMOS 28 MHz Ceramic 141-pin PGA O.SOW 
SMJ320C31 HFS27 Ceramic 132-pin QFP O.SOW 
SMJ320C31SFA33 Ceramic 141-pin PGA 0.75W 
SMJ320C31SHFS33 Ceramic 132-pin PGA 0.75W 

SMJ320C30SBM33 0.8-11m CMOS 33 MHz Ceramic 181-pin PGA 1.10W 
SMJ320C30HFS33 Ceramic 19S-pin QFP 

SMJ320C30GBM28 0.8-11m CMOS 28 MHz Ceramic 181-pin PGA 1.00W 
SMJ320C30HFS28 Ceramic 19S-pin QFP 1.00W 
SMJ320C30HTM28 

SMJ320C30GBM25 0.8-11m CMOS 25 MHz Ceramic 181-pin PGA 1.00W 
SMJ320C30H FS25 Ceramic 19S-pin QFP 1.00W 
SMJ320C30HTM25 

Development Support/Part Ordering Information B-7 



TMS320C3x Part Ordering Information 

Table B-2. TMS320C3x Support Tool Part Numbers 

Tool Description Operating System Part Number 

(a) Software 

C Compiler & Macro Assembler/ Linker VAX/VMS TMDS3243255-OS 
PC-DOS/MS-DOS TMDS3243855-02 
SPARC (Sun OS) t TMDS3243555-OS 

Assembler/Linker PC-DOS/MS-DOS; OS/2 TMDS3243850-02 

Simulator VAX VMS TMDS3243251-08 
PC-DOS/MS-DOS TMDS3243851-02 
SPARC (SUN OS) t TMDS3243551-09 

Tartan Floating-Point Library PC-DOS 320 FLO-PC C30 
SPARC (Sun OS) 320 FLO-Sun-C30 

Digital Filter Design Package PC-DOS DFDP 

Tartan C++ CompHer/Debugger PC-DOS; OS/2, Wir~down TAR-CCM-PC-C3x 
SPARC (Sun OS) TAR-CCM-SP-C3x 

Tartan C++ Compiler PC-DOS; OS/2, Wiredown TAR-SIM-PC-C3x 
SPARC (Sun OS) TAR-SIM-SP-C3x 

TMS320C3x Emulation Porting Kit TMSX3240030 

(b) Hardware 

XDS51 0 Emulator PC/MS-DOS TMDS3260131 

Evaluation Module (EVM) PC-DOS/MS-DOS TMDX3260030 

t Note that SUN UNIX supports TMS320C3x software tools on the 68000 family-based SUN-3 series workstations and on the 
SUN-4 series machines that use the SPARe processor, but not on the SUN-3S61 series of workstations. 

B.2.1 Device and Development Support Tool Prefix Designators 

Prefixes to TI part numbers designate phases in the product's development 
stage for both devices and support tools, as shown in the following definitions: 

Device Development Evolutionary Flow 

o TMX: Experimental device that is not necessarily representative of the fi­
nal device's electrical specifications 

o TMP: Final silicon die that conforms to the device's electrical specifica­
tions but has not completed quality and reliability verification 

o TMS: Fully qualified production device 

Support Tool Development Evolutionary Flow 

8-8 

o TMDX: Development support product that has not yet completed Tl's in­
ternal qualification testing for development systems 

o TMDS: Fully qualified development support product 

-~-~-------------------



TMS320C3x Part Ordering Information 

TMX and TM P devices and TM OX development support tools are shipped with 
the following disclaimer: 

"Developmental product is intended for internal evaluation purposes." 

Note: Prototype Devices 

TI recommends that prototype devices (TMX or TMP) not be used in produc­
tion systems because their expected end-use failure rate is undefined but 
predicted to be greater than standard qualified production devices. 

TMS devices and TM OS development support tools have been fully character­
ized, and their quality and reliability have been fully demonstrated. Tl's stan­
dard warranty applies to TMS devices and TMDS development support tools. 

TMDX development support products are intended for internal evaluation pur­
poses only. They are covered by Tl's Warranty and Update Policy for Micropro­
cessor Development Systems products; however, they should be used by cus­
tomers only with the understanding that they are developmental in nature. 

8.2.2 Device Suffixes 

The suffix indicates the package type (for example, N, FN, or GE) and temper­
ature range (for example, L). 

Figure B-1 presents a legend for reading the complete device name for any 
TMS320 family member. 

Development Support/Part Ordering Information 8-9 



TMS320C3x Part Ordering Information 

Figure B-1. TMS320 Device Nomenclature 

TMS 320 C 30 GE 

Pr.flx ____ ...... 1 

TMX = experimental Device 
TMP", Prototype Device 
TMS. Qualified Device 
SMJ. MIL-STO-883C 

Device Famlly------....... 

320 ... TMS320 Family 

T.chnology-------....... 

C .. CMOS 
E '" CMOS EPROM 
P .OTPEPROM 
No Letter ... NMOS 

Oevlc. ------------' 
1st-generation OSP: 

10 
14 
15 
16 
17 

2nd-generation OSP: 
20 
25 
26 

3rd-generation OSP: 
30 
31 

4th-generatioh OSP: 
40 

5th-generation OSP: 
50 
51 

L 

lTo_ ....... 
H ... Oto50°C 
L ... Oto 70·C 
S ... -55 to 100·C 
M", -55 to 125·C 
At ... -40 to 85°C 

Package1Yp. 

N ... Plastic DIP 
JO '" Ceramic DIP Side-Brazed 
FN .. Plastic Leaded CC 
6B '" Ceramic PGA 
FJ .. Ceramic Leaded CC 
FO ... Leadless Ceramic CC 
FZ ;ro Ceiamic Leaded CC 
GE '" Ceramic PGA, Glass Seal 
HU '" Ceramic Quad Flatpack 
HT ... Ceramic Quad Flatpack 

(gull wing) 
PQ '" Plastic Quad Flatpack 

t See electrical specifications for TMS320C31 PQA case temperature ratings. 

8-10 



Appendix C 

Quality and Reliability 

The quality and reliability of Texas Instruments (TI) microprocessor and 
microcontroller products, which include TMS320 digital signal processors, re­
lies on feedback from the following: 

o Our customers, 

o Our total manufacturing operation from front-end wafer fabrication to final 
shipping inspection, and 

o Product quality and reliability monitoring. 

Our customer's perception of quality is the governing criterion for judging per­
formance. This concept.is the basis for TI Corporate Quality Policy, which is 
as follows: 

"For every product or service we offer, we shall define the requirements that 
solve the customer's problems, and we shall conform to those requirements 
without exception." 

Texas Instruments has developed a leadership reliability qualification system, 
based on years of experience with leading-edge memory technology and on 
years of research into customer requirements. To achieve constant improve­
ment, programs that support that system respond to customer input and inter­
nal information. 

This appendix presents the following major topics: 

Topic Page 

C-1 



Reliability Stress Tests 

C.1 Reliability Stress Tests 

C-2 

Accelerated stress tests are performed on new semiconductor products and 
process changes to qualify them and ensure excellence in product reliability. 
The following test environments are typical: 

o High-temperature operating life 
o Storage life 
o Temperature cycling 
o Biased humidity 
o Autoclave 
o Electrostatic discharge 
o Package Integrity 
o Electromigration 
o Channel-hot electrons (performed on geometries less than 2.0 JLm) 

Typical events or changes that require Internal requalification of a product in­
clude the following: 

o New die design, shrink, or layout 

o Wafer process (baseline/control systems, flow, mask, chemicals, gases, 
dopants, passivation, or metal systems) 

o Packaging assembly (baseline control systems or critical assembly equip­
ment) 

o Piece parts (such as lead frame, mold compound, mount material, bond 
wire, or lead finish) 

o Manufacturing site 

TI reliability control systems extend beyond qualification. Total reliability con­
trols and management include product reliability monitoring as well as final 
product release controls. MOS memories, utilizing high-density active ele­
ments, serve as the leading indicator in wafer-process integrity at TI MOS fab­
rication sites, enhancing all MOS logic device yields and reliability. TI places 
more than several thousand MOS devices per month on reliability tests to en­
sure and sustain built-in product excellence. 

Table C-1 lists the microprocessor and microcontroller reliability tests, the du­
ration of the test, and sample size. Table C-2 contains definitions and descrip­
tions of terms used in those tests. 



Reliability Stress Tests 

Table C-1. Microprocessor and Microcontro/ler Tests 

Sample Size 
Test Duration Plastic Ceramic 

Operating life, 1250 C, 5.0 V 1000 hrs 129 129 

Storage life, 1500 C 1000 hrs 45t 45 

Biased humidity, 85° C/85 percent 1000 hrs n 
RH,5.0V 

Autoclave, 121 0 C, 1 ATM 240 hrs 45 

Temperature cycle, -65 to 1500 C 1000 cyc:!: n n 
Temperature cycle, 0 to 1250 C 3000cyc n n 
Thermal shock,-65 to 1500 C 200 cyc n n 
Electrostatic discharge, :1:2 kV 15 15 

Latch-up (CMOS devices only) 5 5 

Mechanical sequence 22 

Thermal sequence 22 

Thermal/mechanical sequence 22 

PIND 45 

I nternal water vapor 3 

Solderability 22 22 

Solder heat 22 22 

Resistance to solvents 15 15 

Lead integrity 15 15 

Lead pull 22 

Lead finish adhesion 15 15 

Salt atmosphere 15 15 

Flammability (UL94-VO) 3 

Thermal impedance 5 5 

t If junction temperature does not exceed plasticity of package 
:j: For severe environments; reduced cycles for office environments 

Quality and Reliability C-3 



Reliability Stress Tests 

Table ~2. Definitions of Microprocessor Testing Terms 

Term Oeflnltlon/Deacrlptlon 

Average Outgoing Quality (AOQ) Amount of defective product in a popu­
lation, usually expressed in terms of 
parts per million (PPM). 

Failure in lime (FIT) Estimated field failure rate In number of 
failures per billion power-on device 
hours; 1000 FITS equal 0.1 percent fail­
ure per 1 000 device hours. 

Operating Life Device dynamically exercised at a high 
ambient temperature (usually 125° C) to 
simulate field usage that would expose 
the device to a much lower ambient 
temperature (such as 55° C). Using a 
derived high temperature, a 55°C ambi­
ent failure rate can be calculated. 

Storage Life Device exposed to 150° C unbiased 
condition. Bond integrity is stressed in 
this environment. 

Biased Humidity Moisture and bias used to accelerate 
corrosion-type failures in plastic pack­
ages. Conditions include 85° C ambient 
temperature with 85% relative humidity 
(RH). Typical bias voltage is +5V and is 
grounded on alternating pins. 

Autoclave (Pressure Cooker) Plastic-packaged devices exposed to 
moisture at 121° C using a pressure of 
one atmosphere above normal preS­
sure. The pressure forces moisture per­
meation of the package and acceler­
ates corrosion mechanisms (if present) 
on the device. External package con­
taminants can also be activated and 
caused to generate inter-pin current 
leakage paths. 

Temperature Cycie Device exposed to severe temperature 
extremes in an alternating fashion (-650 

C for 15 minutes and 150° C for 15 min­
utes per cycle) for at least 1000 cycles. 
Package strength, bond quality, and 
consistency of assembly process are 
tested in this environment. 

Electrostatic Discharge Device exposed to electrostatic 
discharge pulses. Calibration is accord­
ing to MIL STD 883C, methQd 3015.6. 
Devices are stressed to determine fail­
ure threshold of the design. 

C-4 

References 



Reliability Stress Tests 

Table ~2. Definitions of Microprocessor Testing Terms (Continued) 

Term 

Thermal Shock 

Particle Impact Noise Detection 
(PIND) 

Mechanical Sequence 

Thermal Sequence 

ThermaVMechanical Sequence 

Deflnltlon/De8crlptlon 

Test similar to the temperature cycle 
test, but involving a liquid-to-liquid 
transfer. 

A nondestructive test to detect loose 
particles inside a device cavity. 

Fine and gross leak 
Mechanical shock 

PIND (optional) 
Vibration, variable frequency 

Constant acceleration 
Fine and gross leak 
Electrical test 

Fine and gross leak 
Solder heat (optional) 
Temperature cycle 
(10 cycles minimum) 
Thermal shock 
(10 cycles minimum) 
Moisture resistance 
Fine and gross leak 
Electrical test 

Fine and gross leak 
Temperature cycle 
(10 cycles minimum) 
Constant acceleration 

Fine and gross leak 
Electrical test 
Electrostatic discharge 
Solderability 
Solder heat 

Salt atmosphere 

Lead pull 
Lead integrity 

Electromigration 

Resistance to solvents 

Reference. 

MIL-STD-883C, Method 1011 

MIL-STD-883C, Method 1014 
MIL-STD-883C, Method 2002, 
1500 g, 0.5 ms, Condition B 
MIL-STD-883C, Method 2020 
MIL-STD-883C, Method 2007, 
20g, Condition A 
MIL-STD-883C, Method 2001 
MIL-STD-883C, Method 1014 
To data sheet limits 

MIL-STD-883C, Method 1014 
MIL-STD-75OC, Method 1014 
MIL-STD-883C, Method 1010, 
-65 to + 150°C, Condition C 
MIL-STD-883C, Method 1011, 
-55 to +125 °C, Condition B 
MIL-STD-883C, Method 1004 
MIL-STD-883C, Method 1014 
To data sheet limits 

MIL-STD-883C, Method 1014 
MIL-STD-883C, Method 1010, 
-65 to + 150°C, Condition C 
MIL-STD-883C, Method 2001, 
30 kg, Y1 Plane 
MIL-STD-883C, Method 1014 
To data sheet limits 
MIL-STD-883C, Method 3015 
MIL-STD-883C, Method 2033 
MIL-STD-750C, Method 2031, 
10 sec 
MIL-STD-883C, Method 1009, 
Condition A, 24 hrs min 
MIL-STD-883C, Method 2004, 
Condition A 
MIL-STD-883C, Method 2004, 
Condition B1 
Accelerated stress testing of 
conductor patterns to ensure 
acceptable lifetime of power­
on operation 
MIL-STD-883C, Method 2015 

Quality and Reliability C-5 



Reliability Stress Tests 

Table C-3 lists the TMS320C3x devices, the approximate number of transis­
tors, and the equivalent gates. The numbers have been determined from de­
sign verification runs. 

Table C-3. TMS320C3x Transistors 

C-6 

Device 

CMOS: TMS320C30 

CMOS: TMS320C31 

Note: MOS Semiconductors 

# Transistors 

600K-700K 

500K-600K 

# Gates 

200K 

100K 

Texas Instruments reserves the right to make changes in MOS semiconduc­
tor test limits, procedures, or processing without notice. Unless prior ar­
rangements for notification have bean made, TI advises aU customers to rs­
verify current test and manufacturing conditions prior to relying on published 
data. 



TMS320C31 PQFP Reflow Soldering Precautions 

C.2 TMS320C31 PQFP Reflow Soldering Precautions 

Recent tests have identified an industry-wide problem experienced by sur­
face-mounted devices exposed to reflow soldering temperatures. This prob­
lem involves a package-cracking phenomenon sometimes experienced by 
large (for example, 132-pin) plastic quad flat pack (POFP) packages during 
surface-mount manufacturing. This phenomenon occurs if the TMS320C31 
POA or POL is exposed to uncontrolled levels of humidity prior to reflow solder. 
This moisture can flash to steam during solder reflow and cause sufficient 
stress to crack the package and compromise device integrity. Once the device 
is soldered or socketed into the board, no special handling precautions are re­
quired. 

To minimize moisture absorption, TI ships the TMS320C31 POA or POL in dry 
pack shipping bags with a relative humidity (RH) indicator card and moisture­
absorbing desiccant. These moisture-barrier shipping bags will adequately 
block moisture transmission to allow shelf storage for 12 months from date of 
seal when stored at less than 60% RH and less than 30° C. Devices may be 
stored outside the sealed bags indefinitely if stored at less than 25% RH and 
less than 30° C. 

Once the bag seal is broken, the devices should, within two days of removal, 
be reflow soldered and stored at les$ than 60% RH and less than 300 C. Ifthese 
conditions are not met, TI recommends baking the devices in a clean oven at 
1250 C and 10% maximum RH for 25 hours. This procedure restores the de­
vices to their dry-packed moisture level. 

Note: ESD Precautions 

Shipping tubes will not withstand the 1250 C baking process. Before baking, 
transfer the devices to a metal tray or tube. Follow standard ESD precau­
tions. 

TI recommends that the reflow process not exceed two solder cycles and that 
the temperature not exceed 2200 C. 

If you have questions or concerns, please contact your local TI representative. 

Quality and Reliability 0-7 



C-8 



Appendix D 

Calculation of TMS320C30 Power Dissipation 

The TMS320C30 is a state-of-the-art, high-performance, 32-bit floating-point 
digital signal processing (DSP) microprocessor fabricated in CMOS 
technology. This device is the first member of the third generation of TMS320 
family single-chip DSP microprocessors. Since 1982, when the first-genera­
tion TMS32010 was introduced, the TMS320 family has established itself as 
the industry standard for DSP. The TMS320C30's innovative architecture and 
specialized instruction set provide high-speed and increased flexibility for DSP 
applications. This combination makes it possible to execute up to 40 million 
floating point operations per second (MFLOPS). 

As device sophistication and levels of integration increase with evolving semi­
conductor technologies, actual levels of power dissipation vary widely and de­
pend heavily on the particular application in which the device is used and the 
nature of the program being executed. In addition, due to the inherent charac­
teristics of CMOS technology, power requirements vary according to clock 
rates and data values being processed. 

This appendix presents the information necessary to determine TMS320C30 
power supply current requirements under different operating conditions. With 
this information, you can determine the device's power dissipation, which, in 
turn, you can use to calculate thermal management requirements. 

This appendix discusses the following major topics: 

Topic Page 

0-1 



Fundamental Power Dissipation Characteristics 

D.1 Fundamental Power Dissipation Characteristics 

Typically, an IC's (integrated circuit) power specification is expressed as a 
function of operating frequency, supply voltage, operating temperature, and 
output load. As devices become more complex, the specification must also be 
based on device functionality. CMOS devices inherently draw current only dur­
ing switching through the linear region. Therefore, the power supply current 
is related to the rate of switching. Furthermore, since the output drivers of the 
TMS320C30 are specified to drive direct current (DC) loads, the power supply 
current resulting from external writes depends not only on switching rate but 
also on the value of data written. 

0.1.1 Components of Power Supply Current Requirements 

There are four basic components of the power supply current: 

o Quiescent, 
o Internal Operations, 
o Internal Bus Operations, and 
o External Bus Operations 

0.1.2 Dependencies 

0-2 

The power supply current consumption depends on many factors. Four are 
system-related: 

o Operating frequency, 
o Supply voltage, 
o Operating temperature, and 
o Output load 

Several others are also related to TMS320C30 operation, including: 

o Duty cycle of operations, 
o Number of buses used, 
o Wait states, 
o Cache usage, and 
o Data value 



Fundamental Power Dissipation Characteristics 

The total power supply current for the device is described in this equation, 
which applies the four basic power supply current components and the depen­
dencies described above: 

where 

Iq is the quiescent current component, 

liOps is the current component due to internal operations, 

libus is the current component due to internal bus usage, including data value 
and cycle time dependencies, 

Ixbus is the current component due to external bus usage, including data 
value, wait state, cycle time, and capacitive load dependencies, 

FV is a scale factor for frequency and supply voltage, and 

T is a scale factor for operating temperature. 

Application of this equation and determination of all of the dependencies are 
described in detail in this appendix. 

This appendix explains, in detail, how to determine the power supply current 
requirement for the TMS320C30. If a less detailed analysis is sufficient, the 
minimum, typical, and maximum values can be used to determine a rough esti­
mate of the power supply current requirements. The minimum power supply 
current requirement is 110 mA. The typical and average current consumption 
is 200 mA, as described in the TMS320C30 data sheet, and will be associated 
with most algorithms running on the device unless data output is excessive. 

If an extremely conservative approach is desired, the maximum value can be 
used. 

Calculation of TMS320C30 Power Dissipation 0-3 



Fundamental Power Dissipation Characteristics 

0.1.3 Determining Algorithm Partitioning 

Each part of an algorithm behaves differently, depending on its internal and ex­
ternal bus usage. To analyze the power supply current requirement, you must 
partition an algorithm into segments with distinct concentrations of internal or 
external bus usage. The analysis that follows is applied to each distinct pro­
gram segment to determine the power supply current requirement for that sec­
tion. The average power supply current requirement can then be calculated 
from the requirements of each segment of the algorithm. 

0.1.4 Test Setup Description 

All TMS320C30 supply current measurements were performed on the test set­
up shown in Figure 0-1. The test setup consists of a TMS320C30, 8K words 
of zeio-wait-state Cypress Semiconductor SRAMs (C'r7CI86-25PC), and 
RC loads on all data and address lines. A Tektronix Current Probe (P6042) 
measures the power supply current in all Voo lines of the device. The supply 
voltage on the output load is 2.15 V. Unless otherwise specified, all measure­
ments are made at a supply voltage of 5.0 V, an input clock frequency of 33 
MHz, a capacitive load of 80 pF, and an operating temperature of 25°C. 

Figure 0-1. Current Measurement Test Setup 

0-4 

CY7C186-25PC 

SRAM 

2.15V 

R=825C 

+Voo 

Tektronix 
Current Probe 

(P6042) 

Voo 

TMS320C30 

t--+~-T-7~ Primary Expansion 
c 

2.15V 

c 



Current Requirement for Internal Circuitry 

0.2 Current Requirement for Internal Circuitry 

0.2.1 Quiescent 

The power supply current requirement for internal circuitry consists of three 
components: quiescent, internal operations, and internal bus operations. 
Quiescent and internal operations are constants, but the internal bus opera­
tions component varies with the rate of internal bus usage and the data values 
being transferred. 

Quiescent refers to the baseline supply current drawn by the TMS320C30 dur­
ing minimal internal activity, such as executing the IDLE instruction or branch­
ing to self. It includes the current required to fetch an instruction from on- or 
off-chip memory. The quiescent requirement for the TMS320C30 is 110 rnA. 
Examples of quiescent current include: 

o Maintaining timers and serial ports 
o Executing the IDLE instruction 
o TMS320C30 in HOLD mode pending external bus access 
o TMS320C30 in reset 
o Branching to self 

0.2.2 Internal Operations 

Internal operations are those that require more current than quiescent activity 
but do not include external bus usage or significant internal bus usage. Internal 
operations include register-to-register multiplication, ALU operations, and 
branches. They add a constant 55 rnA above the quiescent so that the total 
contribution of quiescent and internal operations is 165 rnA. Note, however, 
that internal and/or external bus operations executed via an RPTS instruction 
do not contribute an internal operations power supply current component and 
hence do not add 55 rnA to quiescent current. During an instruction in RPTS, 
activity other than the instruction being repeated is suspended; therefore, 
power supply current is related only to the operation performed by the instruc­
tion being executed. The next contributing factor to the power supply current 
requirement is internal bus operations. 

Calculation of TMS320C30 Power Dissipation 0-5 



Current Requirement for Internal Circuitry 

0.2.3 Internal Bus Operations 

0-6 

The internal bus operations include all operations that utilize the internal buses 
extensively, such as accessing internal RAM every cycle. No distinction is 
made between internal reads (such as instruction or operand fetches from in­
ternal ROM or internal RAM banks) and internal writes (such as operand 
stores to internal RAM banks), because internally they are equal. Significant 
use of internal buses adds a term to the power supply current requirement that 
is data-dependent. Since switching requires more current, moving changing 
data at high rates requires higher power supply current. 

Pipeline conflicts, use of cache, fetches from external wait-state memory, and 
writes to external wait-state memory all affect the internal and external bus 
cycles of an algorithm executing on the TMS320C30. Therefore, the internal 
bus usage of the algorithm must be determined to accurately calculate power 
supply current requirements. The TMS320C30 software simulator and XDS 
emulator both provide benchmarking and timing capabilities that allow bus 
usage to be determined. 

The current resulting from internal bus usage varies roughly exponentially with 
transfer rates. Figure 0-2 shows internal bus current requirements for trans­
ferring alternating data (AAAAAAAAh to 55555555h) at several transfer rates 
(expressed as the transfer cycle time). A transfer rate less than 1 implies multi­
ple accesses per single H1 cycle (that is, using direct memory access (DMA). 
etc.). Transfer cycle times greater than 1 refer to single-cycle transfers with 
one or more cycles between them. The minimum transfer cycle time is one­
third, which corresponds to three accesses in a single H1 cycle. 

The data set AAAAAAAAh to 55555555h exhibits the maximum current for 
these types of operations. Less current is required for transferring other data 
patterns, and current values can be derated accordingly as described later in 
this subsection. 

As the transfer rate decreases (that is, transfer cycle time increases), the in­
crementalloo approaches 0 rnA. Transfer rates corresponding to more than 
seven H1 cycles do not add any current and are considered insignificant. This 
figure represents the incremental 100 due to internal bus operations and is 
added to quiescent and internal operations current values. 

For example, the maximum transfer rate corresponds to three accesses every 
cycle or one-third H1 transfer cycle time. At this rate, 85 rnA is added to the 
quiescent (110 rnA) and internal operation (55 rnA) current values for a total 
of 250 rnA. 



Current Requirement for Internal Circuitry 

Incremental Figure D-2 shows the internal bus current requirement when tran­
sferring As, followed by 5s, for various transfer rates. Figure D-3 shows the 
data dependence of the internal bus current requirement when the data is oth­
er than As followed by 5s. The trapezoidal region bounds all possible data val­
ues transferred. The lower line represents the scale factor for transferring the 
same data. The upper line represents the scale factor for transferring alternat­
ing data (all Os to all Fs or all As to all5s, etc.). 

Figure D-2.lnternal Bus Current Versus Transfer Rate 

Internal Bus Rate of Transfer Analysis [As/5s] 

<' g 
Cl 
Cl 

~ 
Q) 

E 
~ 
u 
.!: 

100 

80 

60 

40 

20 

0 

-20 
o 

I 

\ , 
''"' ......... 

""'--
2 4 6 8 10 

Transfer Cycle Time (H1 Cycles) 

Figure D-3.lnternal Bus Current Versus Data Complexity Derating Curve 

Internal Bus Data Dependency 

Cl 
Cl 

~ 
1ii 
E o 
z 

Same Data 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Relative Data Complexity 

12 14 

Calculation of TMS320C30 Power DisSipation D-7 



Current Requirement for Internal Circuitry 

0-8 

Since the possible permutations of data values is quite large, the extent to 
which data varies is referred to as relative data complexity. This term repre­
sents a relative measure of the extent to which data values are changing and 
the extent to which the number of bits are changing state. Therefore, relative 
data complexity ranges from 0, signifying minimal variation of data, to a nor­
malized value of 1, signifying greatest data variation. 

If a statistical knowledge of the data exists, Figure D-3 can be used to deter­
mine the exact power supply requirement according to internal bus usage. For 
example, Figure D-3 indicates a 63% scale factor when all Fs are moved inter­
nally every cycle with two accesses per cycle. This scale factor is multiplied 
by 55 mA (from Figure 0-2, at one-half H1 cycle transfer time), yielding 34.65 
mA because of internal bus usage. Therefore, an algorithm running under 
these conditions requires about 200 mA of power supply current (110 + 55 + 
34.65). 

Since a statistical knowledge of the data might not be readily available, a nomi­
nal scale factor will suffice. The median between the minimum and maximum 
values at 50% relative data complexity yields a value of 0.80. This value will 
serve as an estimate of a nominal scale factor. Therefore, you can use this 
nominal data scale factor of 80% for internal bus data dependency, adding 44 
mA to 110 mA (quiescent) and 55 mA (internal operations) to yield 210 mA. As 
an upper bound, assume worst case conditions of three accesses of alternat­
ing data every cycle, adding 85 mA to 110 mA (quiescent) and 55 mA (internal 
operations) to yield 250 mAo 



Current Requirement for Output Driver Circuitry 

0.3 Current Requirement for Output Driver Circuitry 

The output driver circuits on the TMS320C30 are required to drive significantly 
higher DC and capacitive loads than internal device logic. Therefore, they are 
designed to drive larger currents than internal devices. Because of this, output 
drivers impose higher supply current requirements than other sections of cir­
cuitry on the device. 

Accordingly, the highest values of supply current are exhibited when external 
writes are being performed at high speed. During reads, or when the external 
buses are not being used, the TMS320C30 is not driving the data bus; this 
eliminates the most significant component of output buffer current. Further­
more, in typical cases, only a few address lines are changing, or the whole ad­
dress bus is static. Under these conditions, an insignificant amount of supply 
current is consumed. Therefore, when no external writes are being performed 
or when writes are performed infrequently, current due to output buffer circuitry 
can be ignored. 

When external writes are being performed, the current required to supply the 
output buffers depends on several considerations. As with internal bus opera­
tions. current required for output drivers depends on the data being transferred 
and the rate at which transfers are being made. Additionally, output driver cur­
rent requirements depend on the number of wait states implemented, because 
wait states affect rates at which bus signals switch. Finally, current values are 
also dependent upon external bus DC and capacitive loading. 

External operations involve writes external to the device and constitute the 
major power supply current component. The power supply current for the ex­
ternal buses is made up of three components and is summarized in the follow­
ing equation: 

Ibase + Iprim + lexp 

where 

Ibase is the 60-mA baseline current component 

Iprim is the primary bus current component 

lexp is the expansion bus current component 

The remainder of this section describes in detail the calculation of external bus 
current components. 

Calculation of TMS320C30 Power Dissipation 0-9 



Current Requirement for Output Driver Circuitry 

0.3.1 Primary Bus 

0-10 

The current due to primary bus writes varies roughly exponentially with both 
wait states and write cycle time. Also, current components due to output driver 
circuitry are represented as offsets from the baseline value. Since the baseline 
value is related to internal current components, negative values for current off­
set are obtained under some circumstances. Note, however, that actual nega­
tive current does not occur. 

As previously mentioned, to obtain accurate current values, you must first es­
tablish timing of write cycles on the buses. To determine the rate and timings 
at which write cycles to the external buses occur, you must analyze program 
activity, including any pipeline conflicts that may exist. Information from this 
manual and the TMS320C30 emulator or simulator is useful in making these 
determinations. Note that effects from the use of cache must also be ac-
counted for in these analyses because use of cache can affect whether in­
structions are fetched from external memory. 

When evaluating external write activity in a given program segment, you must 
consider whether a particular level of external write activity constitutes signifi­
cant activity. If writes are being performed at a slow enough rate, they do not 
significantly impact supply current requirements; therefore, current due to ex­
ternal writes can be ignored. This is the case, however, only if writes are being 
performed at very slow rates on both the primary and the expansion buses. If 
writes are being performed at high speed on only one of the two external 
buses, you should still use the approach described in this section to calculate 
current requirements. 

Note that, although you obtain negative incremental current values under 
some circumstances, the total contribution for external buses, including base­
line current, must always be positive. The reason is that, when external buses 
are used minimally, total current requirements always approach the current 
contribution due to internal components, which is solely a function of internal 
activity. This places a lower limit on current contributions resulting from the pri­
mary and expansion buses, because the total current due to external buses 
is the sum of the 60-mA baseline value and the primary and expansion bus 
components. This effect is discussed in further detail in the rest of this subsec­
tion. 



Current Requirement for Output Driver Circuitry 

When you have established bus-write cycle timing, you can use Figure 0-4 
to determine the contribution to supply current due to this bus activity. 
Figure 0-4 shows values of current contribution from the primary bus for vari­
ous numbers of wait states and H1 cycles between writes. These characteris­
tics are exhibited when writes of alternating 55555555h and AAAAAAAAh are 
being performed at a capacitive load of 80 pF per output signal line. The condi­
tions exhibit the highest current values on the device. The values presented 
in the figure represent incremental or additional current contributed by the pri­
mary bus output driver circuitry under the given conditions. Current values ob­
tained from this graph are later scaled and added to several other current 
terms to calculate the total current for the device. As indicated in the figure, the 
lower curve represents the current contribution for 18 or more cycles between 
writes. 

Figure 0-4. Primary Bus Current Versus Transfer Rate and Wait States 

Primary Bus Analysis [80 pF, As/5s] 

« 
.§. 

0 
0 

~ 
Q) 

E 
~ 
() 

oS 

200 
q = Num~er of CYCle~ between w1rites 

150 

100 

I\. 

'" q=l 

'-..... 
......... .. .. .. .. q=2 -50 -

~----
q =4------

0 
q;;,: 18 0_-

-50 
o 

"--r--.-
----- .- .. -. ---- ----- --------- -------i--------
--i----- --

2 3 4 5 6 7 

Wait States 

Note that number of cycles between writes refers to the number of H1 cycles 
between the active portion of the write cycles as defined in Chapter 13-that 
is, between H1 cycles when STRB, MSTRB, or IOSTRB and R/W (or XR/W, 
as the case may be) are low. As shown in Figure 0-4, the minimum number 
of cycles between writes is 1 because with back-to-back writes there is one H 1 
cycle between active portions of the writes. 

To further illustrate the relationship of current and write cycle time, Figure 0-5 
shows the characteristics of current for various numbers of cycles between 
writes for zero wait states. The information on this curve can be used to obtain 
more precise values of current if zero wait states are being used and the num­
ber of cycles between writes does not fall on one of the curves in Figure 0-4. 

Calculation of TMS320C30 Power Dissipation D-11 



Cu"ent Requirement for Output Driver Circuitry 

Figure D-5.Primary Bus Current Versus Transfer Rate at Zero Wait States 

Primary Bus Duty Cycle Analysis [80 pF, As/5s] 

0-12 

~ -
0 
0 

~ 
CD 
E 
! 
~ 

200 

150 

100 

50 

0 

-50 
o 

\ 
\ 
I" 

I'" i'.... 
I'-...... 1-0.. 

2 4 6 8 10 12 14 16 18 20 

H1 Cycles Between Writes 

Note that, although these graphs contain negative current values, negative 
current has not necessarily actually occurred. The negative values exist be­
cause the graphs represent a current offset from a common baseline current 
value, which is not necessarily the lowest current exhibited. Using this ap­
proach to depict current contributions due to different components simplifies 
current calculations because it allows calculations to be made independently. 
Independent calculations are possible because information about relation­
ships between different sections of the device are included implicitly in the in­
formation for each section. 

Figure D-4 and Figure 0-5 show that the contribution of writes for external 
bus activities becomes insignificant if writes are being performed at intervals 
of more than 18 cycles. Under these conditions, you should use the incremen­
tal value of -aO-mA current contribution due to the primary bus. Note, however, 
that you should use a value of -30 rnA only if the expansion bus is being used 
extensively. This is because the total contribution for external buses, including 
baseline current, must always be positive. If the expansion bus is not being 
used and the primary bus is being used minimally, the current contribution due 
to the primary bus must always be greater than or equal to 20 rnA. This ensures 
that the correct total current value is obtained when summing external bus 
components. Once a current value has been obtained from Figure D-4 or 
Figure 0-5, this value can, if necessary, be scaled by a data dependency fac­
tor, as described at the end of this section. This scaled value is then summed 
along with several other current terms to determine the total supply current. 
Calculation of total supply current is described in detail in Section 0.4 on page 
0-18. 



Current Requirement for Output Driver Circuitry 

0.3.2 Expansion Bus 

Currents due to the primary and expansion buses are similar in characteristics 
but differ slightly because of several factors, including the fact that the expan­
sion bus has 11 fewer address outputs than the primary bus (13 rather than 
24). This difference is exhibited in an overall current contribution that is slightly 
lower from the expansion bus than from the primary bus. 

Accordingly, determination of expansion bus current follows the same basic 
premises as determination of the primary bus current. Figure D-6 and 
Figure D-7 show the same current relationships for the expansion bus as 
Figure D-4 and Figure D-5 show for the primary bus. Also, since the total ex­
ternal buses' current contributions must be positive, if the primary bus is not 
being used and the expansion bus is being used minimally, then the minimum 
current contribution due to the expansion bus is --30 mAo Finally, as with the 
primary bus, current values obtained from these figures may require scaling 
by a data dependency factor, as described in subsection 0.3.3 on page 0-14. 

Figure D-6.Expansion Bus Current Versus Transfer Rate and Wait States 

Expansion Bus Analysis [80 pF, As/5s] 

1 
c c 

~ 
CD 
E e 
" .5 

100 

50 

, q = Number of cycles between writes 

"'" q = 1 

'" .. ~ ----.. .. .. q=2 --.. 
0 .. .... 
~---

q =4 .. ..... --------- ----- ----- -----1---- ------- ---~----50 
q l!: 18 --

-100 
o 2 3 4 5 6 7 

Wait States 

Calculation of TMS320C30 Power Dissipation 0-13 



Current Requirement for Output Driver Circuitry 

Figure ~7.Expansion Bus Current Versus Transfer Rate at Zero Wait States 

Expansion Bus Duty Cycle Analysis [80 pF, As/5s] 
200 

150 

C(' 100 .s 
c 50 c 

, 

\ 
~ 0 CD 
E e 
() 

-50 .E 

"-", .... 
......... 

-----
2 4 6 8 10 12 14 16 18 20 

H 1 Cycles Between Writes 

0.3.3 Data Dependency 

0-14 

Data dependency of current for the primary and expansion buses is expressed 
as a scale factor that is a percentage of the maximum current exhibited by ei­
ther of the two buses. Data dependencies for the primary and expansion buses 
are shown in Figure D-8 and Figure 0-9, respectively. 

These two figures show normalized weighting factors that you can use to scale 
current requirements on the basis of patterns in data being written on the exter­
nal buses. The range of possible weighting factors forms a trapezoidal pattern 
bounded by extremes of data values. As can be seen from Figure D-8 and 
Figure 0-9, the minimum current is exhibited by writing all Os, while the maxi­
mum current occurs when writing alternating 55555555h and AAAAAAAAh. 
This condition results in a weighting factor of 1, which corresponds to using the 
values from Figure D-4 and/or Figure D-5 directly. 

As with internal bus operations, data dependencies for the external buses are 
well defined, but accurate prediction of data patterns is often either impossible 
or impractical. Therefore, unless you have precise knowledge of data patterns, 
you should use an estimate of a median or average value for scale factor. If 
you assume that data will be neither 5s and As nor all Os and will be varying 
randomly, a value of 0.85 is appropriate. Otherwise, if you prefer a conserva­
tive approach, you can use a value of 1 .0 as an upper bound. 



Current Requirement for Output Driver Circuitry 

Regardless of the approach you take for scaling, once you determine the scale 
factors for primary and expansion buses, apply these factors to scale the cur­
rent values found by using the graphs in the previous two subsections. For ex­
ample. if a nominal scale factor of 0.85 is used and the system uses zero wait 
states with two cycles between accesses on both the primary and expansion 
buses, the current contribution from the two buses is as follows: 

Primary: 0.85 x 80 rnA = 68 rnA 
Expansion: 0.85 x 40 rnA = 34 rnA 

Figure 0-8. Primary Bus Current Versus Data Complexity Derating Curve 

o o 

~ 
'a 
E ... o 
Z 

Primary Bus Data Dependency Analysis [80 pF] 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Data Complexity 

Calculation of TMS320C30 Power Dissipation 0-15 



Current Requirement for Output Driver Circuitry 

Figure D-9.Expansion Bus Current Versus Data Complexity Derating Curve 

Expansion Bus Data Dependency [80 pF] 

c c 

Data Complexity 

0.3.4 Capacitive Load Dependence 

0-16 

Once you account for cycle timing and data dependencies, you should include 
capacitive loading effects in a manner similar to that of data dependency. 
Figure 0-10 shows the scale factor to be applied to the current values 
obtained above as a function of actual load capacitance ifthe load capacitance 
presented to the buses is less than 80 pF. 

In the previous example, if the load capacitance is 20 pF instead of 80 pF. a 
scale factor of 0.84 is used, yielding: 

Primary: 0.84 x 68 mA = 57.12 mA 
Expansion: 0.84 x 34 mA = 28.56 mA 

The slope of the load capacitance line in Figure 0-10 is 0.26% normalized 100 
per pF. While this slope may be used to interpolate scale factors for loads 
greater than 80 pF. the TMS320C30 is specified to drive output loads of less 
than 80 pF. and interface timings cannot be guaranteed at higher loads. With 
data dependency and capacitive load scale factors applied to the current val­
ues for primary and expansion buses, the total supply current required for the 
device for a particular application can be calculated, as described in the next 
section. 



Current Requirement for Output Driver Circuitry 

Figure D-10. Current Versus Output Load Capacitance 

C 
C 

1 
'i 
E .... 
0 z 

1 

0.95 

0.9 

0.85 

0.8 
V 

0.75 
o 

100 Versus Output Load Capacitance 

./ 
/ 

/ 
.... 

./ 

/ 
, 

./ 

/ 
V 

",. 

10 20 30 40 50 60 70 80 

Output Load Capacitance (pF) 

Calculation of TMS320C30 Power Dissipation 0-17 



Calculation of Total Supply Current 

0.4 Calculation of Total Supply Current 

The previous sections have discussed currents contributed by several 
sources on the TMS320C30. Because determinations of actual current values 
are unique and independent for each source, each current source was dis­
cussed separately. In an actual application, however, the sum of the indepen­
dent contributions from each current determines the total current requirement 
for the device. This total current value is exhibited as the total current supplied 
to the device through all of the Voo inputs and returned through the Vss con­
nections. 

Note that numerous Voo and Vss pins on the device are routed to a variety of 
internal connections, not all of which are common. Externally, however, all of 
these pins should be connected in parallel to 5 V and ground planes, respec­
tively, with as low impedance as possible. 

As mentioned previously, because different program segments inherently per­
form different operations that are often quite distinct from each other, it is typi­
cally appropriate to consider current for each of the different segments inde­
pendently. Once this is done, peak current requirements are readily obtained. 
Further, you can use average current calculations to determine heating effects 
of power dissipation. In turn, you can use these effects to determine thermal 
management considerations. 

0.4.1 Combining Supply Current Due to All Components 

0-18 

To determine the total supply current requirements for any given program ac­
tivity, calculate each of the appropriate components and combine them in the 
following sequence: 

1) Start with 11 O-mA quiescent current requirement. 

2) Add 55 mA for internal operations unless the device is dormant, as during 
execution of IDLE, NOPs, or branches-to-self, or performance of internal 
and/or external bus operations using an RPTS instruction (see subsection 
0.2.2 on page 0-5). Internal or external bus operations executed via 
RPTS do not contribute an internal operations power supply current com­
ponent and hence do not add 55 mA to quiescent current. Therefore, cur­
rent components in the next two steps might still be required, even though 
the 55 rnA is omitted. 



Calculation of Total Supply Current 

3) If significant internal bus operations are being performed (see subsection 
0.2.2 on page 0-5), add the calculated current value. 

4) If external writes are being performed at high speed (see section 0.3 on 
page 0-9), add 60 mA and then add the values calculated for primary and 
expansion bus current components. If only one external bus is being used, 
the appropriate incremental current for the unused bus should still be in­
cluded because the current offsets include components required for oper­
ating both buses. Note, however, that, as discussed previously, the total 
current contribution for external buses, including baseline, must always be 
positive. 

The current value resulting from summing these components is the total de­
vice current requirement for a given program activity. 

0.4.2 Supply Voltage, Operating Frequency, and Temperature Dependencies 

Current dependencies specific to each supply current component (such as in­
ternal or external bus operations) are discussed in subsection 0.1.2 on page 
0-2. Supply voltage level, operating temperature, and operating frequency 
affect requirements for the total supply current and must be maintained within 
required device specifications. 

Once the total current for a particular program segment has been determined, 
the dependencies that affect total current requirements are applied as a scale 
factor in the same manner as data dependencies discussed in other sections. 
Figure 0-11 shows the relative scale factors to be applied to the supply current 
values as a function of both Voo and operating frequency. 

Power supply current consumption does not vary significantly with operating 
temperature. However, if desired, a scale factor of 2% normalized 100 per 50°C 
change in operating temperature may be used to derate current within the spe­
cified range noted in the TMS320C30 data sheet. This temperature depen­
dence is shown graphically in Figure 0-12. Note that a temperature scale fac­
tor of 1.0 corresponds to current values at 25°C, which is the temperature at 
which all other references in the document are made. 

Calculation of TMS320C30 Power Dissipation 0-19 



Calculation of Total Supply Current 

Figure D-11. Current Versus Frequency and Supply Voltage 

1.2 

1.1 

c 0.9 
c 

0.8 

~ 0.7 
iii 
E 0.6 ... 
0 z 0.5 

0.4 

100 Versus f(CLKIN) and Supply Voltage 

Voo = 5.5V 
1----f------if------i----t----t---1~ VOO = 5.25 V 

1----f------if------i----t----t-:7"~Ii""9'_::;of VOO = 5.0 V 

1----1-------"11-------1----+---" ........ """""""--"""""'--+-:00"9 VOO = 4.75 V 
VOO =4.5V 

VOO Increments in 0.25 V 
! ! 

5 10 15 20 25 30 

f(CLKIN) (MHz) 

Figure 0-12. Current Versus Operating Temperature Change 

Operating Temperature Effects 
1.03 

1.02 

c 
1.01 c 

~ 
iii 
E ... 

0.99 0 z 

0.98 

"-
" "" '" '" '" '" ~ '" , 0.97 

-80 -60 -40 -20 o 20 40 60 80 

Change in Operating Temperature (OC) 

0·20 



Calculation of Total Supply Current 

0.4.3 Design Equation 

The procedure for determining the power supply current requirement can be 
summarized in the following equation: 

I = (Iq + liOps + libus + IXbUS) x FV x T 

where 

Iq = 110 mA 

ItOpS = 55 mA 

Itbus 01 x f1 (see Table 0-1) 

Ixbus = Iprim + lexp 

with 

Ibase = 60 mA 

Iprim = 02 x C2 x f2 (see Table D-1) 

lexp = 03 x C3 x f3 (see Table D-1) 

FV is the scale factor for frequency and supply voltage, and 

T is the scale factor for operating temperature. 

Table 0-1 describes the symbols used in the power supply current equation. 
The table displays figure numbers from which the value can be obtained. 

Calculation of TMS320C30 Power Dissipation D·21 



Calculation of Total Supply Current 

Table 0-1. Current Equation Symbols 

Symbol Description GraphNalu8 

01 Internal Bus Oata Scale Factor Figure 0-3 

11 Internal Bus Current Requirement Figure 0-2 

I base External Bus Base Current 60mA 

Iprim Primary Bus Operations Current t 

02 Primary Bus Data Scale Factor Figure 0-8 

C2 Primary Bus Cap Load Scale Factor Figure D-10 

f2 Primary Bus Current Requirement Figure D-4 or 
Figure D-5 

lexp Expansion Bus Operations Current t 

03 Expansion Bus Data Scale Factor Figure D-9 

C3 Expansion Bus Cap Load Scale Factor Figure D-10 

f3 Expansion Bus Current Requirement Figure 0-6 or 
Figure 0-7 

D.4.4 Peak Versus Average Current 

0-22 

If current is obseNed over the course of an entire program, some segments 
will usually exhibit significantly different levels of current required for different 
durations of time. For example, a program may spend 80% of its time perform­
ing internal operations, drawing a current of 250 mA, and spend the remaining 
20% of its time performing writes at full speed to the expansion bus, drawing 
300 mA. 

While knowledge of peak current levels is important in order to establish power 
supply requirements, some applications require information about average 
current. This is particularly significant if periods of high peak current are short 
in duration. Average current can be obtained by performing a weighted sum 
of the currents due to the various independent program segments over time. 
In the example above, the average current can be calculated as follows: 

I = 0.8 x 250 mA + 0.2 x 300 mA = 260 mA 

Using this approach, averagp, current for any number of program segments 
can be calculated. 



Calculation of Total Supply Current 

D.4.5 Thermal Management Considerations 

Heating characteristics of the TMS320C30 depend on power dissipation. 
which in turn depends on power supply current. When you make thermal man­
agement calculations, you must consider the manner in which power supply 
current contributes to power dissipation and to the time constant of the 
TMS320C30 package thermal characteristics. 

Depending on sources and destinations of current on the device, some current 
contributions to 100 do not constitute a component of power dissipation at 5 
volts. Accordingly, if you use the total current flowing into Voo to calculate pow­
er dissipation at 5 volts, you will obtain erroneously large values for power dis­
sipation. Power dissipation is defined as: 

P = I x V 

(where P is power, I is current, and V is voltage). If device outputs are driving 
any DC load to a logic high level, only a minor contribution is made to power 
dissipation because CMOS outputs typically drive to a level within a few tenths 
of a volt of the power supply rails. If this is the case, subtract these current com­
ponents out of the total supply current value; then calculate their contribution 
to power dissipation separately and add it to the total power dissipation (see 
Figure 0-13). If this is not done, these currents resulting from driving a logic 
high level into a DC load will cause unrealistically high power dissipation val­
ues. The error occurs because the currents resulting from driving a logic high 
level into a DC load will appear as a portion of the current used to calculate 
power dissipation due to Voo at 5 volts. 

Figure 0-13. Load Currents 

VDD 

I' _ 

IDD 
lOUT 

TMS320C30: Device Output Driven High 

ISS 

VDD 

IDD 
lOUT 

TMS320C30:, , Device Output Driven Low 

ISS 

Calculation of TMS320C30 Power Dissipation 0-23 



Calculation of Total Supply Current 

0-24 

Furthermore, external loads draw supply-only current when outputs are being 
driven high, because, when outputs are in the logic 0 state, the device is sink­
ing current that is supplied from an external source. Therefore, the power dissi­
pation due to this current component will not have a contribution through 100 
but will contribute to power dissipation with a magnitude of: 

P = VOL x IOL 

where VOL is the low-level output voltage and IOL is the current being sunk by 
the output as shown in Figure 0-13. The power dissipation component due 
to outputs being driven low should be calculated and added to the total power 
dissipation. 

When outputs with DC loads are being switched, the power dissipation compo­
nents from outputs being driven high and outputs being driven low are aver­
aged and added to the total device power dissipation. You should calculate 
power components due to DC loading of the outputs separately for each pro­
gram segment before you calculate average power. 

Note that any unused inputs that are left disconnected may float to a voltage 
level that will cause input buffer circuits to remain in the linear region and there­
fore contribute a significant component to power supply current. Accordingly, 
any unused inputs should be made inactive by being either grounded or pulled 
high if absolute minimum power dissipation is desired. If several unused inputs 
must be pulled high, they may be pulled high together through one resistor to 
minimize component count and board space. 

When you use power dissipation values to determine thermal management 
considerations, you should use the average power unless the time duration of 
individual program segments is long. The thermal characteristics of the 
TMS320C30 in the 181-pin grid analysis (PGA) package are exponential in na­
ture, with a time constant t = 4.5 minutes. Therefore, when subjected to a 
change in power, the temperature of the device package will, after 4.5 minutes, 
reach approximately 63% of the total temperature change. Accordingly, if the 
time duration of program segments exhibiting high power dissipation values 
is short (on the order of a few seconds), you can use average power, calculated 
in the same manner as average current (as described in subsection 0.4.4 on 
page D-22). 

Otherwise, you should calculate maximum device temperature on the basis 
of the actual time duration of the program segments involved. For example, 
if a particular program segment lasts for seven minutes, then, using the expo­
nential function, you can calculate that a device will reach approximately 80% 
of the temperature due to the total power dissipation during the program seg­
ment. 



Calculation of Total Supply Current 

Note that the average power should be determined by calculating the power 
for each program segment (including considerations described above) and 
performing a time average of these values, rather than simply multiplying the 
average current as determined in the previous subsection by Voo. 

Specific device temperature calculations are made by using the TMS320C30 
thermal impedance characteristics included in Chapter 13. 

Calculation of TMS320C30 Power Dissipation 0-25 



Example Supply Current Calculations 

0.5 Example Supply Current Calculations 

D.5.1 Processing 

0.5.2 Data Output 

D-26 

A Fast Fourier Transform (FFT) represents a typical DSP algorithm. The FFT 
code in Section 0.8 on page 0-30 processes data in the RAM blocks and 
writes the result out to zero-wait-state external SRAM on the primary bus. The 
program executes out of zero-wait-state external SRAM on the primary bus, 
and the TMS320C30's cache is enabled. The entire algorithm consists mainly 
of internal bus operations and so includes quiescent and internal operations 
in general. At the end of processing, the 1024 results are written out on the pri­
mary bus. Therefore, the algorithm exhibits a higher current requirement dur­
ing the write portion, where the external bus is being used significantly. 

The processing portion of the algorithm is 95% of the total algorithm. During 
this portion, the power supply current is required only for the internal circuitry. 
Data is processed in several loops that compose a majority of the algorithm. 
During these loops, two operands are transferred on every cycle. The current 
required for internal bus usage, then, is 55 mA, taken from Figure 0-2 on page 
0-7. The data is assumed to be random. A data value scale factor of 0.8 is 
used from Figure 0-3 on page 0-7. This value scales 55 mA, yielding 44 mA 
for internal bus operations. Adding 44 mA to the quiescent current requirement 
and internal operations current requirement yields a current requirement of 
209 mA for the major portion of the algorithm. 

= Iq + liops + libus 

= 110 mA + 55 mA + (55 mA)(0.8) 209 mA 

The portion of the algorithm corresponding to writing out data is approximately 
5% of the total algorithm. Again, the data that is being written is assumed to 
be random. From Figure 0-3 on page 0-7 and Figure D-8 on page 0-15, 
scale factors of 0.80 and 0.85 are used for derating due to data value depen­
dency for internal and primary buses, respectively. During the data dump por­
tion of the code, a load and store are performed every cycle; however, the par­
allelload/store instruction is in an RPTS loop, so there is no contribution due 
to internal operations, because the instruction is fetched only once. The only 
internal contributions are due to quiescent and internal bus operations. 
Figure D-4 on page 0-11 indicates a 170-mA current contribution due to back­
to-back zero-wait-state writes, and Figure 0-6 on page 0-13 indicates a 
-aO-mA contribution due to the expansion bus being idle (that is, with more 
than 18 H 1 cycles between writes). Therefore, the total contribution due to this 
portion of the code is: 



Example Supply Current Calculations 

I = Iq + libus + Ixbus 

or, 

= 110 + (55 rnA) (0.8) + 60 rnA - 80 rnA + (170 rnA) (0.85) 
= 278.5 rnA 

0.5.3 Average Current 

The average current is derived from the two portions ofthe algorithm. The pro­
cessing portion took 95% of the time and required about 21 0 rnA, and the data 
dump portion took the other 5% and required about 280 rnA. The average is 
calculated as: 

lavg = (0.95)(21 rnA) + (0.05)(280 rnA) = 213.5 rnA 

From the thermal characteristics specified in Chapter 13, it can be shown that 
this current level corresponds to a case temperature of 43DC. This temperature 
meets the maximum device specification of 85DC and hence requires no 
forced air cooling. 

0.5.4 Experimental Results 

A photograph of the power supply current for the FFT is shown Section 0.7 on 
page 0-29. During the FFT proceSSing, the measured current varied between 
180 and 220 rnA. The peak of the current during external writes was 270 rnA, 
and the average current requirement, as measured on a digital multimeter, 
was 200 rnA. The calculations yielded results that were extremely close to the 
actual measured power supply current. 

Calculation of TMS320C30 Power Dissipation 0-27 



Summary 

0.6 Summary 

0-28 

An accurate power supply current requirement for the TMS320C30 cannot be 
expressed simply in terms of operating frequency, supply voltage, and output 
load capacitance. The specification must be more complete and depends on 
device functionality and system parameters. The current components related 
to device functionality are due to quiescent current, internal operations, inter­
nal bus operations, and external bus operations. Those related to system pa­
rameters are due to operating frequency, supply voltage, output load capaci­
tance, and operating temperature. The typical power supply current require­
ment is 200 rnA, and the minimum, or quiescent, is 110 rnA. 

This application report presents information required to determine power sup­
ply specifications. Specifications are based on an algorithm's use of internal 
and external buses on the TMS320C30. As devices become more complex, 
the caicuiation of power dissipation becornes more critical. 



0.7 Photo of 100 for FFT 

rnA 

500 IAs/Div 

Input Clock Frequency = 33 MHz 

Voltage Level = 5.0 Voo 

Photo of IDD for FFT 

Calculation of TMS320C30 Power Dissipation 0-29 



FFT Assembly Code 

0.8 FFT Assembly Code 

0-30 

.GLOBL FFT 

.GLOBL N 

.GLOBL M 

.GLOBL SINE 

SINTAB: setup 
• WORD 

RAMO: 
• WORD 

OUTBUF: 
• WORD 

• TEXT 

FFT: LDP 

SINE 

809800h 

800h 

SINTAB processing portion: 
quiescent, internal and 
bus operations 

LDI N, IRO 
LSH -l,IRO 

LENGTH-TWO BUTTERFLIES 

LDI @RAMO,ARO 
LDI IRO,RC 
SUBI 1,RC 

RPTB BLKI 
ADDF *+ARO,*ARO++,RO 
SUBF *ARO,*-ARO,Rl 

BLKI STF RO,*-ARO 
II STF Rl,*ARO++ 

FIRST PASS OF THE D0-20 LOOP (STAGE K=2 IN DO-IO LOOP) 

LDI @RAMO,ARO 
LDI 2,IRO 
LDI N,RC 
LSH -2,RC 
SUBI 1,RC 

RPTB BLK2 
ADDF *+ARO(IRO),*ARO++(IRO),RO 
SUBF *ARO,*-ARO(IRO),Rl 
NEGF *+ARO,RO 

II STF RO,*-ARO(IRO) 
BLK2 STF Rl,*ARO++(IRO) 
II STF RO,*+ARO 

~ MAIN LOOP (FFT STAGES) 



FFT Assembly Code 

LDI N,IRO 
LSH -2,IRO 
LDI 3,R5 
LDI l,R4 
LDI 2,R3 

LOOP LSH -l,IRO 
LSH l,R4 
LSH l,R3 

INNER LOOP (D0-20 LOOP IN THE PROGRAM) 

LDI @RAMO,AR5 
INLOP: 

LDI IRO,ARO 
ADDI @SINTAB,ARO 
LDI R4,IRl 
LDI AR5,ARl 
ADDI l,ARl 
LDI ARl,AR3 
ADDI R3,AR3 
LDI AR3,AR2 
SUBI 2,AR2 
ADDI R3,AR2,AR4 
LDF *AR5++(IRl),RO 
ADDF *+AR5(IRl),RO,Rl 
SUBF RO,*++AR5(IRl),RO 

II STF Rl,*-AR5(IRl) 
NEGF RO 
NEGF *++AR5(IRl),Rl 

II STF RO,*AR5 
STF Rl,*AR5 

INNERMOST LOOP 

LDI N,IRl 
LSH -2,IRl 
LDI R4,RC 
SUBI 2,RC 

RPTB BLK3 
MPYF *AR3,*+ARO(IRl),RO 
MPYF *AR4,*ARO,Rl 
MPYF *AR4,*+ARO(IRl),Rl 

II ADDF RO,Rl,R2 
MPYF *AR3,*ARO++(IRO),RO 
SUBF RO,Rl,RO 
SUBF *AR2,RO,Rl 
ADDF *AR2,RO,Rl 

II STF Rl,*AR3++ 
ADDF *ARl,R2,Rl 

II STF Rl, *AR4--
SUBF R2,*ARl,Rl 

Calculation of TMS320C30 Power Dissipation D-31 



FFT Assembly Code 

II STF Rl,*AR1++ 
BLK3 STF Rl, *AR2--

SUBI @RAMO,AR5 
ADOI R4,AR5 
CMPI N,AR5 
BLTO INLOP 
ADOI @RAMO,AR5 
NOP 
NOP 

ADOI 1,R5 
CMPI M,R5 
BLE LOOP 

DUMP LOI @RAMO,ARO data dump portion 
LOI @OUTBUF,ARl quiescent, internal bus 

LOF *ARO++,RO ops and primary bus ops 
RPTS N-2 
LOF *ARO++,RO 

II STF RO,*AR1++ 
STF RO,*AR1++ 

LOl RAMO,ARl 

LOl @RAMO,ARO swap RAM banks 
XOR 400h,ARO 
STl ARO,*ARl 

B FFT 
.ENO 

0-32 



Appendix E 

SMJ320C3x Digital Signal Processor 
Data Sheet 

This appendix contains the standalone data sheetfor the military version ofthe 
'C3x digital signal processor, the SMJ320C3x Digital Signal Processor. 

E-1 



E-2 



• Processed to MIL-STD-883, Class B 
• Operating Temperature Range: 

-55°C to 125°C 

• Two 1 K x 32-Bit Single-Cycle Dual-Access 
On-Chip RAM Blocks 

• Validated ADA Compiler 
• 64-Word x 32-Blt Instruction Cache 
• 32-Bit Instruction and Data Words, 24-Bit 

Addresses 

• 40/32-Bit Floating-Point/Integer Multiplier 
and ALU 

• Parallel ALU and Multiplier Execution in a 
Single Cycle 

• On-Chip Direct Memory Access (DMA) 
Controller for Concurrent I/O and CPU 
Operation 

• Integer, Floating-Point, and Logical 
Operations 

SMJ320C30 Key Features 

• Performance 
- SMJ320C30-33 (60-ns Cycle) 

33 MFLOPS 
16.7 MIPS 

- SMJ320C30-28 (70-ns Cycle) 
28.6 MFLOPS 
14.3 MIPS 

• One 4K x 32-Bit Single-Cycle Dual-Access 
On-Chip ROM Block 

• Two 32-Bit External Ports (24- and 13-Bit 
Address) 

• Two Serial Ports With Support for 
8/16/24/32-Bit Transfers 

• Two 32-Bit Timers 

• Packaging 
- 181-Pin Grid Array Ceramic Package 

(GB Suffix) 
- 196-Pin Quad Flat Pack With 

Nonconductive Tie-Bar (HFG Suffix) 
- 244-Pad JEDEC Standard TAB Frame 

• SMD Approval for 28- and 33-MHz Versions 

EPIC is a trademark of Texas Instruments Incorporated, 

SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A - FEBRUARY 1991 - REVISED SEPTEMBER 1994 

• Two Address Generators With Eight 
Auxiliary Registers and Two Auxiliary 
Register Arithmetic Units 

• Zero-Overhead Loops With Single-Cycle 
Branches 

• Interlocked Instructions for 
Multiprocessing Support 

• 32-Bit Barrel Shifter 
• Eight Extended-Precision Registers 

(Accumulators) 

• Two- and Three-Operand Instructions 
• Conditional Calls and Returns 

• Block Repeat Capability 
• 0.8-~m EPIC'· CMOS Technology 

SMJ320C31 Key Features 

• Performance 
- SMJ320C31-40 (50-ns Cycle) 

40 MFLOPS 
20 MIPS 

- SMJ320C31-33 (60-ns Cycle) 
33.3 MFLOPS 
16.7 MIPS 

- SMJ320C31-27 (74-ns Cycle) 
27 MFLOPS 
13.5 MIPS 

• Flexible Boot Program Loader 

• One Serial Port to Support 
8/16/24/32-Bit Transfers 

• One 32-Bit Data Bus (24-Bit Address) 

• Packaging 
- 132-Pin Ceramic Quad Flat Pack With 

Nonconductive Tie-Bar (HFG Suffix) 
- 141-Pin Staggered Grid Array 

(GFA Suffix) 
- 244-Pad JEDEC-Standard TAB Frame 

• SMD Approval for 27- and 33-MHz Versions 

=~O:~C:~o:I: '=:~~~I~~.I;.~~:~r: :: 1e~:I~a::~m~~i 
It8ndard warranty. Production proc.88lng doe. not nee.saltlly Include 
leIUng of &11 parameter •• ~TEXAS 

INSTRUMENTS 

Copyright © 1994, Texas Instruments Incorporated 

POST OFFICE BOX 1443· HOUSTON, TEXAS 77251-1443 E-3 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

1 
2 
3 
4 
5 
a 
7 
a 
9 

10 
11 
12 
13 
14 
15 

SMJ32OC30 ••• GB PACKAGE 
(BOTTOM VIEW) 

ABC D E F G H J K L M N P R 

@ ••••••••••••• @ 
••••••••••••••• 
••••••••••••••• 
••••••••••••••• 
••••• • • ••• •••• • ••• •••• • ••• ••••• • ••• • •••• •••• •••• • ••• •••• • • ••• ••••••••••••••• 
••••••••••••••• 
••••••••••••••• 
@ ••••••••••••• @ 

SMJ32OC30 ••• HFG PACKAGE 
(TOP VIEW) 

1 
2 

3 
4 

5 
8 

7 
B 

9 
10 

11 
12 

13 
14 

1516 
17 

18 
19 

NOTE: Refer to mechanical data section for TAB drawing. 

-!I1TEXAS 
INSTRUMENTS 

SMJ320C31 ••• GFA PACKAGE 
(BOTTOM VIEW) 

@ •••••••• @ ••••••••• • ••••••••• ••••••••• • •• ••••••••• ••••• ••• • •••• ::::: ::::: 
••••• • •••• • ••••••••• ••••••••••••••••••• 
@ ••••••••••••••••• @ 

BDFHKMPTV 
ACEGJLNRUW 

SMJ32OC31 , , • HFG PACKAGE 
(TOP VIEW) 

E-4 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77261-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

description 

The SMJ320C3x's internal busing and special digital signal processing (DSP) instruction set have the speed 
and flexibility to execute up to 33 MFLOPS (million floating-point operations per second). The SMJ320C3x 
optimizes speed by implementing functions in hardware that other processors implement through software or 
microcode. This hardware-intensive approach provides performance previously unavailable on a single chip. 

The emphasis on total system cost has resulted in a less expensive processor that can be designed into systems 
currently using costly bit-slice processors. Also, appropriate selection based on cost and performance is 
enhanced by the different processors in the SMJ320C3x line: 

• SMJ320C30-33: 60-ns single-cycle execution time, 10% supply 
• SMJ320C30-28: 70-ns single-cycle execution time, 5% supply 
• SMJ320C31-40: Low cost, reduced overall size, 50-ns single-cycle execution time, 10% supply 
• SMJ320C31-33: Low cost, reduced overall size, 60-ns single-cycle execution time, 10% supply 
• SMJ320C31-27: Low cost, reduced overall size, 74-ns single-cycle execution time, 10% supply 

The SMJ320C30 and SMJ320C31 can perform parallel multiply and ALU operations on integer or floating-point 
data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, 
dedicated auxiliary register arithmetic units (ARAU), internal dual-access memories, one DMA channel 
supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are results of 
these features. 

General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, 
internally and externally generated wait states, external interface ports (two on the SMJ320C30, one on the 
SMJ320C31), two timers, serial ports (two on the SMJ320C30, one on the SMJ320C31), and multiple interrupt 
structure. The SMJ320C3x supports a wide variety of system applications from host processor to dedicated 
coprocessor. 

High-level language support is easily implemented through a register-based architecture, large address space, 
powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS n251-1443 E-5 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOl4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

functional block diagram 

ROY 
ilOi:D 

HOLDA 
STRB 
R/W 

031-DO 
A23-AO 

RESET-+ 
INT(3-0)-+ 

IACK_ 
MC/MP-+ 
XF(1,O)++ 

Voo(3-0)-+ 
IOOVOO(1,O)-+ 
AOVoo(1,O)-+ 

POVOO-+ 

IR 

OOVoo(1,O) -+ .li 
MOVOO-+ ~ 

Vss(3-O) -+ ~ 
OVss(3-O) -+ 

CVSS(l,O)-+ 
IVSS-+ 

VBBP_ 
SUBS-+ 

Xl_ 
X2/CLKIN-+ 

Hl_ 
H3_ 

EMU(8-0)++ 
RSV(10-01++ 

CACHE 
(64 x 32) 

32 24 24 

~ Available on SMJ320C30 

E-6 

RAM 
81_0 

(lK x 32) 

RAM 
Block 1 

(lK X 32) 

~1ExAs 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 

llmarParlod 
Ragllller 

11mer Counter 
Ragloter 

POIIConlrol 

Prlmary 

Expenolon 

XROY 
MSTRB 
IOSTRB 
XR/W 
XD31-XDO 
XA12-XAO 

TCLKO 

TCLKl 



TERMINAL TERMINAL 

SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

SMJ320C30 Terminal Assignment 
TERMINAL TERMINAL TERMINAL 

NUMBER NUMBER NUMBER NUMBER NUMBER 

GB HFG NAME GB HFG NAME GB HFG NAME GB HFG NAME 

PKG PKG PKG PKG PKG PKG PKG PKG 

F15 82 AO C4 144 00 R2 7 FSXO B13 103 XA4 

G12 81 Al 05 143 01 N4 5 CLKRO A15 102 XA5 

G13 80 A2 A2 142 02 M5 6 CLKXO B15 95 XA6 

G14 79 A3 A3 141 03 Rl 3 ORO C14 94 XA7 

G15 78 A4 B4 140 04 R3 8 OXO E12 93 XA8 

H15 77 A5 C5 139 05 M3 191 FSRl 013 92 XA9 

H14 72 A6 06 138 06 Pl 194 FSXl C15 91 XAl0 

J15 71 A7 A4 137 07 L4 192 CLKRl 014 90 XAl1 

J14 70 A8 B5 136 08 N2 193 CLKXl E13 89 XA12 

J13 69 A9 C6 135 09 Nl 190 ORl J3 179 RSVO 

K15 68 Al0 A5 134 010 P2 195 OXl J4 180 RSVl 

J12 67 All B6 133 011 F14 83 EMUO Kl 181 RSV2 

K14 66 A12 07 132 012 E15 84 EMUl K2 182 RSV3 

L15 65 A13 A6 131 013 F13 85 EMU2 Ll 183 RSV4 

K13 63 A14 C7 130 014 E14 86 EMU3 K3 184 RSV5 

L14 62 A15 B7 129 015 F12 87 EMU4/SHZ L2 185 RSV6 

M15 61 A16 A7 128 016 Cl 155 EMU5 K4 186 RSV7 

K12 60 A17 A8 127 017 M6 11 EMU6 Ml 187 RSV8 

L13 59 A18 B8 122 018 B3 145 Hl L3 188 RSV9 

M14 58 A19 A9 121 019 Al 146 H3 M2 189 RSV10 

N15 57 A20 B9 120 020 C2 152 Xl 012 100 AOVOO 

M13 56 A21 C9 119 021 Bl 151 X2/CLKIN Hll 64 AOVOO 

L12 55 A22 Al0 118 022 P4 9 TCLKO 04 114 OOVOO 

N14 54 A23 09 117 023 N5 10 TCLKl E8 147 OOVOO 

E5 LOCATOR Bl0 116 024 G2 169 XFO L8 15 IOOVOO 

Gl 170 lACK All 115 025 G3 168 XFl M12 16 IOOVOO 

H2 171 INTO Cl0 113 026 03 154 VBBP 49 IOOVOO 

Hl 176 INn Bll 112 027 E4 153 VSUBS H5 162 MOVOO 

Jl 177 INT2 A12 111 028 H4 123 VOO 163 MOVOO 

J2 178 INT3 010 110 029 08 73 VOO M4 1 POVOO 

015 88 MC/MP Cll 109 030 M8 74 VOO B2 51 CVSS 

E3 157 MSTRB B12 108 031 H12 124 VOO P14 52 CVSS 

El 164 ROY F3 161 HOLO N8 27 VSS C8 28 VSS 

Fl 167 RESET E2 160 HOLOA A13 107 XAO H3 75 VSS 

G4 166 R/W 02 156 XROY A14 106 XAl H13 76 VSS 

F2 165 STRB 01 159 XR/W 011 105 XA2 R4 12 XOO 

F4 158 IOSTRB P3 4 FSRO C12 104 XA3 P5 13 XOl 

NOTES: 1. AOVOO, OOVOO, IOOVOO, MOVOO, and POVOO are on a common plane internal to the device. 
2. VOO is on a common plane internal to the device. 
3. VSS, CVSS, and IVSS are on a common plane internal to the device. 
4. OVSS is on a common plane internal to the device. 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443· HOUSTON, TEXAS 77251-1443 

GB HFG NAME 
PKG PKG 

N6 14 X02 

R5 17 X03 

P6 18 X04 

M7 19 X05 

R6 20 X06 

N7 21 X07 

P7 22 X08 

R7 23 X09 

P8 24 X010 

R8 29 X011 

R9 30 X012 

P9 31 X013 

N9 32 X014 

Rl0 33 X015 

M9 34 X016 

Pl0 35 X017 

Rll 36 X018 

Nl0 37 X019 

Pll 38 X020 

R12 39 X021 

Ml0 40 X022 

Nll 41 X023 

P12 42 X024 

R13 43 X025 

R14 44 X026 

Mll 45 X027 

N12 46 X028 

P13 47 X029 

R15 48 X030 

P15 53 X031 

C3 50 OVSS 

C13 98 OVSS 

N3 148 OVSS 

N13 196 OVSS 

B14 96 IVSS 

97 IVSS 

E-7 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

SMJ320C31 Terminal Assignments 
TERMINAL TERMINAL TERMINAL 

NUMBER NUMBER NUMBER 
HFG GFA NAME HFG GFA NAME HFG GFA 
PKG PKG PKG PKG PKG PKG 

12 Ll AO 47 W9 Dl0 86 E19 
11 K2 AI 46 U9 D11 89 F18 
10 Jl A2 45 V8 D12 90 G17 
9 J3 A3 43 W7 D13 110 Cll 
8 Gl A4 41 U7 D14 77 L19 
6 F2 A5 39 V6 D15 75 N17 
5 El A6 38 W5 D16 78 K18 
4 E3 A7 37 U5 D17 101 A17 
3 D2 A8 36 V4 D18 76 M18 
1 Cl A9 35 W3 D19 103 B16 
131 C3 Al0 33 U3 D20 105 C15 
129 B2 All 31 V2 D21 121 G5 
128 A1 A12 30 Wl D22 130 E? 

127 C5 A13 29 R3 D23 7 E5 
126 B4 A14 28 T2 D24 15 N5 
125 A3 A15 27 Ul D25 16 R5 
124 C7 A16 26 N3 D26 23 H4 
123 B6 A17 24 P2 D27 32 J5 
122 C9 A18 22 Rl D28 42 T14 
120 B8 A19 21 L3 D29 48 R7 
117 A7 A20 17 M2 D30 49 R9 
116 A9 A21 14 Nl D31 57 R13 
113 Bl0 A22 91 C19 DRO 66 R15 
112 All A23 99 C17 DXO 74 P16 
94 E17 CLKRO 107 B14 EMUO 80 N15 
95 A19 CLKXO 108 A13 EMU 1 87 G15 
63 W19 DO 109 B12 EMU2 88 E15 
62 V16 Dl 106 A15 EMU3 98 L15 
61 W17 D2 93 D18 FSRO 104 E9 
60 U13 D3 97 B18 FSXO 114 E13 
59 V14 D4 73 P18 HOLD 115 Ell 
58 W15 D5 72 RIg HOLDA 118 L5 
56 Ull D6 64 V18 HI 119 H2 
55 V12 D7 65 U17 H3 132 M4 
51 Wll D8 82 H18 lACK 2 F4 
50 Vl0 D9 83 J17 INTO 13 T6 

NOTES: 5. CVSS. VSSL. IVSS are on the same plane. 
6. AVDD. DVDD. CVDD. PVDD are on the same plane. 
7. VSUBS connects to die metallization. Tie this terminal to clean ground. 

~TEXAS 
INSTRUMENTS 

NAME 

INn 
INT2 
INT3 
MCBL/MP 
R/iN 
RDY 
RESET 
SHZ 
STRB 
TCLKO 
TCLKI 
AVDD 
1:J.\I,....n. 
••• LolLI 

AVDD 
VDDL 
VDDL 
DVDD 
DVDD 
DVDD 
VDDL 
VDDL 
DVDD 
DVDD 
CVDD 
CVDD 
VDDL 
VDDL 
PVDD 
PVDD 
VDDL 
VDDL 
VSSL 
DVSS 
CVSS 
DVSS 
CVSS 

E-8 POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 

TERMINAL 
NUMBER 

HFG GFA NAME 
PKG PKG 

18 P4 VSSL 
19 Tl0 VSSL 
20 K4 DVSS 
25 T4 IVSS 
34 G3 DVSS 
40 K16 CVSS 
44 T8 IVSS 
52 T12 DVSS 
53 Rll VSSL 
54 J15 VSSL 
67 W13 DVSS 
68 Dl0 CVss 
69 D16 I\ll"'ol"'o 

•• ..;;)\;1 

84 T16 DVSS 
85 D12 VSSL 
92 F16 CVss 
96 H16 IVSS 
100 D14 VSUBS 
102 U15 DVSS 
111 C13 CVSS 
71 T18 XI 
70 U19 X2/CLKIN 
79 J19 XFO 
81 G19 XFl 

F6 No Connect 
D4 DVSS 
N19 DVSS 
R17 DVSS 
L17 DVSS 
M16 DVSS 
D6 DVSS 
A5 DVSS 
D8 DVss 



terminal functions 

SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

This section gives signal descriptions for the SMJ320C3x devices in the microprocessor mode. The following 
tables list each signal, the number of terminals, and type of operating mode(s} (i.e., input, output, or 
high-impedance state as indicated by I, 0, or Z), and a brief function description. All terminals labeled NC are 
special functions ofthe device and should not be connected by the user. A line over asignal name (e.g., RESET) 
indicates that the signal is active low (true at logic 0 level). The signals are grouped according to function. 

SMJ320C30 Terminal Functions 

TERMINAL 
TYPEt DESCRIPTION 

NAME OTY 

PRIMARY BUS INTERFACE 

031-00 32 I/O/Z 32-bit data port of the primary bus interface 

A23-AO 24 O/Z 24-bit address port of the primary bus interface 

R/W 1 O/Z 
Read/write for primary bus interface. R/W is high when a read is performed and low 
when a write is performed over the parallel interface. 

STRB 1 O/Z External access strobe for the primary bus interface 

ROY 1 I 
Ready. RDY indicates that the external device is prepared for a primary-bus-interface 
transaction to complete. 

Hold for primary bus interface. When HOLD is a logic low, any ongoing transaction 

HOLD 1 I 
is completed. A23-AO, 031-00, STRB, and R/W are in the high-impedance state 
and all transactions over the primary bus interface are held until HOLD becomes a 
logic high or the NOHOLD bit of the primary-bus-control register is set. 

Hold acknowledge for primary bus interface. HOLDA is generated in response to a 
logic low on HOLD. HOLDA indicates that A23-AO, 031-00, STRB, and R/W are 

HOLDA 1 O/Z in the high-impedance state and that all transactions over the bus are held. HOLDA 
is high in response to a logic high of HOLD or when the NOHOLD bit of the 
primary-bus-control register is set. 

EXPANSION BUS INTERFACE 

XD31-XDO 32 I/O/Z 32-bit data port of the expansion bus interface 

XAI2-XAO 13 O/Z 13-bit address port of the expansion bus interface 

XR/W 1 O/Z 
Read/write signal for expansion bus interface. When a read is performed, XR/W is 
held high; when a write is performed, XR/W is low. 

MSTRB 1 O/Z External memory access strobe for the expansion bus interface 

10STRB 1 O/Z External I/O access strobe for the expansion bus interface 

XRDY 1 I 
Ready signal. XRDY indicates that the external device is prepared for an expansion-
bus-interface transaction to complete. 

CONTROL SIGNALS 

RESET 1 I 
Reset. When RESET is a logic low, the device is in the reset condition. When RESET 
becomes a logic high, execution begins from the location specified by the reset vector. 

INT3-INTO 4 I External interrupts 

lACK 1 O/Z 
Interrupt acknowledge. lACK is set to a logic high by the lACK instruction. This signal 
can be used to indicate the beginning or end of an interrupt-service routine. 

MC/MP 1 I Microcom puter / microprocessor mode 

XF1, XFO 2 I/O/Z 
External flags. XFl and XFO are used as general-purpose 1/ Os or to support 
interlocked processor instructions. 

t I = input, 0 = output, Z = high-impedance state 
* S = SHZ active, H = HOLD active, R = RESET active 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 

CONDITIONS 
WHEN 

SIGNAL IS Z TYPE* 

S H 

S H R 

S H R 

S H 

S 

S 

S R 

S R 

S R 

S 

S 

S 

S R 

E-9 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

SMJ320C30 Terminal Functions (Continued) 

TERMINAL 
TYPEt DESCRIPTION 

NAME QTY 

SERIAL PORT 0 SIGNALS 

CLKXO 1 I/O/Z 
Serial port 0 transmit clock. CLKXO is the serial shift clock for the serial port 0 
transmitter. 

DXO 1 I/O/Z Data transmit output. Serial port 0 transmits serial data on DXO. 

FSXO 1 I/O/Z 
Frame synchronization pulse for transmit. The FSXO pulse initiates the transmit data 
process over DXO. 

CLKRO 1 I/O/Z Serial port 0 receive clock. CLKRO Is the serial shift clock for the serial port 0 receiver. 

DRO 1 I/O/Z Data receive. Serial port 0 receives serial data via DRO. 

FSRO 1 I/O/Z 
Frame synchronization pulse for receive. The FSRO pulse Initiates the receive data 
process over DRO. 

SERIAL PORT 1 SIGNALS 

CLKX1 1 I/O/Z 
Serial port 1 transmit clock. CLKX1 is the serial shift clock for the serial port 1 
transmitter. 

DX1 1 I/O/Z Data transmit output. Serial port 1 transmits serial data on DX1. 

FSX1 1 I/O/Z 
Frame synchronization pulse for transmit. The FSX1 pulse initiates the transmit data 
process over DX1. 

CLKRl 1 I/O/Z Serial port 1 receive clock. CLKR1 is the serial shift clock for the serial port 1 receiver. 

DR1 1 I/O/Z Data receive. Serial port 1 receives serial data via DR1. 

FSR1 1 I/O/Z 
Frame synchronization pulse for receive. The FSRl pulse Initiates the receive data 
process over DR1. 

TIMER 0 SIGNALS 

TCLKO 1 I/O/Z 
Timer clock O. As an input, TCLKO is used by timer 0 to count external pulses. As an 
output, TCLKO outputs pulses generated by timer O. 

TIMER 1 SIGNALS 

TCLKl 1 I/O/Z 
Timer clock 1. As an Input, TCLK1 is used by timer 1 to count external pulses. As an 
output, TCLK1 outputs pulses generated by timer 1. 

SUPPLY AND OSCILLATOR SIGNALS 

VDO 4 I 5-Vsupply§ 

IODVDD 2 I 5-Vsupply§ 

ADVDD 2 I 5-V supply§ 

PDVDD 1 I 5-Vsupply§ 

DDVDD 2 I 5-Vsupply§ 

MDVDD 1 I 5-V supply§ 

VSS 4 I Ground 

DVSS 4 I Ground 

CVSS 2 I Ground 

t I = Input, 0 = output, Z = high-Impedance state 
:I: S = SHZ active, H - HOLD active, R = RESET active 
§ Recommended decoupllng capacitor is 0.1 J.lF. 

~TEXAS 
INSTRUMENTS 

E-10 POST OFFICE BOX 1443· HOUSTON. TEXAS 77251-1443 

CONDITIONS 
WHEN 

SIGNAL IS Z TYPE:I: 

S R 

S R 

S R 

S R 

S R 

S R 

S R 

S R 

S R 

S R 

S R 

S R 

S R 

S R 



TERMINAL 
TYPEt 

NAME QTY 

IVSS 1 I 

VBBP 1 NC 

VSUBS 1 I 

Xl 1 O/Z 

X2/ClKIN 1 I 

HI 1 O/Z 

H3 1 O/Z 

EMUO-EMU2 3 I 

EMU3 1 O/Z 

EMU4/SHZ 1 I 

EMU5, EMUS 2 NC 

RSVO-RSV10 11 I 

locator 1 NC 

SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

SMJ320C30 Terminal Functions (Continued) 

CONDITIONS 
DESCRIPTION WHEN 

SIGNAL IS Z TYPE:!: 

SUPPLY AND OSCILLATOR SIGNALS (CONTINUED) (see Note 5) 

Ground 

VBB pump oscillator output 

Substrate terminal. Tie to ground. 

Output from the internal oscillator for the crystal. If a crystal is not used. Xt should 
S be left unconnected. 

Input to the internal oscillator from the crystal or a clock 

External HI clock. HI has a period equal to twice elKIN. S 

External H3 clock. H3 has a period equal to twice ClKIN. S 

RESERVED§ 

Reserved. Use pullup resistors to 5 V. 

Reserved S 

Shutdown high impedance. When active, EMU4/SHZ shuts down the SMJ320C30 
and places all terminals in the high-impedance state. EMU4/SHZ is used for 
board-level testing to ensure that no dual drive conditions occur. CAUTION: A low 
on SHZ corrupts SMJ320C30 memory and register contents. Reset the device with 
SHZ high to restore it to a known operating condition. 

Reserved 

Reserved. Use pullup resistors to 5 V. 

Reserved 

t I = Input, 0 = output, Z = high-Impedance state 
:I: S = SHZ active, H = HOLD active, R = RESET active 
§ Follow the connections specified for the reserved terminals. Use 18-kQ-22-kQ pullup resistors for best results. All 5-V supply terminals must 

be connected to a common supply plane, and all ground terminals must be connected to a common ground plane. 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443· HOUSTON, TEXAS n251-1443 E-!1 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

SMJ320C31 Terminal Functions 

TERMINAL 
TYPEt DESCRIPTION 

NAME QTY 

PRIMARY BUS INTERFACE 

031-00 32 I/O/Z 32-bit data port 

A23-AO 24 O/Z 24-bit address port 

R/IN 1 O/Z 
Read/write. R/W is high when a read is performed and low when a write is performed 
over the parallel interface. 

STRB 1 O/Z External access strobe 

ROY 1 I 
Ready. ROY indicates that the external device is prepared for a transaction 
completion. 

Hold. When HOLD is a logic low, any ongoing transaction is completed. A23-AO, 

HOLD 1 I 031-00, STRB, and R/IN are in the high-impedance state and all transactions over 
the primary bus interface are held until HOLD becomes a logic high or the NOHOLD 
bit of the primary-bus-control register being set. 

Hold acknowledge. HOLDA is generated in response to a logic low on HOLD. HOLDA 

HOLDA 1 O/Z 
indicates that A23-AO, 031-00, STRB, and R/IN are in the high-impedance state 
and that all transactions over the bus are held. HOLDA is high in respons"l to a logio 
high of HOLD or the NOHOLD bit of the primary-bus-control register being set. 

CONTROL SIGNALS 

RESET 1 I 
Reset. When RESET is a logic low, the device is in the reset condition. When RESET 
becomes a logic high, execution begins from the location specified by the reset vector. 

INT3-INTO 4 I External interrupts 

lACK 1 O/Z 
Interrupt acknowledge. lACK is set to a logic high by the lACK instruction. This signal 
can be used to indicate the beginning or end of an interrupt-service routine. 

MCBL/MP 1 I Microcomputer boot loader/microprocessor mode select 

Shutdown high impedance. When active, SHZ shuts down the SMJ320C31 and 
places all terminals in the high-impedance state. SHZ is used for board-level testing 

SHZ 1 I to ensure that no dual drive conditions occur. CAUTION: A low on SHZ corrupts 
SMJ320C31 memory and register contents. Reset the device with SHZ high to restore 
it to a known operating condition. 

XF1,XFO 2 I/O/Z 
External flags. XF1 and XFO are used as general-purpose I/Os or to support 
interlocked processor instruction. 

SERIAL PORT 0 SIGNALS 

CLKRO 1 I/O/Z 
Serial port 0 receive clock. CLKRO is the serial shift clock for the serial 
port 0 receiver. 

CLKXO 1 I/O/Z 
Serial port 0 transmit clock. CLKXO is the serial shift clock for the serial 
port 0 transmitter. 

ORO 1 I/O/Z Data receive. Serial port 0 receives serial data via ORO. 

DXO 1 I/O/Z Data transmit output. Serial port 0 transmits serial data on DXO. 

FSRO 1 I/O/Z 
Frame synchronization pulse for receive. The FSRO pulse initiates the receive data 
process over ORO. 

FSXO 1 I/O/Z 
Frame synchronization pulse for transmit. The FSXO pulse initiates the transmit data 
process over DXO. 

t I = Input, 0 = output, Z = high-Impedance state * S = SHZ active, H = HOLD active, R = RESET active 

-!/} TEXAS 
INSTRUMENTS 

E-12 POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 

CONDITIONS 
WHEN 

SIGNAL IS Z TYPE* 

S H R 

S H R 

S H R 

S H 

S 

S 

S R 

S R 

S R 

S R 

S R 

S R 

S R 



TERMINAL 
TYPEt 

NAME QTY 

TClKO 1 I/O/Z 

TClK1 1 I/O/Z 

H1 1 O/Z 

H3 1 O/Z 

VDD 20 I 

VSS 20 I 

X1 1 O/Z 

X2/ClKIN 1 I 

EMU2-EMUO 3 I 

EMU3 1 O/Z 

SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

SMJ320C31 Terminal Functions (Continued) 

CONDITIONS 
DESCRIPTION WHEN 

SIGNAL IS Z TYPE; 

TIMER SIGNALS 

limer clock O. As an input, TClKO is used by timer 0 to count external pulses. As 
S 

an oulput, TClKO output pulses generated by Ii mer o. 
limer clock 1. As an input, TClKO is used by timer 1 to count external pulses. As 

S an output, TClK1 outpulS pulses generated by timer 1. 

SUPPLY AND OSCILLATOR SIGNALS 

External H1 clock. H1 has a period equal to twice ClKIN. 

External H3 clock. H3 has a period equal to twice ClKIN. 

5-V supply. All must be connected to a common supply plane.§ 

Ground. All grounds must be connected to a common ground plane. 

Output from the internal crystal oscillator. If a crystal is not used, X1 should be left 
S 

unconnected. 

Internal oscillator input from a crystal or a clock 

RESERVEDII 

Reserved. Use pullup resistors to 5 V. 

Reserved S 

t I = Input, 0 = output, Z = high-Impedance state 
:j: S = SHZ active, H = HOLD active, R = RESET active 
§ Recommended decoupling capacitor value is 0.1 ~F. 
11 Follow the connections specified for the reserved terminals. Use 18 -kQ-22-kQ pullup resistors for best results. All 5-V supply terminals must 

be connected to a common supply plane, and all ground terminals must be connected to a common ground plane. 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443· HOUSTON. TEXAS 77251-1443 E-13 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

absolute maximum ratingst 
Supply voltage range, Vee (see Note 8) .............................................. -0.3 V to 7 V 
Input voltage range, V, ............................................................. - 0.3 V to 7 V 
Output voltage range, Va ........................................................... -0.3 V to 7 V 
Continuous power dissipation (see Note 9) ................................................. 3.15 W 
Minimum free-air operating temperature, TA ................................................ - 55°C 
Maximum operating case temperature, T c .................................................. 125°C 
Storage temperature range ....................................................... - 65°C to 150·C 

t Stresses beyond those listed under "absolute maximum ratings· may cause permanent damage to the device. These are stress ratings only, and 
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions· is not 
implied. Exposure to absolute·maximum-rated conditions for extended periods may affect device reliability. 

NOTES: 8. All voltage values are with respect to VSS. 
9. Actual operating power is less. This value was obtained under specially produced worst-case test conditions, which are notsustained 

during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to both primary and 
extension buses at the maximum rate possible. See normal (ICc) current specification in the electrical characteristics table and also 
read Calculation of TMS320C30 Power Dissipation Application Report. 

recommended operating conditions (see Note 10) 

VDD Supply voltage 

VSS Supply voltage (CVSS, etc.) 

V,H High-level input voltage 

VTH High-level input voltage for ClKIN 

V,l low-level input vo~age 

IOH High-level output current 

IOl low-level output current 

TA Operating free-air temperature 

TC Operating case temperature 

:j: All nominal values are at VDD = 5 V, TA = 25·C. 
§ These values are derived from characterization and not tested. 
NOTE 10: All input and output voltage levels are TTL compatible. 

'320C30-28 
'320C31-40 

'320C30-33 

'320C31-27 
'320C31-33 

~TEXAS 
INSTRUMENTS 

E-14 POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 

MIN NOM:!: MAX UNIT 

4.75 5 5.25 

4.5 5 5.5 V 

4.5 5 5.5 

0 V 

2.1 VDD+0.3§ V 

3 VDD+0.3§ V 

-0.3§ 0.8 V 

-300 IlA 
2 mA 

-55 ·C 

125 ·C 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

electrical characteristics over recommended ranges of supply voltage (unless otherwise noted) 
(see Note 10) 

PARAMETER TEST CONDITIONSt MIN TYp:j: MAX UNIT 

VOH High-level output voltage VDD=MIN, IOH = MAX 2.4 3 V 

VOL 
I ForXAI2-XAO VDD=MIN, IOL= MAX O.S§ V 

Low-level output voltage I All others VDD=MIN, IOL=MAX 0.3 O.S V 

IZ High-impedance current VDD = MAX ±20 !1A 
II Input current VI = VSS to VDD ±10 !1A 
liP Input current Inputs wnh internal pullups (see Note 11) -400 20 !1A 
IIC Input current (X2/CLKIN) VI = VSS to VCC ±50 !1A 

'320C30-33 200 SOO 

TA=25°C, VDD = MAX 
'320C31-33 150 325 

ICC Supply current Ie(CI) = MIN '320C30-28 175 500 mA 
(see Note 12) '320C31-27 125 250 

'320C31-40 250 400 

Ci Input capacitance 15~ pF 

Co Output capacitance 20~ pF 

ex X2/CLKIN capacitance 2511 pF 
.. .. .. t For conditions shown as MIN/MAX, use the appropnate value speCified In recommended operating conditions . 

:j: All typical values are at VDD = 5 V, TA = 25°C. 
§ These values are derived from charac1erization but not tested. 
~ These values are derived by design but not tested. 
NOTES: 10. All input and output voltage levels are TIL compatible. 

11. Terminals with internal pull up devices: INTO-INT3, MC/MP, RSVO-RSV10. Although RSVO-RSVI 0 have internal pullup devices, 
external pullups should be used on each terminal as identified in the Terminal Functions tables. 

12. Ac1ual operating current is less than this maximum value. This value was obtained under specially produced worst-case test 
conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a 
checkerboard pattern to both primary and expansion buses at the maximum rate possible. See Calculation of TMS320C30 Power 
Dissipation Application Report. 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS n251-1443 E-15 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOl4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

PARAMETER MEASUREMENT INFORMATION 

Tester Pin VLOAD 
Electronics 

Where: IOL = 2 rnA (all outpuls) 
IOH = 300 j.tA (all outpuls) 
VLOAD = 2.15V 
CT = 80-pF typical load-circuit capacitance 

-, 
I 
I 
I 
I Output 

>-...... --tl- Under 
Test 

ICT ! 
-= I 

_J 

Figure 1. Test Load Circuit 

signal transition levels 

E-16 

TIL-level outputs are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.6 V. 
Output transition times are specified as follows: 

• 

• 

For a high-to-Iow transition on a TIL-compatible output signal, the level at which the output is said to be 
no longer high is 2 V, and the level at which the output is said to be low is 1 V. 

For a low-to-high transition, the level at which the output is said to be no longer low is 1 V, and the level at 
which the output is said to be high is 2 V. 

Figure 2. TIL-Level Outputs 

2.4 V 
2V 

1V 
O.BV 

Transition times for TIL-compatible inputs are specified as follows: 

• 

• 

For a high-to-Iow transition on an input signal, the level at which the input is said to be no longer high is 
2.1 V, and the level at which the input is said to be low is O.B V. 

For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is 
O.B V, and the level at which the input is said to be high is 2.1 V. 

----- 2.1 V 

J~~~~~~~-~~~~~~ : 
--..I 0.8 V 

Figure 3. TIL·Level Inputs 

~1ExAs 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

PARAMETER MEASUREMENT INFORMATION 

timing parameter symbology 

Timing parameter symbols used herein were created in accordance with JEDEC Standard 100-A. In order to 
shorten the symbols, some of the terminal names and other related terminology have been abbreviated as 
follows, unless otherwise noted: 

• INT includes INT3-INTO 
• (M)S in symbols and ;';(M-=<)""S=T"'R""B in description includes STRB and MSTRB 
• (X)A includes A2.3-AO and XA12-XAO 
• (X)D includes D31-DO and XD13-XDO 
• (X)RW in symbols and (X)R/W in description includes R/W and XR/W 
• (X)RDY includes RDY and XRDY 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS n251-1443 E-17 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOl4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

timing parameters for elKIN, H1, and H3 (see Note 10) 

'32OC31-27 
NO. 

MIN 

1 tf(CI) Fall time, ClKIN 

2 tw(Cll) 
Pulse duration, ClKIN low, 

13 Ie(C!) = MIN (see Note 13) 

3 tw(CIH) 
Pulse duration, ClKIN high, 

13 Ie(CI) = MIN (see Note 13) 

4 tr(CIl Rise time, CLKIN 

S Ie(CI) Cycle time, ClKIN 37 

6 tf(H) Fall time, Hl/H3 

7 Iw(HL) 
Pulse duration, Hl/H3 low 

P-6 (see Note 14) 

8 tw(HH) 
Pulse duration, H1/H3 high 

P-7 (see Note 14) 

9 tr(H) Rise time, Hl/H3 

9.1 id(Hl-HH) Deiay iime, HliH3 iow io H3;Hl high .+ 
U" 

10 Ie(H) Cycle time, Hl/H3 74 

t These values are derived by design but not tested. 
:I: These values are derived from characterization but not tested. 
NOTES: 10. All input and output voltage levels are TTL compatible. 

MAX 

st 

st 
303 

4 

4 

5 

606 

'320C3D-28 
'320C30-33 

'320C31-40 '320C31-33 

MIN MAX MIN MAX MIN MAX 

st st st 

12.2S 10.S 9 

12.2S 10.S 9 

st st st 
3S 303 30 303 2S 303 

3 3 3 

P-6 P-6 P-S 

P-7 P-7 P-6 

4 4 3 
.+ 

5 
.+ 

5 
.+ 

4 U" U" U" 

70 606 60 606 SO 606 

13. Rise and fall times, assuming a 3S - 6S% duty cycle, are Incorporated within this specification (see Figure 4). 
14. P = Ie(CI) 

X2/ClKIN 

Hl 

H3 

E-18 

1-..1 
I 

*-4 
1 
1 

Figure 4. X2/CLKIN Timing 

14 10 
1 
1 --.I 14- 6 
I+- 9 I I 

:---8 ----.I I 

I i4--7--./ 
-..I I+- 9.1 1 

1 
-.: ~ 9.1 1 

~ ~~8~\ 
1 

~ 
1 
1 
1 

-.: 14- 91 1 1 --+1 I+- 6 

'" 
7 ~I 

1 
1-- 10 

Figure 5. H1/H3 Timing 

~TEXAS 
INSTRUMENTS 

1 
~ 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



.. c 
I .., 
~ 
i 
S 
Z 
52 
....I 
U 

SMJ320C3()'33 

SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

10-r _____________________ 4_.s_v_s_v~D~D~S_S_.S_V ________________________ ~ 

9 

8 

7 

6 

5 

4 

3 

2 

5.5 V 

O~----------------------r_--------------------------__; 
-55°C 25°C 

Temperature 

Figure 6. elKIN to H1/H3 as a Function of Temperature 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 

125°C 

E·19 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

memory-read-cycle and memory-wrlte-cycle timing «M)STRB = 0) (see Figures 7 and 8) 

NO. 
'320C31-27 '32OC30-28 

MIN MAX MIN MAX 
11 ldlHl L·(MISLl Delay time, Hllowto (M)STRB low ot 10 ot 10 

12 td[Hl L·(M)SH) 
Delay time, HI low to (M)STRB 

0* 10 ot 10 high 

13.1 td(Hl H-RWL) Delay time, HI high to R/W low 0* 10 ot 10 

13.2 tdIH1H-OORWLl Delay time, HI high to (X)R/W low - ot 17 

14.1 ld(H1L-A) Delay time, HI low to A valid 0* 16 ot 16 

14.2 ldlHl L-(XIAl Delay time, HI low to (X)A vaUd - ot 13 

15.1 lsu(D)R 
Setup time, 0 valid before HI low 

18 19 (read) 

15.2 lsu(XD)R 
Setup time, (X)D before HI low 

1 20 (read) 

16 th[(X)D]R Hold time, (X) 0 after HI low (read) ot ot 
17.1 tsu/RDY' Setup time, ROY before HI high 10 10 

17.2 tsu(XRDY) Setup time, (XjRDYbeforeHl high - 10 

18 th[(X)RDy] Hold time, (X) ROY after HI high 0 0 

19 ld[H1H-(X)RWH) 
Delay time, HI high to (X)R/W 

12 12 high (write) 

20 tv[OOD]W Valid time, (X) 0 after HI low (wrHe) 20 20 

21 th[(X)D)W 
Hold time, (X)D after HI high ot ot 
(write) 

22.1 ld(H1H-A) 
Delay time, HI high to A valid on 

22 22 
back-to-back write cycles (write) 

22.2 ld[H1H-(X)A) 
Delay time, HI high to (X)Avalid on - 32 back-to-back write cycles (write) 

26 ld[A-(X) ROY] Delay time, (X)RDY from A valid 8* 8* 

t These values are derived by design but not tested. 
* These values are derived from characterization but not tested. 

E-20 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443· HOUSTON, TEXAS n2S1-1443 

'320C30-33 
'320C31-40 

'320C31-33 

MIN MAX MIN MAX 
ot 10 ot 6 

ot 10 ot 6 

ot 10 ot 9 

ot 15 -
ot 14 ot 10 

ot 10 -
16 14 

18 -
ot ot 
8 8 

9 -
0 0 

10 9 

20 17 

ot ot 

18 15 

25 -
8* 7* 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



H3 

H1 

(M)STRB 

(X)R/W 

~ 

SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

H3 

H1 I 
I 

-.I 14- 12 

I/~----
1 

(X)R/W ~ ~ 14.1/14.2 

I I 

(X)A __ J ~~~-::T--r:~ '-____ _ 
15.1/15.2 

26 --+i 14- 1-.1 14- 16 

-----~I~I--~O~---------
(X)D 17.1/17.2 -.I ~ 

__ ~ ~ ~~18:..-__________ __ 

(X)RDY \:. Y 
Figure 7. Memory-Read-Cycle Timing «M)STRB = 0) 

1 I 

1 1 1 I 

11.1-..1 H -.I M--I- 12.1 

I 1 1 I 

1 'i : II \ I 
I 1 I 

-.: 14- 13.1/13.2 1 
1 . 1 

'i: 1 1 
1 1 

I+- 19 

I 

! 
14-- 14.1/14.2 1 1 
I 1 ---.I I+- 22.1/22.2 
I 

(X)A =x : ~ :x X 

(X)D 

17.1/17.2 

(X)RDY 

20-+, 1 I 

SF" 
---.I ~ 21 

'I < 
~26~ ~ ~ 

\l Y ~ I 
Figure 8. Memory-Write-Cycle Timing «M)STRB = 0) 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443· HOUSTON, TEXAS m51-1443 

> 

E-21 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

memory-read-cycle timing (IOSTRB = 0, SMJ320C30 only) 

NO. 
'320C30-28 

MIN MAX 

27 tdIH1H-IOSL) Delay time, HI high to IOSTRB low ot 11 

28 ld(Hl H-IOSHl Delay time, HI high to IOSTRB high ot 10 

29 Id[Hl L-(X)RWHJ Delay time, HI low to (X)R/W high ot 11 

30 Id[Hl L-(X)A] Delay time, HI low to (X)A valid ot 12 

31 isulOOD1R Setup time, (X)D before HI high 15 

32 th[(X)D]R Hold time, (X)D after HI high 0* 

33 isu[(X)RDy] Setup time, (X)RDY before HI high 10 

34 thlOORDYl Hold time, (X)RDY after HI high 0 

t These values are denved by design but not tested. 
* These values are derived !rom characterization but not tested. 

E-22 

H3 

HI i I 
: 27 -.I 14-1 28 -+I ~ 
I \.~ II/r----

IOSTRB I '\:k.. _____ -1-1 .. 

'"Alwyn i c 
-.I 14- 30 I 

(X)A=X L ><= 
31 ~-.l1;O: 14- 32 

(x)o --------33-~-<Q 
1 41 j4-: 34 \l y";-~-

Figure 9. SMJ320C30 Memory-Read-Cycle Timing (IOSTRB = 0) 

~TEXAS 
INSTRUMENTS 

POST OFFICE SOX 1443 • HOUSTON, TEXAS n251-1443 

'320C30-33 

MIN MAX 
UNIT 

ot 10 ns 
ot 10 ns 

ot 10 ns 

ot 10 ns 

15 ns 

0* ns 

9 ns 

0 ns 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

memory-wrlte-cycle timing (IOSTRB = 0, SMJ320C30 only) 

NO. 
'320C3D-28 

MIN MAX 
35 IdCH1L·XRWLI Delay time, HI low to XR/W low ot 15 

36 tv[(X)D1W Valid time, (X)D after HI high 30 

37 th[(X)D)W Hold time, (X)D after HI low 0 

t These values are derived by design but not tested. 

H3 

HI I I 

27 ---: 14- 28 -J ~ I 
--~I----~I~\I 11/~--~I------

IOSTRB I II \;O:"---_f-I . 
. - I --.I!4-- 29 

~r-i I i I I 
(X)R/W ~ I I I IC 

j4-----+I- 30 I I I 

~=X,' : :>C 
--.I j4- 36 ~ --.I J4- 37 

(X)D -----« i-
33 ::;I 

1-.1 1+--. 34 \l Y----
Figure 10. SMJ320C30 Memory-Write-Cycle Timing (IOSTRB = 0) 

"!!1TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1 443 • HOUSTON, TEXAS n2S1-1 443 

'320C30-33 
UNIT 

MIN MAX 
ot 15 ns 

30 ns 

0 ns 

E-23 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991- REVISED SEPTEMBER 1994 

timing for XFO and XF1 when executing LOFI or LOll 

NO. 

38 tdIH3H-XFOU 

39 tsu()(FIl 

40 th()(Fll 

Delay time, H3 high to XFO low 

Setup time, XF1 valid before HI low 

Hold time, XFI after HI low 

H3 

H1 

Fetch 
LDFI or LOll 

'320C31-27 

MIN MAX 
19 

13 

0 

Decode 

'320C30-28 
'320C30-33 
'32OC31-33 

MIN MAX MIN MAX 
15 15 

15 12 

0 0 

Read Execute 

i\ / 
I 
I 

E-24 

(X)R/W 

(X)A 

(X)D 

XFO 

XF1 

Figure 11. Timing for XFO and XF1 When Executing LOFI or LOll 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 

'32OC31-40 
UNIT 

MIN MAX 
13 ns 

9 ns 

0 ns 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A - FEBRUARY 1991 - REVISED SEPTEMBER 1994 

timing for XFO when executing a STFI or STU 

NO. 

41 

'320C31-27 '320C30-28 
'320C30-33 

'320C31-40 
'320C31-33 

MIN MAX MIN MAX MIN MAX MIN MAX 

Id(H3H-XFOH) Delay time, H3 high 10 XFO high 19 20 18 13 

H3 

H1 

(X)RJW 

(X)A 

(X)O 

XFO 

II \ r---...... _-J! 
I 

~""" ____ ---J(" 

~: >C 
: -< >-I 
I 
~ ~41 ~C 

I 

-,....." 

Figure 1. Timing for XFO When Executing a STFI or STU 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 

UNIT 

ns 

E-25 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

timing for XFO and XF1 when executing SIGI 

'320C31-27 '320C30-28 
'320C30-33 

'320C31-40 
'320C31-33 NO. 

41.1 td (H3H-XFOL) 

42 tdIH3H-XFOHl 

43 tsu(XF1) 

44 th(XF1} 

H3 

H1 

XFO 

XF1 

MIN MAX MIN MAX MIN MAX 

Delay time, H3 high to XFO low 19 15 15 

Delay time, H3 high to XFO high 19 20 18 

Setup time, XF1 valid before H1 low 13 12 12 

Hold time, XF1 after H 1 low 0 0 0 

Fetch 
SIGI Decode Read Execute 

43~~ I 

i i _____ .....", ____ ..J~ j 42 

II . 
--.114-44 

~y-
Figure 2. Timing for XFO and XF1 When Executing SIGI 

MIN MAX 

13 

13 

9 

0 

timing for loading XF register when configured as an output 

NO. 

45 

E-26 

'320C31-27 '320C30-28 
'320C30-33 

'320C31-40 
'320C31-33 

tv (H3H-XF} Valid time, H3 high to XF valid 

H3 

H1 

Fetch Load 
Instruction Decode 

MIN MAX MIN 

19 

Read 

MAX MIN MAX MIN 

20 15 

Execute 

OUTXFBIt ~10rO 
~ j+- 45 ----------------------V--XFx ~ 

Figure 3. Timing for Loading XF Register When Configured as an Output 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443· HOUSTON. TEXAS 77251-1443 

MAX 

13 

UNIT 

ns 

ns 

ns 

ns 

UNIT 

ns 

--- -~ -------------



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

change of XF from output to input mode 

'320C31-27 '320C30-28 
'320C30-33 

'320C31-40 
NO. '320C31-33 UNIT 

MIN MAX MIN MAX MIN MAX MIN MAX 

46 th(H3H-XFOIl Hold time, XF after H3 high 20t 20t 1St 13t 

47 tsu()(F) Setup time. XF before H1 low 12 12 12 9 

48 th(XF) Hold time. XF after H1 low 0 0 0 0 

t These values are derived from characterization but not tested. 

H3 

H1 

i/OXFx Bitt 

XFx 

INXFxBltt 

Execute 
Load of IOF 

Output 

Buffers Go 
I From Output I Synchronizer I 
I to Input I Delay I 
I I 

I 
I 
I 
I 

. I 
----l j4- 47 

--.I I+- 46 

Data 
Sampled 

"11..-48 

I I 

Value on 
Terminal I 

Seen In IOF : 

t i/OXFx represents either bit 1 or bit S of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register 
depending on whether XFO or XF1 • respectively. is being affected. 

Figure 4. Change of XFx From Output to Input Mode 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443· HOUSTON, TEXAS 77251-1443 

ns 

ns 

ns 

E-27 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

change of XFx from input to output mode 

NO. 

49 td(H3H-XFIO) 
Delay time, H3 high to XF switching 
from input to output 

H3 

H1 

i/OXFx Bitt 

Execution of 
Load oflOF 

'320C31-27 '320C30-28 

MIN MAX MIN MAX 

20 20 

1 

1 
1 

'320C30-33 
'320C31-33 

MIN MAX 

20 

XFxt _________________ ..... __ 1-<[ .. 

'320C31-40 
UNIT 

MIN MAX 

17 ns 

ti/OXFx represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register 
depending on whether XFO or XF1, respectively, is being affected. 

E-28 

Figure 5. Change of XF From Input to Output Mode 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443' HOUSTON, TEXAS 77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

reset timing 

RESET is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings 
are met, the exact sequence shown in Figure 17 occurs; otherwise, an additional delay of one clock cycle may 
occur. R/W and XR/W are in the high-impedance state during reset and can be provided with a resistive pullup, 
nominally 18 kg to 22 kg, to prevent spurious writes from occurring. The asynchronous reset signals include 
XFO/1 , CLKXO/1 , DXO/1 , FSXO/1 , CLKRO/1 , DRO/1 , FSRO/1 , and TCLKO/1. HOLD is an asynchronous input and 
can be asserted during reset. 

Resetting the device initializes the primary- and expansion-bus control registers to seven software wait states 
and, therefore, results in slow external accesses until these register are initialized. 

reset timing [P = tc(CI)J 

'320C30-28 '32OC31-27 
NO. 

MIN MAX MIN 

50 lsu(RESET) 
Setup time, RESET before 

10 pt 10 
ClKIN low 

51 tcf(ClKINH-Hl H) 
Delay time, CLKIN high to 
HI high§ 3 18 2 

52 td(CLKINH-Hl l) 
Delay time, ClKIN high to 
Hllow§ 3 18 2 

Setup time, RESET high 
53 lsu(RESETH-Hl l) before H 1 low after 10 HI 15 13 

clock cycles 

54 tcf(CLKINH-H3l) 
Delay time, ClKIN high to 
H310w§ 3 18 2 

55 tcf(ClKINH-H3H) 
Delay time, ClKIN high to 
H3 high§ 3 18 2 

56 tdis(Hl H-XD) 
HI high to (X)D high-

20t 
Impedance state 

57 tdis(H3H-XA) 
H3 high to (X)A high-

12t 
impedance state 

58 tcf(H3H-CONTROlH) 
Delay time, H3 high to 

lot 
control signals high 

59 tcf(Hl H-IACKH) 
Delay time, HI high to 

12t 
lACK high 

RESET low to 

60 tcfis(RESETl-ASYNCH) 
asynchronously reset 

25t 
signals to high-impedance 
state 

t These values are denved from characterizatIOn but not tested. 
:I: These values are derived by design but not tested. 
§ See NO TAG for temperature dependence for the 33-MHz SMJ32OC30 and SMJ320C31. 

~TEXAS 
INSTRUMENTS 

MAX 

pt 

14 

14 

14 

14 

19t 

12t 

lOt 

12t 

25t 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 

'320C30-33 
'32OC31-40 

'320C31-33 UNIT 
MIN MAX MIN MAX 

10 pt 10 p:l: ns 

2 14 2 14 ns 

2 14 2 14 ns 

10 9 ns 

2 14 2 14 ns 

2 14 2 14 ns 

18t 15t ns 

lOt 9t ns 

lOt 9t ns 

lOt 9t ns 

25t 21t ns 

E-29 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

ClKIN 

~--~~r-~------------------~\~~53 
I 

H1 

H3 

H10 H:6CIOCk Cycles I 

~O :~::::~~j~~=----tl---~\\~-------------------------~ 
(see Not~~ 55~ ~ Y ~ 57 i ~ 
(see Notes A ~=====::==::::>~~-=---1I~--I\\i-----------~ 

and B) =iI 14- 58 I 
Control Signals _.,..-________ ....,,) .! 

(see Note C) i . _ 14- 59 

lACK ....,..: ___________ ---') \', 

Asynchronous ~ ~ 60 
ResetSlgnals =:))-----------------;\\0.,----------------

(see Note 0) 

NOTES: A. Reset vector is fetched three times with 7 software wait states each. 

E-30 

B. (X)A includes A23-AO, XA 12-XAO, and (X)R/W 
C. Control signals include STRB, MSTRB, and IOSTRB. 
D. Asynchronously reset signals inciudeXF1, XFO, ClKXO, DXO, FSXO, ClKRO, DRO, FSRO, ClKX1, DX1, FSX1, ClKR1, DR1, FSR1, 

TClKO, and TClK1. 

Figure 6. Reset Timing 

~TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

INT3-INTO response timing [Q = tc(H)J 

'320C30·28 '320C31·27 
'320C30·33 

'320C31·40 
NO. '320C31·33 UNIT 

MIN MAX MIN MAX MIN MAX MIN MAX 

61 tsu(INT) 
Setup time, INT3-INTO 

15 15 15 13 ns 
before HI low 

iw(INT) 
Pulse duration, INT3-INTO, 

62 to assure only one Interrupt 0 <20t 0 <20t 0 <20t 0 <20t ns 
(see Notes 1 and 2) 

seen 

t These values denved from charactenzatlon but not tested. 
NOTES: 1. Interrupt pulse duration must be at least 10 wide to assure it is seen. It must be less than 20 wide to assure it is responded to only 

once. 
2. INT3-INTO are asynchronous inputs and can be asserted at any point during a clock cycle. The SMJ320C3x interrupts are level 

sensitive, not edge sensitive. Interrupts are detected on the falling edge of HI. For the processor to recognize only one interrupt on 
a given input, an interrupt pulse must be set up and held to a minimum of one HI falling edge and no more than two HI falling edges. 
The SMJ320C3x can accept an interrupt from the same source every two HI clock cycles. If the specified timings are met, the exact 
sequence shown occurs; otherwise, an additional delay of one clock cycle may occur. 

H3 

HI 

INT3-INTO 
Terminals 

INT3-INTO 
Flag 

Addr 

Data 

Reset or 
Interrupt 
Vector 
Read 

Fetch First 
Instruction of 

I Service Routine I 

I I 
--.:~ 61 ,..-____ ... 1 ___ I I I 

~ j : :: : 
14-62 --+I I I : Flret I 

I I Instruction I 

I ~ : ! Addressl ! 

---:K"#!!!---.....>J-:---f~ it7-
--------------~()~-----()--

Figure 7. INT3-INTO Response TIming 

-!i1TEXAS 
INSTRUMENTS 

POST OFFICE BOX 1443· HOUSTON. TEXAS n2S1-1443 E·31 



SMJ320C3x 
DIGITAL SIGNAL PROCESSOR 

SGUSOl4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994 

interrupt-acknowledge (lACK) timing 

NO. 

63 tcI(H1 H-IACKL) 

64 tcI(H1H·IACKHl 

H3 

H1 

Delay time, H1 high to lACK low 

Delay time, H1 high to lACK high 

Fetch lACK 
Instruction 

'320C30-28 '32OC31-27 

MIN MAX MIN 

12 

12 

lACK 
Data Read 

MAX 

12 

12 

I*- 14- 64 

___ -.:\1_1 ____ i 

'32OC30-33 
'32OC31-4O 

'320C31-33 

MIN MAX MIN MAX 

10 9 

10 9 

Addr ________ ~x~ ___ ~x~ ___ _ 
Data ------~()~---

Figure 8. Interrupt-Acknowledge lACK Timing 

~1ExAs 
INSTRUMENTS 

E·32 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 

UNIT 

ns 

ns 



~ 
~ 
0_ .... 

~~~. 
I~d
~c:~ ~~
~lT.I

~~
~
.!.
~

~
Co>

serial-port timing

NO.

65 Id(H1-SCK) Delay time, :-11 high to internal CLKX/R

Cycle time, CLKX/R
CLKX/Rext

66 lc(SCK)
CLKX/Rint

Pulse duration, CLKX/R high/low
CLKX/Rext

67 tw(SCK) CLKX/Rint

68 tr(SCK) Rise time, CLKX/R

69 tf(SCK) Fall time, CLKX/R

CLKXext
70 Id(DX) Delay time, CLKX to DX valid

CLKXint

CLKRext
71 lsu(DR) Setup time, DR before CLKR low

CLKRint

CLKRext
72 ih(DR) Hold time, DR from CLKR low

CLKRint

Delay time, CLKX to internal FSX high/low
CLKXext

73 Id(FSX) CLKXint

CLKRext
74 lsu(FSR) Setup time, FSR before CLKR low

CLKRint

CLKX/Rext
75 ih(FS) Hold time, FSX/R input from CLKX/R low

CLKX/Rint

CLKXext
76 lsu(FsX) Setup time, external FSX before CLKX

CLKXint

Delay time, CLKX to first DX bit. FSX precedes CLKXext
n Id(CH-DX)V CLKXhigh CLKXint

78 IdCFSX-DXlV Delay time. FSX to first DX bit. CLKX precedes FSX

79 IdDXZ Delay time. CLKX high to DX high impedance following last data bit

t These values are derived from characterization but not tested.
t These values are derived by design but not tested.

'320C30-2S

MIN MAX
17

lcCHlx2.6t

lc(H)x2 lc(H)x~2t

lc(H)+15t

ItcCSCKl/2]-15 ItcCSCKl/2]+5
st

8t

35

20

10

25

10

ot

32

17

10

10

10

0

-[lc(H)-8] [lc(SCK)/2]-lot

-[lcCHI- 21] lcISCKl/2t

36.

21

36

20t

'32OC31-27

MIN MAX
17

lc(H)X 2.6t

lcCHlx 2 lcCHlx232t

lc(H)+12t

ItcISCK)/2]-15 Ilc(SCK)/2]+5

st

8t

35

20

10

25

10

ot

32

17

10

10

10

0

-llc(H)-8] Itc(SCK)/2]-10t

-[lcIHI-21] lcISCKl/2t

36

21

36

20t

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

en
Gl c:
g
$
I

ril
IJI
:D

~
~
I

~
s::
IJI
m
:D

i

c
C;

~
r-
en
C;
z
~
"U
:a en
05:
Oc.. mW
en N enO aD :ax

r;n
~

~
~
0_ :::z
i~~
~t::~ ~~
~rn

~~
~
.!.
t

serial-port timing (continued)

NO.

65 tct(H1-SCK) Delay time, H1 high to internal CLKX/R

Cycle time, CLKX/R
CLKX/Rext

66 tc(SCK)
CLKX/Rint

Pulse duration, CLKX /R high/low
CLKX/Rext

67 tw(SCK)
CLKX/Rint

68 tr(SCK) Rise time, CLKX/R

69 tf(SCK) Fall time, CLKX/R

CLKXext
70 tct(DX} Delay time, CLKX to OX valid

CLKXint

CLKRext
71 fsu(OR) Setup time, DR before CLKR low

CLKRint

CLKRext
72 th(OR) Hold time, DR from CLKR low

CLKRint

73 tct(FSX} Delay time, CLKXto internal FSX high/low
CLKXext

CLKXint

CLKRext
74 fsu(FSR) Setup time, FSR before CLKR low

CLKRint

CLKX/Rext
75 th(FS) Hold time, FSX/R input from CLKX/R low

CLKX/Rint

CLKXext
76 fsu(FsX} Setup time, external FSX before CLKX

CLKXint

Delay time, CLKX to first OX bit, FSX CLKXext
77 tct(CH-OX}V precedes CLKX high CLKXint

7S tct(FSX-OXlV Delay time, FSX to first OX bit, CLKX precedes FSX

79 tctoxz Delay time, CLKX high to OX high impedance following last data bit

t These values are derived from characterization but not tested.
* These values are derived by design but not tested.

'320C30-33
'320C31-40

'320C31-33 UNIT
MIN MAX MIN MAX

15 13 os

tc(H)X 2.6t tc(H)X 2.6t

tc(H)X 2 Ic(H)X 232* tcCH)X 2 tcCH)x~2*
ns

tc(H)+12t tc(H)+12t

Itc(SCK)/2]-15 Itc(SCK) /2]+5 Itc(SCK)/2]-15 Itc(SCK) /2]+5
ns

st 7t ns

st 7t ns

U> cen G> c -:s::
U> ~c.. g
~ ~fd
I .0
ill en O
aJ C5~ :II

~ Z »
~ •
I "U

U> :0
m 0 :.!I 0 m
;: m
aJ en m
:II en

35 30
os

20 17

iO 0
CD :0 ..

10 9
ns

25 21

10 9

ot 0 ns

32 27
ns

17 15

10 9
ns

10 9

10 9
ns

0 0

-11c(H)-S] Itc(sC:K) /2]-10* -ltc(H)-8] Itc(SCK) /2]-10*

-ItcCH)-21] tc(SCK)/2* -1tc(H)-21] tc(SCK)/2*
ns

36 30
ns

21 1S

36 30 ns

20t 17t os

H1

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

1 14- I ~ 67 ----' I
_----..1 I I I II

CLKX/R -'" ~ Ii r 67 ~ N I~
I I I r II -tli4-69 1
I I I 1 66-.1 14- 1
I I 70~ J4- --.l!4- 72 ~ :-- 79

I I I (:)9-1 X 91tn-2 :: 91tO:) ox

OR._~~~"""~~~~~"""'

FSRIIfI ~ --4-1 --to!J ~ 74 I ~
~ I+- 73 I I -.I 14- 73

FSX (Int) 1 I =-114- 75 ~ II

II_~ FSX(ext)...A'1 I I ~
1 I --' 14-75

-to! 14- 76

NOTES: A. Timing diagrams show operations with the serial-port global-control register bits CLKXP = CLKRP = FSXP = FSRP .. O.
B: These timings are valid for all serial port modes. including handshake. except where otherwise indicated. Fora functional description

of serial port operation. refer to the TMS320C3x User's Guide.
C. Timing diagrams depend upon the length ofthe serial-port word. where n = 8. 18. 24. or 32 bits. respectively.

ox

Figure 1. Serial-Port Timing, Flxed-Data-Rate Mode

\I..._--JI

Figure 2. Serial-Port Timing, Varlable-Data-Rate Mode

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443' HOUSTON. TEXAS 77251-1443

\1..._-

E-35

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

HOLD/HOLDA timing (see Note 1)

'320C30-28 '320C31-'n
'320C30-33

'320C31-40
NO. '320C31-33 UNIT

MIN MAX MIN MAX MIN MAX MIN MAX

80 tsu(HOLD)
Setup time, HOLD

15 15 15 13 ns before Hl low

81 tv(HOLDA)
Valid time, HOLDA after ot 10 ot 10 ot 10 0* 9 ns Hllow

82 tw(HOLD)
Pulse duration, HOLD

2tc(H) 2tc(H) 2tc(H) 2tc(H) ns low

83 iw(HOLDA)
Pulse duration, HOLDA

Ic(H)-5* Ic(H)-5* Ic(H)-5* Ic(H)-5* ns low

84 id(H1L-SH)H
Delay time, Hl low to ot 10* ot 10:1: ot 10* ot 9* ns STRB high for a HOLD

85 idis(H1L-S)
Disable time, Hl low to ot 10* ot 10* ot 10* ot 9* ns STRB high impedance

86 ien(H1L-S)
Enable time, Hl low to ot 10* ot 10* ot 10* ot 9* ns STRB active

87 idis(H1L-RW)
Disable time, Hl low to ot 10* ot 10* ot 10* ot 9* ns R/Vii high Impedance

88 ien(H1L-RW)
Enable time, Hl low to ot 10* ot 10* ot 10* ot 9* ns R/Viiactive

Disable time, Hl low to
89 idis(H1L-A) address high

Impedance
ot 15* ot 13* ot 10* ot 9* ns

90 ien(H1L-A)
Enable time, Hl low to ot 15* ot 15* ot 15* ot 13* ns address valid

91 tdis(Hl H-D)
Disable time, Hl high to ot 15* ot 15* ot 15* ot 12* ns
data high Impedance

t These values are derived by design but not tested.
* These values are derived from characterization but not tested.
NOTE 1: HOLD is an ssynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact

sequence shown In Figure 3 occurs; otherwise, an additional delay of one clock cycle can occur. The NOHOLD bit of the
primary-bus-control register (refer to the TMS32OC3x User's Guide) overrides the HOLD signal. When this bit is set, the device comes
out of hold and prevents Mure hold cycles from occurring.

E-36

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443

H3

H1

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

~ :.- 80 1 --+: 14- 80

HOLD ~~~~_-_-_-_-_-_-_-_-_-__ -~+_-_-_G~-_-_-_-_-_~I~~~~~::~~~----------~:---------------
14 ~I 81 ~ ~81

HOLDA -------------...,...1 --........ -------11-\ ~ 83 ---~} j
84 ---14-1 1 '\.""'----------4IiI

I ~14-85 ~86
STRS ---------------~~~----~i~' i f~------~~~-

__________ -J1 1 i '-
~87 ~88

---------'-~-----':~) i (-----R/W

~89 *90 A --------~~--9-1~) (~------

D _______________ -J)Li--------------------------------Write Date . T

NOTE A: HOLDA goes low in response to HOLD going low and continues to remain low through one H1 cycle after HOLD returns to high.

Figure 3. HOLD/HOLDA Timing

~TEXAS
INSTRUMENfS

POST OFFICE sox 1443 • HOUSTON. TEXAS 77251-1443 E-37

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUSOl4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

peripheral-terminal general-purpose I/O timing (see Note 2)

'320C30-28 '320C31-27
'320C30-33

'32OC31-40
NO. '320C31-33 UNIT

MIN MAX MIN MAX MIN MAX MIN MAX

92 isu(GPIOH1L)
Setup time, general-purpose Input

15 15 12 10 os before HI low

93 th(GPIOHI L)
Hold time, general-purpose Input

0 0 0 0 os after HI low

94 Id(GPIOHI H)
Delay time, general-purpose output

15 15 15 13 os after HI high

NOTE 2: Peripheral terminals include CLiOCO/l, CLKRO/l, DXO/l, ORO/I, FSXO/l, FSRO/l, and TCLKO/l. The modes of these terminals are
defined by the contents of internal control registers associated with each peripheral.

H3

Hl~~~~T-'r~'---J~'-
93 ~ I+- -+I I~ 94 ~ I+- 94

Peripheral
Terminal

E-38

~ ~ ~~---------------------
Figure 4. Peripheral-Terminal General-Purpose I/O Timing

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443· HOUSTON. TEXAS 77251-1443

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

change of peripheral terminal from general-purpose output to Input mode

'320C31-27
'320C30-33
'320C31-33 NO.

9S th(H3H) Hold time after H1 high

96 tsu(GPIOH1L) Setup time, peripheral terminal before H1 low

97 th(GPIOH1L) Hold time, peripheral terminal after H1 low

t These values are denved by design but not tested.

H3

H1

I/O
Control Bit

Peripheral
Terminal

Data Bit

Execute Store
of Peripheral

Control
Regleter

Output

Buffere Go
From Output to

Input

Data Sampled

i
I I

MIN MAX MIN MAX

1St 1St

13 12

0 0

Synchronizer Delay

'32OC31-40
UNIT

MIN MAX

13t ns

9 ns

0 ns

value on
Terminal Seen In

Peripheral
Control Regleter

Figure 5. Change of Peripheral Terminal From General-Purpose Output to Input Mode

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUS1ON. TEXAS 77251-1443 E-39

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUSOl4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

change of peripheral terminal from general-purpose Input to output mode

'320C31-27
'320C30-33

'32OC31·40 '320C31·33 NO.

98

E-40

MIN MAX MIN MAX MIN MAX

Ict(GPIOH1H)

H3

H1

1/0
Control

Bit

Delay time, H1 high to peripheral terminal switching
frem input to output

Execution of Store of
Peripheral Control

Register

-------'

15 15

~ 98

Peripheral -------------------------f~'__ __ _ Terminal '-

Figure 6. Change of Peripheral Terminal From General-Purpose Input to Output Mode

-!!1TEXAS
INSTRUMENTS

POST OFFICE SOX 1443 • HOUSTON, TEXAS 77261-1443

13

UNIT

ns

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

timing parameters for timer terminal

'320C30·28
'320C30·33

NO. '320C31·33 UNIT
MIN MAX MIN MAX

Setup time,
99 tsu(TCLK-H1L) TCLKext TCLKext 15 12 ns

before H1 lowt

Hold time,
100 th(TCLK-H1L) TCLK ext after TCLKext 0 0 ns

H110wt

Delay time, H1
101 Ict(TCLK-H1H) high to TCLK

intvalid
TCLKint 15 12 ns

Cycle time, TCLKext teCH) x 2.6* teCH) x 2.6* ns
102 te(TCLK) TCLKt te(H) x 232* teiH) x 232* TCLKint te(H) x 2 tq{tl) x 2 ns

Pulse duration, TCLKext teCH) + 10* teCH) + 12:1: ns
103 tw(TCLK) TCLK

high/low t TCLKint [te(TCLK) 12]- 5 [te(TCLK) 12]+5 [te(TCLK)/2]-15 [te(TCLK) 12]+5 ns

'320C31·27 '320C31·40
NO. UNIT

MIN MAX MIN MAX

Setup time,
99 lsu(TCLK-H1 L) TCLKext TCLKext 15 10 ns

before H1 lowt

Hold time,
100 th(TCLK-H1 L) TCLK ext after TCLKext 0 0 ns

H110wt

Delay time, H1
101 Ict(TCLK-H1 H) high to TCLK TCLKint 13 9 ns

intvalid

Cycle time, TCLKext te(H) x 2.6:1: te(H) x 2.6:1: ns
102 tc(TCLK) TCLKt TCLKint tc(H) x2 teCH) x 232* teCH) x 2 teCH) x 232* ns

Pulse duration, TCLKext teCH) + 12:1: teCH) + 12:1: ns
103 tw(TCLK) TCLK

high/lowt TCLKint [te (TCLK) 1 2]-15 [te(TCLK) 12]+5 [te(TCLK)/2]-5 [te(TCLK) 12]+5 ns

t Timing parameters 99 and 100 are apphcable for a synchronous Input clock. Timing parameters 102 and 103 are apphcable for an asynchronous
input clock.

* Assured by design but not tested

H3

H1 ~~
~ It-- 103 --+I 101 --.! 14-- I

_ 99 I I I --.! 14--101

--~X-~I~~XI ~I ~I ~I ______ _
Peripheral X

Terminal . ___ --'

I. 102 ~

NOTE A. Period and polarity of valid logic level are specified by contents of internal control registers.

Figure 7, Timer-Terminal Timing

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 E-41

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

timing parameters for 5HZ [P = te(el)]

'320C30-28
'320C30-33

'320C31-27 '320C31-40
NO. '320C31-33 UNIT

MIN MAXt MIN MAXt MIN MAXt MIN MAXt

104 lclis(SHZ)
Disable time, SHZlowto all 0,1/0

0 3P + 15 0 3P + 15 0 3P + 15 0 3P + 15 ns high impedancet

105 len(SHZ)
Enable time, SHZ high to all 0, I/O
activet 0 2P 0 2P 0 2P 0 2P ns

t These values are derived from characterization but not tested.

H3

H1

~~----------~)\\~--~I:
1 1
j4-104 .1 1

I 1.4----~.~1-
I I

105

Alii/Os -----------j~--~)~\------~(--------
* Enabling SHZ destroys SMJ320C3x register and memory contents. Assert SHZ and reset the SMJ320C3x to restore H to a known condition.

E-42

Figure 8. Timing for SHZ

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443

SMJ320C30 part order Information

DEVICE TECHNOLOGY
POWER
SUPPLY

SMJ320C30GBM2B O.8-l'm CMOS SV.,S%

SM320C30GBM28 0.8-l'm CMOS SV.,S%

5962-90S2601 MXA O.B-I'm CMOS SV.,S%

SMJ320C30GBM33 0.8-l'm CMOS SV.,IO%

SM320C30GBM33 0.8-l'm CMOS SV.,IO%

S962-90S2603MXA 0.8-l'm CMOS SV.,IO%

SMJ320C30HFGM28 O.8-l'm CMOS SV.,5%

SM320C30HFGM28 0.8-l'm CMOS SV.,5%

S962-9052601 MUA 0.8-l'm CMOS SV.,S%

SMJ320C30HFGM33 O.8-l'm CMOS 5V.,10%

SM320C30HFGM33 0.8-l'm CMOS 5V.,10%

5962-90S2603MUA O.8-l'm CMOS 5V.,10%

SMJ

PREFIX---------'I

320

SMJ 883 Class B
SM = Standard Processing

DEVICE FAMILY
320 = SMJ320 Family

TECHNOLOGY
C = CMOS

DEVICE

OPERATING
FREQUENCY

28 MHz

28 MHz

28 MHz

33 MHz

33 MHz

33 MHz

28 MHz

28 MHz

28 MHz

33 MHz

33 MHz

33 MHz

C 30

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUSOI4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

PACKAGE TYPE

Ceramic 181-pin PGA

Ceramic 181-pin PGA

Ceramic 181-pin PGA

Ceramic 181-pin PGA

Ceramic 181-pin PGA

Ceramic 181-pin PGA

Ceramic 196-pin quad ilatpack with
nonccnductive tie bar

Ceramic I 96-pin quad flatpack with
nonccnductive tie bar

Ceramic 196-pin quad f1atpack with
nonccnductive tie bar

Ceramic 196-pin quad flatpack with
non conductive tie bar

Ceramic t 96-pin quad flatpack with
nonconductive tie bar

Ceramic 196-pin quad flatpack with
non conductive tie bar

GB M 28

L SPEED RANGE
28 28 MHz
33 = 33 MHz

PROCESSING
LEVEL

Class B

Std

DESCSMD

Class B

SId

DESCSMD

Class B

SId

DESCSMD

Class B

Std

DESCSMD

L-___ TEMPERATURE RANGE
M -S5·C to 12S·C
L = O·C to 70·C

PACKAGE TYPE
GB .. Pin Grid Array (PGA)
HFG = 196-Pin Quad Flatpack with a

nonconductive tie bar

Figure 9_ SMJ320C30 Device Nomenclature

~TEXAS
INSTRUMENTS

POST OFFICE 1I0X 1443 • HOUSTON. TEXAS 77251-1443 E-43

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

SMJ320C31 part order Information

DEYICE TECHNOLOGY
POWER
SUPPLY

SMJ320C31 GFAM27 O.B-J.Im CMOS 5Y",10%

SM320C31 GFAM27 O.B-J.Im CMOS 5Y",10%

SMJ320C31 GFAM33 O.B-J.Im CMOS 5Y",10%

SM320C31 GFAM33 O.B-J.Im CMOS 5Y",10%

SMJ320C31 GFAM40 O.B-J.Im CMOS 5Y",5%

SM320C31 GFAM40 O.B-J.Im CMOS 5Y",5%

SMJ320C31HFGM27 O.B-J.Im CMOS 5Y",10%

SM320C31 HFGM27 O.B-J.Im CMOS 5V",10%

SMJ320C31 HFGM33 O.B-J.Im CMOS 5V",10%

SM320C31 HFGM33 O.B-J.Im CMOS 5V",10%

SMJ320C31 HFGM40 O.B-J.Im CMOS 5V",5%

SM320C31 HFGM40 O.B-J.Im CMOS 5V",5%

5962-9205B01 MXA O.B-J.Im CMOS 5V",10%

5962-9205B01 MYA O.B-J.Im CMOS 5V",10%

5962-9205B02MXA O.B-J.Im CMOS 5V",10%

5962-9205B02MYA O.B-J.Im CMOS 5V",10%

SMJ

PREFIX--------...JI

320

SMJ BB3 Class B
SM = Standard Processing

DEVICE FAMILY
320 = SMJ320 Family

TECHNOLOGY
C = CMOS

OPERATING
FREQUENCY

27 MHz

27 MHz

33 MHz

33 MHz

40 MHz

40 MHz

27 MHz

27 MHz

33 MHz

33 MHz

40 MHz

40 MHz

27 MHz

27 MHz

33 MHz

33 MHz

C 31

DEVICE _______________ --l

PACKAGE TYPE
PROCESSING

LEVEL

Ceramic 141-pin staggered PGA ClassB

Ceramic 141-pin staggered PGA Std

Ceramic 141-pin staggered PGA Class B

Ceramic 141-pin staggered PGA Std

Ceramic 141-pin staggered PGA Class B

Ceramic 141-pin staggered PGA Std

Ceramic 132-pin quad flatpack with a
Class B nonconductive tie bar

Ceramic 132-pin quad flatpack with a
Sid nonconductive tie bar

Ceramic 132-pin quad flatpack with a
ClassB nonconductive lie bar

Ceramic 132-pin quad flatpack with a
Std nonconductlve tie bar

1"'_ .. __ : ,," _=_ _ "' __ ... 1 .. ••• u
""Vlallll'" '''''Go-..,III "luau ncul-'C"''''' nll.11 CI Class B nonconductive lie bar

Ceramic 132-pin quad flatpack with a
Sid nonconductive tie bar

141-pin CPGA DESCSMD

132-PiN CQFP DESCSMD

141-pin CPGA DESCSMD

132-PIN CQFP DESCSMD

GFA M 27

L SPEED RANGE
27 27 MHz
33 33 MHz
40 = 40 MHz

L..-___ TEMPERATURE RANGE
M - 55·C to 125·C
L = O·C to 70·C

PACKAGE TYPE
GFA 141-Pln Staggered Pin Grid Array
HFG = 196-Pin Quad Flatpack with a

nonconductive tie bar

Figure 10. SMJ320C31 Device Nomenclature

E-44

~1EXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUSOl4A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C30 HFG 196-lead ceramic quad flat pack with a nonconductlve tie bar

14---------- 64,52 (2.540) TVP ______ ~
63, 50 (2.500)

Pin 1 Indicator

63,63 (2.505)
63,12 (2.485)

43,43 (1.710)
42,93 (1.690)

1
196)(0,33 (0.013) TYP C 0,18 (0.007)

34,7 (1.365) TYP
33,7 (1.325)

,

I ,

---+--
I

I

0,51 (0.020)
MAX

1,02 (0.040) II
0,76 (0.030) -.I j.

r-JI=':::l
I

Thermal Resistance Chsracterlstlcs

fZ I

0,65 (0.025) TVP

Ceramic Detail A

0,20 (0.008)
0, 10 (0.004)

0,30 (0.012)
0, 15 (0.006) I

(at braze pads) --I
Detail B

PARAMETER

RSJC
RaJA

2,67 (0.105) MAX

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSlON. TEXAS 77251-1443

·C/W

1.3
28.9

E-45

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C30 196·lead ceramic quad flatpack (HU suffix)

RECOMMENDED FINAL LEAD·FORM DIMENSIONS FOR BOARD MOUNT

lr 0,38 (0.015)
0, 15 (0.006)
With Lead Flnlah

4,19 (0.165) MAX

-+--=I-r-

l ~
30,48 (1.200) BSC

34, 67 (1.365)
33, 91 (1.335)

39, 75 (1.565)
38, 99 (1.535)

0,25 (0.010) MIN Radius

0, 36 (0.014)
0, 05 (0.002)

0,43 (0.017) R dl
0,28 (0.011) a us

0, 25 (0.010)
0,10 (0.004)

j

With Lead Finish

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTES: A. TI does not offer MIL-SPEC part in formed lead configuration.

E-46

B. Lead forming should be performed at customer's facility or subcontracted.

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443

IQI 0.0041 C 1
1, 02 (0.040)
0,51 (0.020)

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C30 181-pln ceramic grid array (GB suffix)

TOP VIEW

I C),VOO OVO~
I () VSS ovs~N Thermal Realatance Characterlatlca

PlnA1 -U
Corner Indicator - ---. ... ,.-----...., PARAMETER

I
40,4 (1.590)
37,6 (1.480)

4,70 (0.185)

0 0vsS
c:5ovoo

VSS~
VOO

I 40,4 (1.590) I
.. 4---- 37,6 (1.480) -----..~

3,SS (0.140) J SlOE VIEW

--"-r~==;;;;...t====='~--..J"" r !~~~:=
r=: ¥~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~T J 0,508 (0.020) -.II.- ~ /.2,.27 (0.050) NOM

3,56 (0.140) 0,406 (0.016) OIA (4 Placea)
3,05 (0.120) (180 ~~cea)

2,54 (0.100) TVP BOTTOM VIEW

r R • • @@)(!>@@@@@@@@@ @
P @ @@@@@@@@@@@@@ @
N @ @@@@@@@@@@@@@ @
M @ @@@@@@@@@@@@@ @
L @@@@ @ @@@@
K @@@@ @@@@

35,6(1.400) J @ @@@ @@@ @
REF H @@@@@ @@@@@

G @@@@ ExtraPln @@@@
F @@@@ r @@@@
E @@@@@ @ @@@@

ReJC
RaJA

D @ @@@@@@@@@@@@@ @
C @ @@@@@@@@@@@@@ @
B • @@@@@@@@@@@@@ •

A @ @@@@@@@@@@@@@ •

2,54 (0.100) TVP

Index Corner
1 2 3 4 6 6 7 8 9 10 11121314 15

·C/W

1.1
26.6

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 E·47

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C30 244-pin TAB frame (PGS) socket, 203 OLB/ILB 0.2S-mm OLB pitch

i+-- PO.25 ± 0.01 x 50 = 12.75 ± 0.02 -.I

14- PO.25 ± 0.01 x 51 = 12.75 ± 0.02 ---.I

NOTES: A. Lead pitch in OLB windows is 250 I'm.

E-48

B. OLB lead width is 100 I'm ± 20 I'm.
C. Dimensions reference centerline to outside edge of lead.
D. PO.25 ± 0,01 x 49 = 12.25 ± 0.02.

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443' HOUSTON. TEXAS 77251-1443

T

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A - FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C30 TAB (PGS) 244-pln socket, 203 OLB/ILB 0.2S-mm OLB pitch (continued)

_~~ ______ OL_B ____ ~~_ -~~~~rl2,25mm
(89 mil)

f 16mm
(630 mil)

ILB

11,16mm
(439 mil)

DIE

_1 1016 ~m
(40mll)_=l _

_ l 2,25mm

~~ ~J-- -icri --J _______ --I..--:..i~ -_~~~~_J .. ml,

1814 ~m
(71.4 mil)

I 1 14 10,34mm -J I I I I: (407 mil) -: I I
1 1 1 1 I I
I ~ 1016~m 1016~m--J.-.! I
I iT (40 mil) (40 mil) I I
14 ~ ~1814~m
I - I I (71.4 mil)

~ 16 mm -----.rl
~ ~~mm •

-!!1 TEXAS
INSTRUMENTS

POST OFFICE BOX 1443· HOUSTON. TEXAS n2S1-1443 E-49

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991- REVISED SEPTEMBER 1994

E-50

Pad Number One

SMJ320C30 (rev 5) Inner Lead Bond Information for TAB
(tape automated bonding)

203 Ole Side Number 4 153

• 1 152

• •
• •
• •

Ole Side Number 1 Ole Side Number 3

• •

· I •
• § •

50 103 Zero-Zero --.
(origin) 51

Ole Side Number 2 102

Figure 11. SMJ320C30 Ole Numbering Format
(Reference Table 1)

Ole Designator

The inner lead bond (ILB) pitch for the TAB leadframe is the same as the die bond pad pitch. Table 1 provides
a reference for the following:

A. The TAB lead numbers. The TAB lead numbers are the same as the die bond pad numbers.

B. The 'C30 signal identities in relation to the pad numbers

C. Which signal functions fan out to more than one test pad location. (There are 203 bond pad locations,
203 TAB leads, and 244 test pad locations.)

D. The 'C30 X,Y coordinates, where bond pad 51 serves as the origin (O,O)

E. The ILB pitch for the TAB leadframe

In addition, the following notes are significant:

F. X,Y coordinate data is in microns.

G. Coordinate origin is at 0,0 (center of bond pad 51).

H. Average pitch is 186 microns (7.33 mils).

I. Smallest pitch value is 156,8 microns (6.173 mils).

J. The active silicon dimensions are 10224,00 Ilm x 11032,00 Ilm (402.52 mils x 434.33 mils).

K. The die size is approximately 10337,80 Ilm x 11150,61lm (409.00 mils x 439.00 mils).

L. Distance from diced silicon to polyimide support ring is 1016,0 Ilm (40 mils).

M. Bond pad dimensions are 115,00 Ilm x 115,00 Ilm.

N. Center of bond pad to edge of die ranges from 180 Ilm-220 Ilm (7.1 mils-8.6 mils). The range of 40 Ilm
exists since the dicing process will result in some tolerance. Due to the consistency and precision ofthe
bond pad locations in reference to each other, the center of bond pad 51 was chosen as the origin.

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443

C30 DIE
BOND PAD

lOCATIONS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A - FEBRUARY 1991 - REVISED SEPTEMBER 1994

Table 1. SMJ320C30 Ole Pad/Tab Lead Information: rev 5 (0,8 !-1m)

DIErrAB
BOND PAD
IDENTITY

PDVDD
PDVDD

DRO
FSRO

ClKRO
ClKXO
FSXO
DXO

TClKO
TCLKl
EMU6
XDO
XDl
XD2

IODVDD
IODVDD

XD3
XD4
XD5
XD6
XD7
XD8
XD9

XD10
VDD
VDD
Vss
Vss
XDll
XD12
XD13
XD14
XD15
XD16
XD17
XD18
XD19
XD20
XD21
XD22
XD23
XD24
XD25
XD26
XD27
XD28
XD29
XD30

IODVDD
IODVDD

DIE SIDE #1

TAB C30 X COORDINATE OF Y COORDINATE OF
TEST PAD

lOCATIONS
THE DIE BOND PAD THE DIE BOND PAD

1,2
3,4

5
6
7
8
9
10
11
12
13
14
15
16

17,18
19,20

21
22
23
24
25
26
27
28

29,30
31,32

33,34,35
36,37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58,59
60,61

-423.80

~TEXAS
INSTRUMENTS

9563.00
9367.80
9199.20
9007.20
8823.20
8631.20
8447.20
8255.20
8071.20
7879.20
7695.20
7503.20
7319.20
7127.20
6947.00
6751.80
6853.20
6399.20
6207.20
6023.20
5831.20
5647.20
5455.20
5271.20
5083.00
4887.80
4731.00
4535.80
4367.20
4183.20
3991.20
3807.20
3615.20
3431.20
3239.20
3055.20
2863.20
2679.20
2487.20
2303.20
2111.20
1927.20
1735.20
1551.20
1359.20
1175.20
983.20
799.20
619.00
423.80

POST OFFICE BOX 1443· HOUSTON, TEXAS n251-1443

PITCH OF lEAD (I, I)
REFERENCE WHICH DIE

BOND PADS

195.20 (1,2)
168.60 (2,3)
192.00 (3,4)
184.00 (4,5)
192.00 (5,6)
184.00 (6,7)
192.00 (7,8)
184.00 (8,9)
192.00 (9,10)
184.00 (10,11)
192.00 (11,12)
184.00 (12,13)
192.00 (13,14)
180.20 (14,15)
195.20 (15,16)
168.60 (16,17)
184.00 (17,18)
192.00 (18,19)
184.00 (19,20)
192.00 (20,21)
184.00 (21,22)
192.00 (22,23)
184.00 (23,24)
188.20 (24,25)
195.20 (25,26)
156.80 (26,27)
195.20 (27,28)
168.60 (28,29)
184.00 (29,30)
192.00 (30,31)
184.00 (31,32)
192.00 (32,33)
184.00 (33,34)
192.00 (34,35)
184.00 (35,36)
192.00 (36,37)
184.00 (37,38)
192.00 (38,39)
184.00 (39,40)
192.00 (40,41)
184.00 (41,42)
192.00 (42,43)
184.00 (43,44)
192.00 (44,45)
184.00 (45,46)
192.00 (46,47)
184.00 (47,48)
180.20 (48,49)
195.20 (49,50)

E-51

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

Table 1. SMJ320C30 Die Pad/Tab Lead Information: rev 5 (0.8 11m) (Continued)

C30DIE DIE/TAB
BOND PAD BOND PAD

LOCATIONS IDENTITY

51 DVSS
52 DVSS
53 CVSS
54 CVSS
55 XD31
56 A23
57 A22
58 A21
59 A20
60 A19
61 A18
62 A17
63 A16
64 A15
55 A14
66 ADVDD
67 ADVDD
68 A13
69 A12
70 A11
71 A10
72 A9
73 A8
74 A7
75 A6
76 VOD
77 VOD
78 Vss
79 Vss
80 A5
81 A4
82 A3
83 A2
84 Al
85 AO
86 EMUO
87 EMUl
88 EMU2
89 EMU3
90 EMU4
91 MC/MP
92 XA12
93 XAll
94 XA10
95 XA9
96 XA8
97 XA7
98 XA6
99 IVSS
100 IVSS
101 DVss
102 DVss

E-52

DIE SIDE #2

TABC30
X COORDINATE OF V COORDINATE OF

TEST PAD
LOCATIONS

THE DIE BOND PAD THE DIE BOND PAD

62,63
64

65,66
67
68
69
70
71
72
73
74
75
76
77
78

79,80
81
82
83
84
85
86
87
88
89

90,91
92,93
94,95
96,97

98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117,118
119

120,121
122

0.00
195.2

374.80
570.00
746.60
938.60

1138.60
1338.60
1530.60
1730.60
1922.60
2122.60
2322.60
2514.36
2902.80
2714.60
2902.80
3098.00
3274.60
3474.60
3666.60
3866.60
4258.60
4458.60
4650.60
4846.80
5042.00
5214.80
2410.00
5578.60
5778.60
5970.60
6170.60
6370.60
6562.60
6774.80
6990.80
7198.80
7402.60
7606.80
7822.80
8026.60
8218.60
8418.60
8610.60
8810.60
9010.60
9202.60
9398.80
9594.00
9758.60
9954.00

~TEXAS
INSTRUMENTS

0.00

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443

PITCH OF LEAD (#, #)
REFERENCE WHICH DIE

BOND PADS

195.20 (51, 52)
179.60 (52, 53)
195.20 (53, 54)
176.60 (54, 55)
192.00 (55, 56)
200.00 (56, 57)
200.00 (57, 58)
192.00 (58, 59)
200.00 (59, 60)
192.00 (60, 61)
200.00 (61, 62)
200.00 (62, 63)
192.00 (63, 64)
200.00 (64, 65)
188.20 (65, 66)
195.20 (66, 67)
176.60 (67, 68)
200.00 (68, 69)
192.00 (69, 70)
200.00 (70, 71)
200.00 (71, 72)
192.00 (72, 73)
200.00 (73, 74)
192.00 (74, 75)
196.20 (75, 76)
195.20 (76. 77)
172.80 (77, 78)
195.20 (78, 79)
168.60 (79, 80)
200.00 (80, 81)
192.00 (81, 82)
200.00 (82, 83)
200.00 (83, 84)
192.00 (84, 85)
212.20 (85, 86)
216.00 (86, 87)
208.00 (87, 88)
203.80 (88, 89)
204.20 (89, 90)
216.00 (90, 91)
203.80 (91, 92)
192.00 (92, 93)
200.00 (93, 94)
192.00 (94, 95)
200.00 (95, 96)
200.00 (96, 97)
192.00 (97, 98)
196.20 (98, 99)
195.20 (99, 100)
164.80 (100, 101)
195.20 (101, 102)

C30DIE
BOND PAD

LOCATIONS

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A - FEBRUARY 1991 - REVISED SEPTEMBER 1994

Table 1. SMJ320C30 Ole Pad/Tab Lead Information: rev 5 (0.8 Ilm) (Continued)

DIE/TAB
BOND PAD
IDENTITY

AOVOO
AOVOO

XA5
XA4
XA3
XA2
XAl
XAO
031
030
029
028
027
026

OOVOO
OOVOO

025
024
023
022
021
020
019
018
VOO
VOO
Vss
Vss
017
016
015
014
013
012
011
010
09
08
07
06
05
04
03
02
01
00
HI
H3

OOVOO
OOVOO

TABC30
TEST PAD

LOCATIONS

123,124
125,126

127
128
129
130
131
132
133
134
135
136
137
138

139,140
141,142

143
144
145
146
147
148
149
150

151,152
153,154,155

156, 157
158, 159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180,181
182,183

DIE SIDE #3

X COORDINATE OF V COORDINATE OF
THE DIE BOND PAD THE DIE BOND PAD

10377.80

-!/} TEXAS
INSTRUMENTS

430.60
625.80
764.40
986.40

1170.40
1362.40
1546.40
1738.40
1922.40
2114.40
2298.40
2490.40
2674.40
2866.40
3046.60
3241.80
3410.40
3594.40
3786.40
3970.40
4162.40
4346.40
4538.40
4722.40
4910.60
5105.80
5262.60
5457.80
5626.40
5810.40
6002.40
6186.40
6378.40
6562.40
6754.40
6938.40
7130.40
7314.40
7506.40
7690.40
7882.40
8066.40
8258.40
8442.40
8634.40
8818.40
9010.40
9194.40
9374.60
9569.80

POST OFFICE BOX 1443' HOUSTON, TEXAS n251-1443

PITCH OF LEAD (#, #)
REFERENCE WHICH DIE

BOND PADS

195.20 (103,104)
168.60 (104,105)
192.00 (105,106)
184.00 (106,107)
192.00 (107,108)
184.00 (108,109)
192.00 (109,110)
184.00 (110,111)
192.00 (111,112)
184.00 (112,113)
192.00 (113,114)
184.00 (114,115)
192.00 (115,116)
180.20 (116,117)
195.20 (117,118)
168.60 (118,119)
184.00 (119,120)
192.00 (120,121)
184.00 (121,122)
192.00 (122,123)
184.00 (123,124)
192.00 (124,125)
184.00 (125,126)
188.20 (126,127)
195.20 (127,128)
156.80 (128,129)
195.20 (129,130)
168.60 (130,131)
184.00 (131,132)
192.00 (132,133)
184.00 (133,134)
192.00 (134,135)
184.00 (135,136)
192.00 (136,137)
184.00 (137,138)
192.00 (138,139)
184.00 (139,140)
192.00 (140,141)
184.00 (141,142)
192.00 (142,143)
184.00 (143,144)
192.00 (144,145)
184.00 (145,146)
192.00 (146,147)
184.00 (147,148)
192.00 (148,149)
184.00 (149,150)
180.20 (150,151)
195.20 (151,152)

E-53

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

Table 1. SMJ320C30 Ole Pad/Tab Lead Information: rev 5 (O.8j.tm) (Continued)

C30DIE DIE/TAB
BOND PAD BOND PAD

LOCATIONS IDENTITY

153 DVss
154 DVss
155 CVss
156 CVss
157 X21CLKIN
158 Xl
159 VSUPs
160 VBBP
161 EMU5
162 XRDY
163 MSTRB
164 IOSTRB
165 XRW
166 HOLDA
161 HOLD
168 MDVDD
169 MDVDD
170 ROY
171 STRB
172 RNii
173 RESET
174 XFl
175 XFO
176 lACK
177 INTO
178 VOD
179 VOD
180 Vss
181 VSS
182 INTl
183 INT2
184 INT3
185 RSVO
186 RSVl
187 RSV2
188 RSV3
189 RSV4
190 RSVS
191 RSV6
192 RSV7
193 RSV8
194 RSV9
195 RSV10
196 ORl
197 FSRl
198 CLKRl
199 CLKXl
200 FSXl
201 DXl
202 DVss
203 DVss

E-54

TABC30
TEST PAD

LOCATIONS

184
185, 186

187
188,189

190
191

192,193
194
195
196
197
198
199
200
201
202

203,204
205
206
207
208
209
210
211
212

213,214
215,216
217,218
219,220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

241,242
243,244

DIE SIDE #4

X COORDINATE OF Y COORDINATE OF
THE DIE BOND PAD THE DIE BOND PAD

9947.20
9752.00
9587.20
9392.00
9217.00 9986.80
9043.80 9986.80
8696.00
8535.40
7935.40
7739.40
7551.40
7359.40
7175.40
6991.40
6795.20
6611.20
6416.00
6243.20
6055.40
5863.40
5667.20
5479.40
5295.40
5111.40 9993.60
491S.20
4731.20
4536.00
4371.20
4176.00
4003.20
3803.20
3603.20
3403.20
3203.20
3003.20
2795.20
2595.20
2407.40
2223.40
2039.40
185S.40
1671.40
1479.40
1295.40
1111.40
927.40
743.40
559.40
375.40
195.20

0.00

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443

PITCH OF LEAD (#, #)
REFERENCE WHICH DIE

BOND PADS

195.20 (153,154)
164.80 (154,155)
195.20 (155,156)
175.00 (156,157)
173.20 (157,158)
347.80 (158,159)
160.60 (159,160)
600.00 (160,161)
196.00 (161,162)
188.00 (162,163)
192.00 (163,164)
184.00 (164,165)
184.00 (165,166)
196.20 (166,167)
184.00 (167,168)
195.20 (168,169)
172.80 (169,170)
187.80 (170,171)
192.00 (171,172)
196.20 (172,173)
187.80 (173,174)
184.00 (174,175)
184.00 (175,176)
196.20 (176,177)
184.00 (177,178)
195.20 (178,179)
164.80 (179,180)
195.20 (180,181)
172.80 (181,182)
200.00 (182,183)
200.00 (183,184)
200.00 (184,185)
200.00 (18S,186)
200.00 (186,187)
208.00 (187,188)
200.00 (188,189)
187.80 (189,190)
184.00 (190,191)
184.00 (191,192)
184.00 (192,193)
184.00 (193,194)
192.00 (194,195)
184.00 (195,196)
184.00 (196,197)
184.00 (197,198)
184.00 (198,199)
184.00 (199,200)
184.00 (200,201)
180.20 (201 ,202)
195.20 (202,203)

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A - FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C31 132-lead nonconductlve ceramic tie bar (HFG suffix)

51,44 (2.025)
MAX

24,38 (0.960)
24,00 (0.945)

20,45 (0.805)

Indicator _____
1 20,19(0.795) --,

Pin 1
n

~:K E9
~

-,...---

~

51,18
50,55

(2.015)
(1.990)

30,73
(1.210)
TYP

1

0,406 (0.016)
0,228 (0.009)

~

E9

t\,E9~

Detail A

"
/'\:

Detail A

~

EB EB

0,64 (0.025) TYP--+ ~

0,35 (0.014)
0,05 (0.002) I

(at braze pads) -ti
Detail B

£L
~~

E9
b::::z::::.

7

UEB

0,13 (0.005)
TYP

,(0.040) II
0,76 (0.030) --.j 1+
102

Thermal Resistance Characteristics

2,31 (0.091)
1,95 (0.077)

PARAMETER

ReJC
ReJA

·C/W

2.1
44.3

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS n251-1443 E-55

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C31132-Lead ceramic quad flatpack (HU suffix)

RECOMMENDED FINAL LEAD-FORM DIMENSIONS FOR BOARD MOUNT

3,96 (0.156) MAX lrO'38 (0.015)
0, 15 (0.006)
With Lead Finish

-t--=f-r-

~----- 20,32 (O.BOO) BSC ------+/

l ~ 24,38 (0.960) ~ J
23,88 (0.940)

14------ 29,46 (1.160) ____ ~
28,96 (1.140)

0, 76 (0.030)
0,51 (0.020)

0,25 (0.010) MIN Radius

0, 43 (0.017)
0,28 (0.011) Redlus

0, 25 (0.010)
0, 10 (0.004)
With Lesd Finish

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTES: A. TI does not offer MIL-SPEC part in formed lead configuration.

E-56

B. Lead forming should be performed at customer's facility or subcontracted.

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS n2S1-1443

I~I 0.0041 c I
1, 02 (0.040)
0,50 (0.020)

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A - FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C31 141-pin ceramic pin grid array (GFA suffix)

o
/" <'\"--------..,.

Pin A1 Indicator -+-.../

TOP VIEW

27,43 (1.080)
26,42 (1.040)

Thermal Resistance Characteristics

14~----- 27,43 (1.080) ----~J
26,42 (1.040)

PARAMETER

ReJC
RaJA

°C/W

4.3
39.0

3,68 (0.145)

SIDE VIEW f 2,79 (0.11 0)
0,66 (0.026) I I

0,15(0.006) ~ II *
l ' f ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ML~ 0,86(0.034)TYP

3,56 (0.140) r-- 0,508 (0.020) II --./ 1,22 (0.048) TYP
3,05 (0.120) 0,406 (0.016) -.! I+-

22,86 (0.900)
REF

BOTTOM VIEW

w @ 0 0 0 0 0 0 0 o .. @-
V 0 0 0 0 0 0 0 0 00-

u 000000000
000000000

TOOOOOOOOOO
ROO 0 0

P OOO 000
N 0 0 0 0
MO 00 000

\ 0 0 0 0

2,54 (0.100) TYP

J 000 000
H 0 0 r Extra Pin 0 0 r 1,27 (0.050) TYP

G 000000 000v-_O-+_~
/ 0 0 0 000 0 0 O-~V-t--;Tr

o 0000000000000000000

CB 0 0 0 000 0 0 0
A @OOOOOOOO@

Index Corner .J' 2 4 6 8 10 12 14 16 18 "'-. 1,016(0.040) REF,,45° 3 Places
1,51 (0.020)REF,,45°1 Place 1 3 5 7 9 11 13 15 17 19

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443 E-57

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C31 244-pln TAB frame (PG2) socket, 132 OLB/ILB O.30-mm OLB pitch

NOTES: A. Lead pitch In OLB windows is 300 I'm.

E-58

B. OLB lead width is 120 I'm ± 30 I'm.
C. Dimensions reference centerline to outside edge of lead.
D. PO.30 ± 0.01 x 32 = 9.60 ± 0.02.

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443' HOUSTON. TEXAS 77251-1443

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

MECHANICAL DATA

SMJ320C31 TAB (PG2) 244-pln socket, 132 OlB/llB O.30-mm OlB pitch (continued)

1404~

(55.3 mll)=l =_

635 I'm
(25 mil)

,.....---_OLB ------,z=--~~~=rl ~
(89 mil)

ILB

DIE

635j.lm

10,54mm
(415 mil)

_1
(25 mit ~_L--!-______ -+---'

J-- --~ J I +- ---- -
(!~4!~ V ~

I I '. ' I I I "" 10,64 mm ~ I I
I I' (419 mil) I I I
, , , , , I
I LL 635j.lm 635j.lm~ I
I II (25 mil) (25 mil) I I
I ~1B141'm I I ~A_
t.. 16mm ~ II1II-"'----- (830 mil) ------.!Fj

~TEXAS
INSTRUMENTS

POST OFFICE SOX 1443 • HousmN, TEXAS 77251-1443 E-59

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991- REVISED SEPTEMBER 1994

E·60

Pad Number One •

SMJ320C31 Inner Lead Bond Information for TAB
(tepe automated bonding)

132 Ole Side Number 4 100

99

• •
• •
• •

Ole Side Number 1 Ole Side Number 3

· I •

· I •
• § •

Zero·Zero ~~ 67

(origin) 34
Ole Side Number 2 66

Figure 12. SMJ320C31 Ole Numbering Format
(Reference Table 2)

Ole Designator

The inner lead bond (ILB) pitch for the TAB leadframe is the same as the die bond pad pitch. Table 2 provides
a reference for the following:

A. The TAB lead numbers. The TAB lead numbers are the same as the die bond pad numbers.

B. The 'C31 Signal identities in relation to the pad numbers

C. Which signal functions fan out to more than one test pad location. (There are 132 bond pad locations,
132 TAB leads, and 244 test pad locations.)

D. The 'C31 X,Y coordinates, where bond pad 34 serves as the origin (0,0)

E. The ILB pitch for the TAB leadframe

In addition, the following notes are Significant:

F. X,Y coordinate data is in microns.

G. Coordinate origin is at 0,0 (center of bond pad 34).

H. Average pitch is 233 microns (11.2 mils).

I. Smallest pitch value is 179,6 microns (7.07 mils).

J. The active silicon dimensions are 10215,20 11m x 10324,00 11m (402.17 mils x 406.46 mils).

K. The die size is approximately 10490,20 11m x 10566,40 11m (413.00 mils x 416.00 mils).

L. Distance from diced silicon to polyimide support ring is 889,0 11m (35 mils).

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443

C31 DIE
BOND PAD

LOCATIONS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

Table 2. SMJ320C31 Ole Pad fTAB Lead Information: rev 2.0 (0.8 f,1m)

DIE/TAB
BOND PAD
IDENTITY

SUBS
SHZ

Dvss
TCLKO
PVDD
TCLKl
EMU3
EMUO
EMUl
EMU2

MCBL/MP
CVSS
A23
A22

VDDL
VDDL
A21
A20

VSSL
DVSS
A19

AVDD
A18
A17
A16
A15
A14
A13
A12
All

AVDD
Al0

CVSS

TABC31
TEST PAD

LOCATIONS

DIE SIDEll

X COORDINATE OF V COORDINATE OF
THE CENTER OF THE CENTER OF

BOND PAD BOND PAD

9649.40
9335.20
9055.60
8776.80
8506.80
8223.20
7851.00
7580.60
7277.40
6976.60
6736.60
6394.00
6191.00
5895.40
5564.60
5984.20

-484.80 4986.80
4704.80
4366.80
4186.40
3863.80
3586.40
3290.80
3014.60
2724.40
2457.40
2172.60
1826.00
1550.00
1271.80
989.00
715.20
441.00

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443

PITCH OF LEAD (I, I)
REFERENCE WHICH DIE

BOND PADS

314.20 (1,2)
279.60 (2,3)
278.80 (3,4)
270.00 (4,5)
283.60 (5,6)
372.20 (6,7)
270.40 (7,8)
303.20 (8,9)

300.80 (9,10)
240.00 (10,11)
342.60 (11,12)
203.00 (12,13)
285.60 (13,14)
330.80 (14,15)
180.40 (15,16)
397.40 (16,17)
282.00 (17,18)
338.00 (18,19)
180.40 (19,20)
322.60 (20,21)
277.40 (21,22)
295.60 (22,23)
276.20 (23,24)
290.20 (24,25)
267.00 (25,26)
284.80 (26,27)
346.60 (27,28)
276.00 (28,29)
278.20 (29,30)
282.80 (30,31)
273.80 (31,32)
274.20 (32,33)

E·61

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

Table 2. SMJ320C31 Die Pad /TAB Lead Information: rev 2.0 (0.8 Itm) (Continued)

DIE SIDE #2

C3l DIE DIE/TAB TAB C3l X COORDINATE OF Y COORDINATE OF PITCH OF LEAD (I, I)
BOND PAD BOND PAD TEST PAD THE CENTER OF THE CENTER OF REFERENCE WHICH DIE
LOCATIONS IDENTITY LOCATIONS BOND PAD BOND PAD BOND PADS

34 A9 0.00
300.00 (34, 35)

35 Dvss 300.00
269.20 (35, 36)

36 AS 569.20
274.60 (36, 37)

37 A7 843.80
38 A6 1137.00

293.20 (37, 38)

39 A5 1415.60
278.60 (38, 39)

40 AVoo 1710.80
295.20 (39, 40)
263.20 (40, 41)

41 A4 1974.00
277.40 (41, 42)

42 A3 2251.40
285.00 (42, 43)

43 A2 2536.40
273.40 (43, 44)

44 Al 2809.80
45 AO 3108.20

298.40 (44, 45)

46 CVss 3406.00
297.80 (45, 46)
256.80 (46, 47)

47 031 3662.80
320.80 (47, 48)

48 VOOL 3983.60
180.40 (48, 49) 49 VDDL 4164.00
293.80 (49, SOi

50 030 4457.80 0.00
180.00 (51, 52)

51 VSSL 4821.40
315.40 (52, 53)

52 VSSL 5001.40
278.00 (53, 54)

53 OVSS 5316.80
278.40 (54, 55)

54 029 5594.80
320.20 (55, 56)

55 028 5873.20
349.80 (56, 57)

56 OVOO 6193.40
253.20 (57, 58)

57 027 6543.20
305.80 (58, 59)

58 IVSS 6796.40
272.20 (59, 60)

59 026 7102.20
285.20 (60, 61)

60 025 7374.40
287.80 (61. 62)

61 024 7659.60
290.40 (62, 63)

62 023 7947.40
258.80 (63. 64)

63 022 8237.80
291.60 (64, 65)

64 021 8496.60
224.20 (65. 66)

65 OVOO 8788.20
66 020 9012.40

'f!1TEXAS
aNSTRUMENTS

E-62 POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443

C31 DIE
BOND PAD

LOCATIONS

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A - FEBRUARY 1991 - REVISED SEPTEMBER 1994

Table 2. SMJ320C31 Die Pad /TAB Lead Information: rev 2.0 (0.8 Ilm) (Continued)

DIE/TAB
BOND PAD
IDENTITY

OVss
019
018
017
016
015

CVss
014

OVOO
013
1Vss
012
011
010

VOOL
VOOL

09
08

OVss
VSSL
VSSL

07
06

OVOO
05
04
03
02
01
00
H1
H3

OVOD_

TABC31
TEST PAD

LOCATIONS

DIE SIDE #3

X COORDINATE OF Y COORDINATE OF
THE CENTER OF THE CENTER OF

BOND PAD BOND PAD

508.60
861.20
1142.00
1414.00
1682.80
1926.00
2301.60
2514.00
2828.00
3035.60
3436.20
3650.80
3919.60
4213.20
4556.60
4736.20

9780.40 5051.60
5333.20
5618.40
5958.40
6138.80
6428.40
6714.80
7012.60
7279.60
7560.40
7842.80
8127.60
8403.60
8689.20
8979.60
9254.00
9631.20

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77251-1443

PITCH OF LEAD (#, #)
REFERENCE WHICH DIE

BOND PADS

352.60 (67, 68)
280.80 (70, 71)
272.00 (69, 70)
268.80 (70, 71)
243.20 (71, 72)
375.60 (72, 73)
212.40 (73, 74)
314.00 (74, 75)
207.60 (75, 76)
400.60 (76, 77)
214.60 (77, 78)
268.80 (78, 79)
293.60 (79, 80)
343.40 (80, 81)
179.60 (81, 82)
315.40 (82, 83)
281.60 (83, 84)
285.20 (84, 85)
340.00 (85, 86)
180.40 (86, 87)
289.60 (87, 88)
286.40 (88, 89)
297.80 (89, 90)
267.00 (90, 91)
280.80 (91, 92)
282.40 (92, 93)
284.80 (93, 94)
276.00 (94, 95)
285.60 (95, 96)
290.40 (96, 97)
274.40 (97, 98)
377 .20 (98, 99)

E-63

SMJ320C3x
DIGITAL SIGNAL PROCESSOR

SGUS014A- FEBRUARY 1991 - REVISED SEPTEMBER 1994

Table 2. SMJ320C31 Ole Pad /TAB Lead Information: rev 2.0 (0.8 J-tm) (Continued)

C31 DIE DIE/TAB
BOND PAD BOND PAD

LOCATIONS IDENTITY

100 DVss
101 CVss
102 IVss
103 X2/CLKIN
104 Xl
105 HOLDA
106 HOLD
107 CVOO
108 ROY
109 STRB
110 R/W
111 RESET
112 XFO
113 CVOO
114 XFl
115 lACK
116 INTO
117 DVss
118 VSSL
119 INT1
120 VOOL
121 VOOL
122 INT2
123 INT3
124 ORO
125 CVss
126 FSRO
127 CLKRO
128 CLKXO
129 IVss
130 FSXO
131 PVOO
132 OXO

E-64

TABC3l
TEST PAD

LOCATIONS

DIE SIDE 14

X COORDINATE OF V COORDINATE OF
THE CENTER OF THE CENTER OF

BOND PAD BOND PAD

9032.60
8822.20
8543.20
8240.40
8054.20
7742.80
7460.00
7167.00
6736.00
6459.20
6191.20
5896.00
5617.60
5351.00
5060.00
4784.80
4504.00 10074.00
4279.20
3998.80
3672.00
3330.60
3150.20
2826.40
2546.60
2280.20
1970.20
1699.40
1423.80
1143.20
862.80
601.40
288.60
-5.60

~TEXAS
INSTRUMENTS

POST OFFICE BOX 1443· HOUSTON, TEXAS n251-1443

PITCH OF LEAD (I, I)
REFERENCE WHICH DIE

BOND PADS

210.40 (100,101)
280.00 (101, 102)
301.80(102,103)
186.20 (103,104)
311.40 (104, 105)
282.80 (105, 106)
293.00 (106, 107)
431.00 (107,108)
276.80 (108,109)
268.00 (109,110)
295.20 (110,111)
278.40 (111,112)
266.60 (112, 113)
281.00 (113, 114)
275.20 (114,115)
280.80 (ii5, ii6j
224.80 (116, 117)
280.40 (117, 118)
326.80 (118, 119)
341.40 (119, 120)
180.40 (120, 121)
323.80 (121,122)
279.80 (122, 123)
266.40 (123, 124)
310.00 (124, 125)
270.80 (125, 126)
275.60 (126,127)
280.60 (i 27, i 28)
280.40 (128,129)
261.40 (129, 130)
312.80 (130, 131)
294.20 (131, 132)

Appendix F

Analog Interface Peripherals and
Applications

'If "U1I!I III 111m II Ii 1

Texas Instruments (TI) offers many products for total system solutions, includ­
ing memory options, data acquisition, and analog input/output devices. This
appendix describes a variety of devices that interface directly to the TMS320
DSPs in rapidly expanding applications.

Major topics discussed in this appendix are listed below.

Topic Page

F-1

Multimedia Applications

F.1 Multimedia Applications

Multimedia integrates different media through a centralized computer. These
media can be visual or audio and can be input to or output from the central
computer via a number of technologies. The technologies can be digital-based
or analog-based (such as audio or video tape recorders). The integration and
interaction of media enhance the transfer of information and can accommo­
date both analysis of problems and synthesis of solutions.

Figure F-1 shows both the central role of the multimedia computer and the
multimedia system's ability to integrate the various media to optimize informa­
tion flow and processing.

Figure F-1. System Block Diagram

CD ROM Operator Input Modem

t
Video Input '-'\ Video Monitor Image Sensor Il~ I--

r Multimedia
Computer

--.JJ~ ~l Microphone Facsimile/Modem
r'

" " Music Input Slides and Printing
(MIDI) Speakers

F.1.1 System Design Considerations

F-2

Multimedia systems can include various grades of audio and video quality. The
most popular video standard currently used 01GA} covers 640 x 480 pixels
with 1, 2, 4, and 8-bit memory-mapped color. Also, 24-bit true color is sup­
ported, and 1024 x 768 (beyond VGA) resolution has emerged. There are two
grades of audio. The lower grade accommodates 11.2S-kHz sampling for 8-bit
monaural systems, while the higher grade accommodates 44.1-kHz sampling
for 16-bit stereo.

Audio specifications include a musical instrument digital interface (MIDI) with
compression capability, which is based on keystroke encoding, and an input!
output port with a three-disc voice synthesizer. In the media control area, video
disc, CD audio, and CD ROM player interfaces are included. Figure F-2
shows a multimedia subsystem.

Multimedia Applications

The TLC32047 wide-band analog interface circuit (AIC) is well suited for multi­
media applications because it features wide-band audio and up to 25-kHz
sampling rates. The TLC32047 is a complete analog-to-digital and digital-to­
analog interface system for the TMS320 DSPs. The nominal bandwidths ofthe
filters accommodate 11.4 kHz, and this bandwidth is programmable. The
application circuit shown in Figure F-2 handles both speech encoding and
modem communication functions, which are associated with multimedia appli­
cations.

Figure F-2. Multimedia Speech Encoding and Modem Communication

VOCOOER (Speech Analysis) 9600-bps Modem (V.32 bis)
r----------, r----------,
I TLC32047 TMS320 I em I I

-gl
!11
::r:

TMS320 i TMS320 TLC32047 i r---,.---,

OAA HYB Phone
Une

I
1..._______ _.J 1..._ _ ______ .J

TMS3200SP/
TLC32047
Interface

Figure F-3 shows the interfacing of the TMS320C25 DSP to the TLC32047
AIC, which constitutes a building block of the 9600-bps V.32 bis modem shown
in Figure F-2.

Figure F-3. TMS320C25 to TLC32047 Interface

TMS320C25 TLC32047

CLKOUT MSTRCLK Vcc+ 5V

FSX FSX REF 0.2/-lF Cer.

OX OX ANLG GNO

FSR FSR 0.2/-lF Cer.

DR DR VCe-- -5V

CLKR SHIFTCLK VOO +5V

CLKX 0.1 /-IF

OGTLGNO

Analog Interface Peripherals and Applications F-3

Multimedia Applications

F.1.2 Multimedia-Related Devices

As shown in Table F-1 and Table F-2, TI provides a complete array of analog
and graphics interface devices. These devices support the TMS320 DSPs for
complete multimedia solutions.

Table F-1. Data Converter ICs

Resolution Conversion
Device Description VO (Bits) CLKRate Application

TLC320AC01 Analog interface (5 V only) Serial 14 43.2 kHz Portable modem and
speech, multimedia

TLC32047 Analog interface Serial 14 25 kHz Speech, modem, and
(11.4 kHz BW) (AIC) multimedia

TLC32046 Analog interface (AIC) Serial 14 25 kHz Speech and modems

TLC32044 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems

TLC32040 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems

TLC34075/6 Video palette Parallel Triple 8 135 MHz Graphics

TLC34058 Video palette Parallel Triple 8 135 MHz Graphics

TLC550213 FlashADC Parallel 8 20 MHz Video

TLC5602 Video DAC Parallel 8 20 MHz Video

TLC5501 FlashADC Parallel 6 20 MHz Video

TLC5601 Video DAC Parallel 6 20 MHz Video

TLC1550/1 ADC Parallel 10 150 kHz Servo ctrl/ speech

TLC32071 Analog interface (AIC) Parallel 8 1 MHz Servo ctrl/ disk drive

TMS57013/4 Dual audio DAC + digital Serial 16/18 32,37.8, Digital audio
filter 44.1,48 kHz

Table F-2. Switched-Capacitor Filter ICs

Device

TLC2470

TLC2471

TLC10/20

TLC04/14

F-4

Function Order Roll-Off Power Out Power Down

Differential audio filter amplifier 4 5 kHz 500mW Ves

Differential audio filter amplifier 4 3.5 kHz 500mW Ves

General-purpose dual filter 2 CLK+50 N/A No
CLK+ 100

Low pass, Butterworth filter 4 CLK+50 N/A No
CLK+ 100

For application assistance or additional information, please call TI Unear
Applications at (214) 997-3772.

Telecommunications Applications

F.2 Telecommunications Applications

The Tllinear product line focuses on three primary telecommunications appli­
cation areas:

o Subscriber instruments (telephones, modems, etc.)

Includes the TCM508x DTMF tone encoder family, the TCM150x tone
ringer family, the TCM 1520 ring detector, and the TCM31 05 FSK modem.

o Central office line card products

Includes the TCM29Cxx combo (combined PCM filter plus codec) family,
the TCM420x subscriber line control circuit family, and the TCM1 030/60
line card transient protector.

o Personal communications products

Includes the TCM320AC3x family of 5-volt voice-band audio processors
(VBAP).

TI continues to develop new telecom integrated circuits, such as a high-perfor­
mance three-volt combo family for personal communications applications and
an RF power amplifier family for hand-held and mobile cellular phones.

System Design Considerations. The size, network complexity, and com­
patibility requirements of telecommunications central office systems create
demanding performance requirements. Combo voice-band filter performance
is typically :t 0.15 dB in the passband. Idle channel noise must be on the order
of 15 dBrncO. Gain tracking (S/O) and distortion must also meet stringent re­
quirements. The key parameters for a SLiC device are gain, longitudinal bal­
ance, and return loss.

Analog Interface Peripherals and Applications F-5

Telecommunications Applications

Figure F-4. Typical DSP/Combo Interface

TM5320C25
16

DRPJu1------------------____ .-______ ~
DX E11

GND
TCM320AC36

18 20 kQ
ANlGIN t-:-:---...... "V\II~ Codec

r------L""t DClKX MIC GS 1 IN
- 20kQ ClKX ~:...---,

FSX
9 ClKR I-=-+-.. 12 FSR

FSR~~~----------------~~~.--e~1~1 FSX
~------------------__ _r--_.~ClK

EAR_A t:~---t-o
EAR_B

Codee
OUT

VDD 1-'5'------<1J-- 5 V

1 kg
5 V-,\I\A..4_~ DClKR

AS

1 kQ AS

+5V

lRe ...

F-6

7
10 1 kQ

ENP ENT ENP ENT
1 3 15

A
4 B

5 C U1
6 D 2.048 MHz

745161 9 .-------1 0 t-------,

2

390Q Y1 390 Q

1 kQ

+5V 2 +5V

The TCM320AC36 combo interfaces directly to the TMS320C25 serial port
with a minimum of external components, as shown in Figure F-4. Half of hex
inverter U3 and crystal Y1 form an oscillator that provides clock timing to the
TCM320AC36. The synchronous four-bit counters U1 and U2 generate an
8-kHz frame sync signal. DCLKR on the TCM320AC36 is connected to Voo,
placing the combo in fixed data-rate mode. Two 20-kQ resistors connected to
ANLGI Nand M IC _ GS setthe gain ofthe analog input amplifier to 1. The timing
is shown in Figure F-5.

Telecommunications Applications

Figure F-5. DSP/Combo Interface Timing

CLKRlCLKX

FSX/FSR J
DR/OOUT -< AS

DX/PCMIN -< AS

\

X X X X:=X Bit 1 Bit 2 Bit 3 BitS Receive
Timing

MSB LSB

X Bit 1 X Bit 2 X Bit 3 X::=X BitS Transmit
Timing

MSB LSB

Telecommunications-Related Devices. Data sheets for the devices in
Table F-3 on page F-8 are contained in the 1991 Telecommunications Cir­
cuits Databook (literature number SCTD001 B). To request your copy, contact
your nearest TI field sales office or call the Literature Response Center at (800)
477-8924.

Analog Interface Peripherals and Applications F-7

Telecommunications Applications

Table F-3. Telecom Devices

Coding Clock Rates
Device Number Law MHzt # of Bits Comments

Codec/Fllter

TCM29C13 A and " 1.544, 1.536, 2.048 8 C.O. and PBX line cards

TCM29C14 A and " 1.544, 1.536, 2.048 8 Includes 8th-bit signal

TCM29C16 " 2.048 8 16-pin package

TCM29C17 A 2.048 8 16-pin package

TCM29C18 " 2.048 8 Low-cost DSP interface

TCM29C19 " 1.536 8 Low-cost DSP interface

TCM29C23 A and " Up to 4.096 8 Extended frequency range

TCM29C26 A and " Up to 4.096 8 Low-power TCM29C23

TCM320AC36 "and Linear Up to 4.096 8 and 13 Single voltage (+5) VBAP

TCM320AC37 A and Linear Up to 4.096 8 and 13 Single voltage (+5) VBAP

TCM320AC38 "and Linear Up to 4.096 8 and 13 Single voltage (+5) GSM

TCM320AC39 A and Linear Up to 4.096 8 and 13 Single voltage (+5) GSM

TP3054/64 " 1.544, 1.536, 2.048 8 National Semiconductor
second source

TP3054/67 A 1.544, 1.536, 2.048 8 National Semiconductor
second source

TLC320AC01 Linear 43.2 kHz 14 5-volt-only analog interface

TLC32040/1 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity

TLC32044/5 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity

TLC32046 Linear Up to 25-kHz sampling 14 For high-dynamic linearity

TLC32047 Linear Up to 25-kHz sampling 14 For high-dynamic linearity

Transient Suppressor

TCM1030 Transient suppressor for SLlC-based line card (30 A max)

TCM1060 Transient suppressor for SLlC-based line card (60 A max)
f Unless otherwise noted

F-8

Telecommunications Applications

Table F-4 is a list of switched-capacitor filter ICs.

Table F~. Switched-Capacitor Filter ICs

Device Function Order Roll-Off Power Out Power Down

TLC2470 Differential audio filter amplifier 4 5 kHz 500mW Yes

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500mW Yes

TLC10/20 General-purpose dual filter 2 CLK+ 50 N/A No
CLK+ 100

TLC04/14 Low pass, Butterworth filter 4 CLK+ 50 N/A No
CLK+ 100

For further information on these telecommunications products, please call
(214) 997-3772.

Figure F-6 and Figure F-7 show telecom applications.

Figure F-6. General Telecom Applications

~ Analog
~ Phones

TCM5087 Tone
TCM5089 Encoder
TCM5092
TCM5094
TCM153x Ringer

Answering

~achl"

Neighborhood
Concentrator

~ Cell Base
U Station

TGAP901

Central Office -----..

TCM29C13 Combo
TP3054 Combo
TCM1060/30 Transient Suppressors
TCM9050/51 HVLI/HCombo
DSP/Memory/Logic

DSP
Modem

TMS320xx DSP
TCM291 x Combo

Phones

! Cellular
Phone

TCM29C23 Combo
TMS320xx DSP
TGAP90x
TCM320AC3X VBAP Combo

Toll Office

Phones

TCM29Cxx Combo

Analog Interface Peripherals and Applications F-9

Telecommunications Applications

Figure F-7. Generic Telecom Applications
TLC320AC01

F-10

RS-232
IIF

Serial
I/O

Control

ADCand DAC

Fine Tune ~
Echo-Cancel

TMS320C25

Echo Canceler

Transmitter

TMS320C25

Receiver

D
A
A

Telephone
Line

Dedicated Speech Synthesis Applications

F.3 Dedicated Speech Synthesis Applications

For dedicated speech synthesis applications, TI offers a family of dedicated
speech synthesizer chips. This speech technology has been used in a wide
range of products, including games, toys, burglar alarms, fire alarms, automo­
biles, airplanes, answering machines, voice mail, industrial control machines,
office machines, advertisements, novelty items, exercise machines, and
learning aids.

Dedicated speech synthesis chips are a good alternative for low-cost applica­
tions. The speech synthesis technology provided by the dedicated chips is ei­
ther linear-predictive coding (LPC) or continuously variable slope delta modu­
lation (CVSD). Table F-5 shows the characteristics of the TI voice synthesiz-
ers.

Table F-5. TI Voice Synthesizers

Device

TSP50C4x

TSP50C1x

TSP53C30

TSP50C20

TMS3477

On-Chip
Synthesis Memory External Data Rate

Microprocessor Method VO Pins (Bits) Memory (Bits/Sec)

a-bit

a-bit

a-bit

a-bit

N/A

LPC-10 20/32 64K/128K VROM 1200-2400

LPC-12 10 64K/128K VROM 1200-2400

LPC-10 20 N/A From host IlP 1200-2400

LPC-10 32 N/A EPROM 1200-2400

CVSD 2 None DRAM 16K-32K

In addition to the speech synthesizers, TI has low-cost memories that are ideal
for use with these chips. TI can also be of assistance in developing and pro­
cessing the speech data that is used in these speech synthesis systems.
Table F-6 shows speech memory devices of different capabilities. Additional­
ly, audio filters are outlined in Table F-7.

Analog Interface Peripherals and Applications F-11

Dedicated Speech Synthesis Applications

Table F-6. Speech Memories

TSP60Cxx Family of Speech ROMs

Family Size No. of Pins Interface For use with:

TSP60C18 256K 16 Parallel 4-bit TSP50C1x

TSP60C19 256K 16 Serial TSP50C4x

TSP60C20 256K 28 Parallel/serial TSP50C4x
8-bit

TSP60C80 1M 28 Serial TSP50C4x

TSP60C81 1M 28 Parallel 4-bit TSP50C1x

Table F-7. Switched-Capacitor Filter ICs
1"_ •• 1_- __ ... ,--

Order Hoii-Off Power Out Power Down UOlll Y 1"'0lIl rUllloiUUII

TLC2470 Differential audio filter amplifier 4 5 kHz 500mW Yes

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500mW Yes

TLC10/20 General-purpose dual filter 2 CLK+ 50
N/A No

CLK+ 100

TLC04/14 Low pass, Butterworth filter 4
ClK + 50

N/A No
CLK+ 100

F-12

Dedicated Speech Synthesis Applications

Table F-8 lists some of TI's speech synthesis development tools.

Table F-8. Speech Synthesis Development Tools

Name Definition

(a) Software

EVM Code development tool

(b) Speech

SAB

S085000

(c) System

SEB

SEB60Cxx

Speech audition board

PC-based speech analysis system

System emulator board

System emulator boards for speech memories

For further information, call Linear Applications at (214) 997-3772.

Analog Interface Peripherals and Applications F-13

Servo ControVDisk Drive Applications

F.4 Servo Control/Disk Drive Applications

In the past, most servo control systems used only analog circuitry. However,
the growth of digital signal processing (DSP) has made digital control theory
a reality. Figure F-8 is a block diagram of a generic digital control system using
a DSP, along with an analog-to-digital converter (ADC) and a digital-to-analog
converter (DAC).

Figure F-8. Generic Servo Control Loop

TMS320-Based
Digital Controller

y(n)

In a DSP-based control system, the control algorithm is implemented via soft­
ware. No component aging or temperature drift is associated with digital con­
trol systems. Additionally, sophisticated algorithms can be implemented and
easily modified to upgrade system performance.

System Design Considerations

F-14

TMS320 DSPs have facilitated the development of high-speed digital servo
control for disk drive and industrial control applications. In recent years, disk
drives have increased storage capacity from 5 megabytes to over 1 gigabyte.
This equates to a 23,900 percent growth in capacity. To accommodate these
increasingly higher densities, the data on the servo platters, whether servo-po­
sitioning or actual storage information, must be converted to digital electronic
signals at increasingly closer points in relation to the platter piCk-off pOint. The
ADC must have increasingly higher conversion rates and greater resolution
to accommodate the increasing bandwidth requirements of higher storage
densities. In addition, the ADC conversion rates must increase to accommo­
date the shorter data retrieval access time.

Servo Control/Disk Drive Applications

Figure F-9 is a block diagram of a disk drive control system.

Figure F-9. Disk Drive Control System Block Diagram

SCSI
Data
Bus

To~
Host~

Control

~} ~} ~
SCSI RAM Buffer Control Data /l

and Interface Buffer Data Sequencer

_ r

Separator '\,-

ir lJ
~}

Disk Drive Motor EPROM r- Servo V'-Controller
TMS320C14

_ r

TMS2764 Demodulator I'-r
" t

Address ~ Decode
Control Disk Head

• Select r-

Control

/- t t ... t ~ TLC32071 "'-
4-

To , To/From Disk Hea

~ From Spindle / SN74LS393
"-

,
Motor

ds

'--

Table F-9 lists analog/digital interface devices used for servo control.

Analog Interface Peripherals and Applications F-15

Servo Control/Disk Drive Applications

Table F-9. Control-Related Devices

Function Device Bits Speed Channels Interface

ADC TLC1550 10 3-5 !-,S Parallel

TLC1551 10 3-5 !AS 1 Parallel

TLC5502/3 8 50 ns (flash) Parallel

TLC0820 8 1.5 !-'S Parallel

TLC1225 13 12 !-,S 1 (Diff.) Parallel

TLC1558 10 3-5 !-,S 8 Parallel

TLC1543 10 21 !-,S 11 Serial

TLC1549 10 21 !-,S Serial

DAC TLC7524 8 9MHz Parallel

TLC7628 8 9MHz (Dual) Parallel

TLC5602 8 30 MHz Parallel

AIC TLC32071 8 (ADC) 1 !-,S 8 Parallel
9MHz 1

Figure F-10 shows the interfacing of the TMS320C14 and the TLC32071.

Figure F-10. TMS320C14-TLC32071 Interface

F-16

00-07 CSCNTRL
A2. ~ Add Deoode Log~ ~ CSAN
A1 WE
AO DEN

I I RESET
WE

DEN

TMS320C14 TLC32071

For further information on these servo control products, please call TI Linear

Applications at (214) 997-3772.

Modem Applications

F.S Modem Applications

High-speed modems (9,600 bps and above) require a great deal of analog sig­
nal processing in addition to digital signal processing. Designing both high­
speed capabilities and slower fall-back modes poses significant engineering
challenges. TI offers a number of analog front-end (AFE) circuits to support
various high-speed modem standards.

The TLC32040, TLC32044, TLC32046, TLC32047, and TLC320AC01 AICs
are especially suited for modem applications by the integration of an input mul­
tiplexer, switched capacitor filters, high resolution 14-bit ADC and DAC, a four­
mode serial port, and control and timing logic. These converters feature ad­
justable parameters, such as filtering characteristics, sampling rates, gain se­
lection, (sin x)/x correction (TLC32044, TLC32046, and TLC32047 only), and
phase adjustment. All of these parameters are software-programmable, mak­
ing the AI C suitable for a variety of applications. Table F-10 has the descrip­
tion and characteristics of these devices.

Table F-10. Modem AFE Data Converters

Resolution Conversion
Device Description I/O (Bits) Rate

TLC32040 Analog interface chip (AIC) Serial 14 19.2 kHz

TLC32041 AIC without on-board VREF Serial 14 19.2 kHz

TLC32044 Telephone speed/modem AIC Serial 14 19.2 kHz

TLC32045 Low-cost version of the TLC32044 Serial 14 19.2 kHz

TLC32046 Wide-band AIC Serial 14 25 kHz

TLC32047 AIC with 11.4-kHz BW Serial 14 25 kHz

TLC320AC01 5-volt-only AIC Serial 14 43.2 kHz

TCM29C18 Companding codec/filter PCM 8 8 kHz

TCM29C23 Companding codec/filter PCM 8 16 kHz

TCM29C26 Low-power codec/filter PCM 8 16kHz

TCM320AC36 Single-supply codec/filter PCM and 8 25 kHz
Linear

Analog Interface Peripherals and Applications F-17

Modem Applications

The AIC interfaces directly with serial-input TMS320 DSPs, which execute the
modem's high-speed encoding and decoding algorithms. The TLC320C4x
family performs level-shifting, filtering, and ND and D/A data conversion. The
DSP's software-programmable features provide the flexibility required for mo­
dem operations and make it possible to modify and upgrade systems easily.
Under DSP control, the AIC's sampling rates permit designers to include fall­
back modes without additional analog hardware in most cases. Phase adjust­
ments can be made in real time so that the ND and D/A conversions can be
synchronized with the upcoming signal. In addition, the chip has a bUilt-in loop­
back feature to support modem self-test requirements.

For further information or application assistance, please call TI Linear Applica­
tions at (214) 997-3772.

Figure F-11 shows a V.32 bis modem implementation using the TMS320C25
and a TLC320AC01. The upper TMS320C25 performs echo cancellation and
transmit data functions, while the lower TMS320C25 performs receive data
and timing recovery functions. The echo canceler simulates the telephone
channel and generates an estimated echo of the transmit data signal.

Figure F-11. High-Speed V.32 Bis and Multistandard Modem With the TLC320AC01 AIC

F-18

RS-232
IIF

Serial
I/O

Control

TLC320AC01

ADCand DAC

Fine Tune ~
Echo-Cancel

Echo Canceler

Transmitter

TMS320C25/C5X

Receiver

o
A
A

T~lephone
Line

The TLC320AC01 performs the following functions:

o Upper TLC320AC01 D/A Path

Converts the estimated echo, as computed by the upper TMS320C25, into
an analog signal, which is subtracted from the receive signal

o Upper TLC320AC01 ND Path

Converts the residual echo to a digital signal for purposes of monitoring
the residual echo and continuously training the echo canceler for optimum
performance. The converted signal is sent to the upper TMS320C25.

Modem Applications

o Lower TLC320AC01 D/A Path

Converts the upper TMS320C25 transmit output to an analog signal, per­
forms a smoothing filter function, and drives the DAC

o Lower TLC320AC01 ND Path

Converts the echo-free receive signal to a digital signal, which is sent to
the lower TMS320C25 to be decoded

Note: Modem Functions

Figure F-11 is for illustration only. In reality, one single TMS320C5x DSP can
implement high-speed modem functions.

Analog Interface Peripherals and Applications F-19

Advanced Digital Electronics Applications for Consumers

F.6 Advanced Digital Electronics Applications for Consumers

With the extensive use of the TMS320 DSPs in consumer electronics, much
electromechanical control and signal processing can be done in the digital do­
main. Digital systems generally require some form of analog interface, usually
in the form of high-performance ADCs and DACs. Figure F-12 shows the gen­
eral performance requirements for a variety of applications.

Figure F-12. Applications Performance Requirements

F-20

MSPS I 300

Instrumentation

100 -

HDTV

{)'
c:
Q)
:::J
t1'
~ u. 30 -
Cl
.5 Broadcasting
i5.. ADTV
E
C\l

DVTR rJJ

10 -

Fax/PC

Bits
4 5 6 7 8 9 10

Performance/Application

Advanced Television System Design Considerations. Advanced
Digital Television (ADTV) is a technology that uses DSP to enhance video and
audio presentations and to reduce noise and ghosting. Because ofthese DSP
techniques, a variety of features can be implemented, including frame store,
picture-in-picture, improved sound quality, and zoom. The bandwidth require­
ments remain at the existing six-MHz television allocation. From the intermedi­
ate frequency (IF) output, the video signal is converted by an eight-bit video
ADC. The digital output can be processed in the digital domain to provide noise
reduction, interpolation or averaging for digitally increased sharpness, and
higher quality audio. The DSP digital output is converted back to analog by a
video DAC, as shown in Figure F-13.

Advanced Digital Electronics Applications for Consumers

Figure F-13. Video Signal Processing Basic System

TV IF -t ADC t- TMS320 -1 DAC t- Buffer I CRT I Amplifier DSP Video I
Signal

Field System
Memory t-- Controller

Clock
G en tor era

Video casette recorders (VCRs), compact disc (CO) and digital audio tape
(OAT) players, and personal computers (PCs) are a few of the products that
have taken a major position in the marketplace in recent years. The audio
channels for compact disc and OAT require 16-bit NO resolution to meet the
distortion and noise standards. See Figure F-14 for a block diagram of a typi­
cal digital audio system.

Figure F-14. Typical Digital Audio Implementation

384fs Third 128fs
Overtone f-- Oscillator

Circuit

,r ~
,r

1024fs

1fs L L
TMS57001

Digital Audio TMS57013/4 Dual 16/18 PWM
Analog Analog

Sound Data
Bit DAC+ Digital Filter

Power Output
Amplifier Processor R

R

Analog Interface Peripherals and Applications F-21

Advanced Digital Electronics Applications for Consumers

F-22

The motion and motor control systems usually use 8- to 1 O-bit AOCs for the
lower frequency servo loop. Tape or disk systems use motor or motion control
for proper positioning of the record or playback heads. With the storage me­
dium compressing data into an increasingly smaller physical size, the position­
ing systems require more precision.

The audio processing becomes more demanding as higher fidelity is required.
Better fidelity translates into lower noise and distortion in the output signal.

The TMS570130W/570140W one-bit OACs include an eight-times-over sam­
pling digital filter designed for digital audio systems, such as compact disk
players (COPs), OATs, compact disks interactive (COls), laser disk players
(LOPs), digital amplifiers, and car stereos. They are also suitable for all sys­
tems that include digital sound processing like TVs, VCRs, musical instru­
ments, multimedia, etc.

The converters have dual channels so that the right and left stereo signals can
be transformed into analog signals with only one chip. There are some func­
tions that allow the customers to select the conditions according to their appli­
cations, such as muting, attenuation, de-emphasis, and zero data detection.
These functions are controlled by external 16-bit serial data from a controller
like a microcomputer.

The TMS57030W/570140W adopt 129-tap finite impulse response (FIR) filter
and third-order a I modulation to get -75-dB stop band attenuation and 96-dB
signal noise ratio (SNR). The output is pulse width modulation (PWM) wave,
which facilitates analog signals through a low-pass filter.

Table F-11 lists TI products for analog interfacing to digital systems.

Advanced Digital Electronics Applications for Consumers

Table F-11.AudioNideo Analog/Digital Interface Devices

Function Device Bits Speed Channels Interface

Dual audio DAC + digital filter TMS57013/4 16/18 32,37.8, 2 Serial
44.1,48 kHz

Analog interface TLC32071
AID 8 21-15 8 Parallel
D/A 8 151-15 1 Parallel

AID TLC1225 12 121-15 Parallel

AID TLC1550 10 61-15 Parallel

Video D/A TLC5602 8 50 ns Parallel

Video D/A TL5602 8 50 ns Parallel

Triple video D/A TL5632 8 16 ns 3 Parallel

Triple flash AID TLC5703 8 70 ns 3 Parallel

Flash AID TLC5503 8 100 ns Parallel

Flash AID TLC5502 8 50 ns Parallel

For further information or application assistance, please call TI Linear Applica-

tions at (214) 997-3772.

Analog Interface Peripherals and Applications F-23

F·24

Appendix G
I

Boot Loader Source Code
$ Yin J IT T 1

This appendix contains the source code for the TMS320C3x boot loader.

G-1

Boot Loader Source Code

**
* C31BOOT - TMS320C31 BOOT LOADER PROGRAM
* (C) COPYRIGHT TEXAS INSTRUMENTS INC., 1990

*
*
*
*
*
*

*
*
*
*
*
'"
'"
*
*
'"
*
'"
*
*
*
*
*
*
*
*
*
'"
*
*
'"
*
*
*
*
*
'"
'"
*
*
'"

NOTE: 1. AFTER DEVICE RESET, THE PROGRAM IS SET TO WAIT FOR
THE EXTERNAL INTERRUPTS. THE FUNCTION SELECTION OF

THE EXTERNAL INTERRUPTS IS AS FOLLOWS:

INTERRUPT PIN FUNCTION

o EPROM boot loader from 1000H

1 EPROM boot loader from 400000H

2 EPROM boot loader from FFFOOOH

3 Serial port 0 boot loader

2. THE EPROM BOOT LOADER LOADS WORD, HALFWORD, OR BYTE­

WIDE PROGRAMS TO SPECIFIED LOCATIONS. THE

8 LSBs OF FIRST MEMORY SPECIFY THE MEMORY WIDTH OF
THE EPROM. IF THE HALFWORD OR BYTE-WIDE PROGRAM IS
SELECTED, THE LSBs ARE LOADED FIRST, FOLLOWED BY THE MSBs.

THE FOLLOWING WORD CONTAINS THE CONTROL WORD FOR
THE LOCAL MEMORY REGISTER. THE PROGRAM BLOCKS FOLLOW.

THE FIRST TWO WORDS OF EACH PROGRAM BLOCK CONTAIN
THE BLOCK SIZE AND MEMORY ADDRESS TO BE LOADED INTO.

WHEN THE ZERO BLOCK SIZE IS READ, THE PROGRAM BLOCK
LOADING IS TERMINATED. THE PC WILL BRANCH TO THE

STARTING ADDRESS OF THE FIRST PROGRAM BLOCK.

3. IF SERIAL PORT 0 IS SELECTED FOR BOOT LOADING, THE

PROCESSOR WILL WAIT FOR THE INTERRUPT FROM THE

RECEIVE SERIAL PORT 0 AND PERFORM THE DOWNLOAD.
AS WITH THE EPROM LOADER, PROGRAMS CAN BE LOADED

INTO DIFFERENT MEMORY BLOCKS. THE FIRST TWO WORDS OF EACH

PROGRAM BLOCK CONTAIN THE BLOCK SIZE AND MEMORY ADDRESS

TO BE LOADED INTO. WHEN THE ZERO BLOCK SIZE IS READ,

PROGRAM BLOCK LOADING IS TERMINATED. IN OTHER WORDS,
IN ORDER TO TERMINATE THE PROGRAM BLOCK LOADING,
A ZERO HAS TO BE ADDED AT THE END OF THE PROGRAM BLOCK.

AFTER THE BOOT LOADING IS COMPLETED, THE PC WILL BRANCH

TO THE STARTING ADDRESS OF THE FIRST PROGRAM BLOCK.

**

G-2

Boot Loader Source Code

.global check

.sect "vectors"
reset • word check
intO .word 809FClh
intl .word 809FC2h
int2 • word 809FC3h
int3 • word 809FC4h
xintO • word 809FC5h
rintO • word 809FC6h

• word 809FC7h
• word 809FC8h

tintO • word 809FC9h
tintl • word 809FCAh
dint • word 809FCBh

.word 809FCCh

.word 809FCDh

.word 809FCEh

.word 809FCFh

.word 809FDOh
• word 809FDlh
.word 809FD2h
• word 809FD3h
.word 809FD4h
• word 809FD5h
.word 809FD6h
• word 809FD7h
• word 809FD8h
.word 809FD9h
• word 809FDAh
.word 809FDBh
• word 809FDCh
• word 809FDDh
• word 809FDEh
• word 809FDFh

trapO .word
trapl .word
trap2 .word
trap3 .word
trap4 .word
trapS .word
trap6 .word
trap7 .word
trapS .word
trap9 .word
traplO .word

809FEOh
809FElh
S09FE2h
809FE3h
S09FE4h
809FESh
S09FE6h
S09FE7h
S09FE8h
809FE9h
809FEAh

Boot Loader Source Code G-3

Boot Loader Source Code

trapll.word
trap12 .word
trap13.word
trap14.word
trap15.word
trap16 .word
trap17.word
trap18.word
trap19.word
trap20.word
trap2l.word
trap22.word
trap23.word
trap24.word
trap25.word
trap26.word
trap27.word

• word
.word
.word
.word

809FEBh
809FECh
809FEOh
809FEEh
809FEFh
809FFOh
809FFlh
809FF2h
809FF3h
809FF4h
809FF5h
809FF6h
809FF7h
809FF8h
809FF9h
809FFAh
809FFBh
809FFCh
809FFDh
809FFEh
809FFFh

check:

intloop

G-4

.space 5

LOI
LSH
LOI
LSH
LOI

TSTB
BNZ

LOI
TSTB
BNZ

LOI
TSTB
BNZ

LOI
TSTB
BZ

LSH
LOI

LOI

LSH
BN

4040h,ARO
9,ARO
404Ch,SP
9,SP
O,RO

8,IF
serial

8,ARl
1,IF
eprom_load

2000h,ARl
2,IF
eprom_load

7FF8h,ARl
4,IF
intloop

9,ARl
*ARl++ (1) , Rl

26,Rl
10adO

load peripheral memo map
start addr. 808000h
initialize stack pointer to
ramO addr. 809800h
set start address flag off

test for ext int3
on int3 go to serial

load 001000h / 2 A 9 -> AR1
test for intO
branch to eprom_load if intO

load 400000h / 2A 9 -> AR1
test for int1

1

branch to eprom_load if int1 - 1

load FFFOOOh / 2 A 9 -> ARl
test for int2
if no intX go to intloop

eprom address - AR1 * 2A 9
load eprom memo width

full-word size subroutine
address -> AR3
test bit 5 of memo width word
if '1' start PGM loading
(32 bits width)

loadO

load2

serial

NOP
LOl

LSH
BN

LOl
ADOl

CALLU

STl

CALLU

LOl
CMPl
BZ
SUBl

CALLU

LOl
LOl
LOlZ
LOl
SUB I

LOl
ADOl
BR

.space 1

LOl

LOl
STl
LOl
LSH
STl

BR

*AR1++(1)
sub_h,AR3

l,R1
loadO

AR3

R1,*+ARO(64h)

AR3

R1,RC
O,RC
AR2
l,RC

AR3

R1,AR4
RO,RO
R1,AR2
-l,RO
1,AR3

CALLUAR3

l,RO
l,AR3
load2

111h,R1
R1,*+ARO(43h)
OA30h,R2
16,R2
R2,*+ARO(40h)

load2

.space 29

RPTB
TSTB
BZ
ANO

load_s
20h,lF
sub_s
OFOFh,lF

Boot Loader Source Code

jump last half word from memo word
half word size subroutine
address -> AR3
test bit 4 of memo width word
if '1' start PGM loading
(16 bits width)

byte size subroutine address -> AR3
jump last 2 bytes from memo word

load new word
according to memo width
set primary bus control

load new word according to
memo width
set block size for repeat loop
if 0 block size start PGM

block size -1

load new word according to
memo width
set destination address
test start address loaded flag
load start address if flag off
set start & dest. address flag on
sub address with loop

load new word according to
memo width
set dest. address flag off
sub address without loop
jump to load a new block
when loop completed

serial words subroutine
address -> AR3
R1 = 0000111h
set CLKR,OR,FSR as serial port pins

R2 = A300000h
set serial port global
ctrl. register
jump to load 1st block

PGM load loop

wait for receive buffer full
reset interrupt flag

Boot Loader Source Code G-5

Boot Loader Source Code

LOl *+ARO (4Ch) , R1
LOl RO,RO test load address flag
BNN end_s

load_s STl R1,*AR4++(1) store new word to dest. address
end_s RETSU return from subroutine

• space 22

loop_h RPTB load_h PGM load loop
sub_h LOl *AR1++(1) ,R1 load LSB half word

ANO OFFFFh,R1
LOl *ARl++(l) ,R2 load MSB half word
LSH 16,R2
OR R2,R1 R1 = a new 32-bit word
LOl RO,RO test load address flag
BNN end_h

load_h STl R1,*AR4++(1) store new word to dest. address
end_h RETSU return from subroutine

• space 26

loop_w RPTB load_w PGM load loop
sub_w LOl *ARl++(1) ,R1 read a new 32-bit word

LOl RO,RO test load address flag
BNN end_w

load_w STl R1,*AR4++(1) store new word to dest. address
end_w RETSU return from subroutine

• space 14

loop_b RPTB load_b PGM load loop
sub_b LOl *ARl++(l) ,R1

ANO OFFh,R1 load 1st byte (LSB)
LOl *ARl++(1) ,R2
ANO OFFh,R2
LSH 8,R2
OR R2,R1 load 2nd byte
LOl *ARl++(1) ,R2
ANO OFFh,R2
LSH 16,R2
OR R2,R1 load 3rd byte
LOl *ARl++(1) ,R2 load 4th byte (MSB)

LSH 24,R2
OR R2,R1 R1 = a new 32-bit word
LOl RO,RO test load address flag
BNN end_b

load_b STl R1,*AR4++(1) store new word to dest. address
end_b RETSU return from subroutine

• space 1

.end

G-6

12-pin emulator connector, dimensions 12-45
12-pin header, MPSD 12-39 to 12-40

A-law
compression 11-56
expansion 11-57

AID converter interface 12-19 to 12-22

AID input/output system, 12-32 to 12-35

abbreviations 10-14 to 10-15
ABSF and STF instructions

(parallel) 1 0-23 to 10-24

ABSF instruction 1 0-22

ABSI and STI instructions (parallel) 10-27 to 10-28

ABSI instruction 10-25 to 10-26

absolute value of floating-point instruction 10-22

absolute value of integer instruction 10-25

adaptive filters 11-67

ADC F-23

add floating-point instruction 10-32
3-operand instruction 10-33

add integer instruction 10-37
3-operand instruction 1 0-38

add integer with carry instruction 10-29
3-operand instruction 10-30

AD DC instruction 10-29

ADDC3 instruction 10-30 to 10-31

ADDF instruction 10-32

ADDF3 and MPYF3 Instructions
(parallel) 10-119 to 10-121

ADDF3 and STF instructions
(parallel) 10-35 to 10-36

ADDF3 instruction 10-33 to 10-34
ADDllnstruction 10-37

Index

ADDI3 and MPYI3 instructions
(paraileO 10-130 to 10-132

ADDI3 and sn instructions
(parallel) 10-40 to 10-41

ADDI3 instruction 1 0-38 to 1 0-39

addition example 11-39

address space segmentation 12-11

addressing 5-1 to 5-34
bit-reversed 5-29 to 5-30

FFT algorithms 5-29 to 5-30
circular 5-24 to 5-28

algorithm 5-26
buffer 5-24 to 5-28
operation 5-27

modes
conditional branch 2-16, 5-23
general 5-19 to 5-20
groups 5-19 to 5-23
long-immediate 2-16
parallel 2-16, 5-21 to 5-22
three-operand 2-16,5-20 to 5-21

types 5-2 to 5-18
direct 5-4
indirect 5-5 to 5-16
long-immediate 5-17
PC-relative 5-17 to 5-18
register 5-3
short-immediate 5-16 to 5-17
used in addressing modes 5-2 to 5-18

ADlV F-20

advanced interface design 12-1

algorithm partitioning D-4

analog interface circuit (AIC) 12-32 to 12-35

analog interface peripherals and applications
F-1 to F-24
dedicated speech synthesis F-11 to F-13
digital electronics for consumers F-20 to F-24

Index-1

Index

analog interface peripherals and applications
(continued)
modem F-17 to F-19
multimedia F-2 to F-4

multimedia-related devicss F-4
system design considerations F-2 to F-3

servo controVdisk drive F-14 to F-16
telecommunications F-5 to F-10

AND instruction 10-42
AND3 and STllnstructions

(parallel) 10-45 to 10-46
AND3 instruction 10-43 to 10-44
ANDing of the ready signals 12-10
ANON instruction 10-47
ANDN3 instruction 10-48 to 10-49
application-oriented operations 11-53 to 11-130

adaptive fiiters 11-67
companding 11-53t011-57
fast Fourier transforms (FFT) 11-73 to 11-125
FIR filters 11-58 to 11-60
IIR filters 11-60 to 11-66
lattice filters 11-125 to 11-131
matrix-vector multiplication 11-70 to 11-73

applications, general listing 1-10
architecture 2-2

block diagram 2-3
introduction 2-2
overview 2-1

arithmetic
logic unit (ALU) 2-6
operations 11-23 to 11-52

bit manipulation 11-23 to 11-24
bit-reversed addressing 11-25 to 11-26
block moves 11-25
extended-precision arithmetic 11-38 to 11-41
floating-point format conversion

11-42 to 11-52
integer and floating-point division

11-26 to 11-33
square root 11-34

arithmetic shift instruction 10-50
3-operand instruction 10-52

ASH instruction 10-50 to 10-51
ASH3 and STllnstructions

(parallel) 10-54 to 10-55
ASH3 instruction 10-52 to 1 0-53
assembler syntax expression, example 10-19
assembler syntax, optional 10-16 to 10-18

Index-2

assembler/linker B-2

assembly language
condition codes and flags 10-10 to 10-13
individual instructions 10-14 to 10-210

example 10-19 to 10-21
general information 10-14 to 10-18
optional assembler syntaxes 10-16 to 10-18
symbols and abbreviations 10-14 to 10-15

instruction set 10-2 to 10-9
illegal instructions 10-9
interlocked operations instructions 10-6
Ioad-and-store instructions 10-2
low-power control instructions 10-5
parallel operations instructions 10-7 to 10-8
program control instructions 10-5
three-operand instructions 10-4
two-operand instructions 10-3

assembly language instructions 10-1 to 10-18
ABSF and STF instructions (paralleO

10-23 to 10-24
ABSF instruction 10-22
ABSI and STI instructions (parallel)

10-27 to 10-28
ABSI instruction 10-25 to 10-26
absolute value of floating-point 10-22
absolute value of integer 10-25 to 10-26
add floating-point 10-32

3-operand instruction 10-33 to 10-34
add integer 1 0-37

3-operand instruction 10-38 to 10-39
add integer with carry 10-29

3-operand instruction 10-30 to 10-31
ADDC instruction 10-29
ADDC3 instruction 10-30 to 10-31
ADDF instruction 10-32
ADDF3 and MPYF3 instructions (parallel)

10-119 to 10-121
ADDF3 and STF instructions (parallel)

10-35 to 10-36
ADDF3 instruction 10-33 to 10-34
ADDI instruction 10-37
ADDI3 and MPYI3 instructions (parallel)

10-130 to 10-132
ADDI3 and STI instructions (parallel)

10-40 to 10-41
ADDI3 instruction 10-38 to 1 0-39
AND instruction 10-42
AND3 and STI instructions (parallel)

10-45 to 10-46
AND3 instruction 10-43 to 10-44

assembly language instructions (continued)
ANDN instruction 10-47
ANDN3 instruction 10-48 to 10-49
arithmetic shift 10-50 to 10-51

3-operand instruction 10-52 to 10-53
ASH instruction 10-50 to 10-51
ASH3 and STI instructions (parallel)

1 0-54 to 1 0-55
ASH3 instruction 1 0-52 to 10-53
Bcond instruction 1 0-56 to 10-57
BcondD instruction 10-58 to 10-59
bitwise exclusive-OR 10-206

3-operand instruction 10-207 to 10-208
bitwise logical-AND 10-42

3-operand instruction 10-43 to 10-44
bitwise logical-AND with complement 10-47

3-operand instruction 10-48 to 10-49
bitwise logical-complement 10-148
bitwise logical-OR 10-151

3-operand instruction 10-152 to 10-153
BR instruction 1 0-60
branch conditionally (delayed) 10-58 to 10-59
branch conditionally (standard) 10-56 to 10-57
branch unconditionally (delayed) 10-61
branch unconditionally (standard) 10-60
BRD instruction 10-61
CALL instruction 1 0-62
call subroutine 10-62
call subroutine conditionally 10-63 to 10-64
CALLcond instruction 1 0-63 to 1 0-64
categories

illegal 10-9
interlocked operation 10-6
load and store 10-2
low-power control 10-5
parallel operation 10-7 to 10-8
program control 10-5
three-operand 10-4
two-operand 10-3

CMPF instruction 10-65
CMPF3 instruction 10-66 to 10-67
CMPI instruction 10-68
CMPI3 instruction 10-69 to 10-70
compare floating-point 10-65

3-operand instruction 10-66 to 10-67
compare integer 10-68

3-operand instruction 10-69 to 10-70
condition codes 10-10 to 10-13
condition for execution 10-10 to 10-13
DBcond instruction 10-71 to 10-72

assembly language instructions (continued)
DBcondD instruction 10-73 to 10-74
decrement and branch conditionally

delayed 10-73 to 10-74
standard 10-71 to 10-72

example instruction 10-19 to 10-21
FIX and STI instructions (parallel)

10-77 to 10-78
FIX instruction 1 0-75 to 10-76
FLOAT and STF instructions (parallel)

10-80 to 10-81
FLOAT instruction 10-79
floating-point-to-integer conversion

10-75 to 10-76
lACK instruction 10-82
IDLE instruction 10-83
idle until interrupt 1 0-83
I DLE2 instruction 1 0-84 to 10-85
individual instructions 10-14 to 10-210
integer to floating-point conversion 1 0-79
interrupt acknowledge 10-82
LDE instruction 10-86
LDF and LDF instructions (parallel)

10-91 to 10-92
LDF and STF instructions (parallel)

10-93 to 10-94
LDF instruction 1 0-87
LDFcond instruction 10-88 to 10-89
LDFI instruction 10-90
LDI and LDI instructions (parallel)

10-100to 10-101
LDI and STI instructions (parallel)

10-102 to 10-103
LDI instruction 10-95 to 1 0-96
LDlcond instruction 10-97 to 10-98
LDII instruction 1 0-99
LDM instruction 10-1 04
LDP instruction 10-105
load data page pointer 1 0-1 05
load floating-point 10-87

interlocked 10-90

Index

load floating-point conditionally 1 0-88 to 10-89
load floating-point exponent 10-86
load floating-point mantissa 10-104
load integer 1 0-95 to 10-96

interlocked 10-99
load integer conditionally 10-97 to 10-98
logical shift 10-107 to 10-108

3-operand instruction 10-109 to 10-111
LOPOWER instruction 10-106

Index-3

Index

assembly language instructions (continued)
low-power idle 10-84 to 10-85
LSH instruction 10-107 to 10-108
LSH3 and STI instructions (parallel)

10-112 to 10-114
LSH3 instruction 10-109 to 10-111
MAXSPEED instruction 10-115
MPYF instruction 10-116
MPYF3 and ADDF3 instructions (parallel)

10-119to 10-121
MPYF3 and STF instructions (parallel)

10-122 to 10-123
MPYF3 and SUBF3 instructions (parallel)

10-124 to 10-126
MPYF3 instruction 10-117 to 10-118
MPYI instruction 10-127
MPYI3 and ADDI3 instructions (parallel)

10-130 to 10-132
MPYI3 and STI instructions (parallel)

10-133 to 10-134
MPYI3 and SUBI3 instructions (parallel)

10-135 to 10-137
MPYI3 instruction 10-128 to 10-129
multiply floating-point 10-116

3-operand instruction 10-117 to 10-118
multiply integer 3-operand instruction

10-128 to 10-129
multiply integer instruction 10-127
negative floating-point 10-139
negative integer 10-142
negative integer with borrow 10-138
NEGB instruction 10-138
NEGF and STF instructions (parallel)

10-140 to 10-141
NEGF instruction 10-139
NEGI and STI instructions (parallel)

10-143 to 10-144
NEGI instruction 10-142
no operation 1 0-145
NOP instruction 1 0-145
NORM instruction 10-146 to 10-147
normalize 10-146 to 10-147
NOT and STI instructions (parallel)

10-149 to 10-150
NOT instruction 10-148
OR instruction 10-151
OR3 and STI instructions (parallel)

10-154 to 10-155
OR3 instruction 10-152 to 10-153

Index-4

assembly language instructions (continued)
parallel ABSF and STF instructions

10-23 to 10-24
parallel ABSI and STI instructions

10-27 to 10-28
parallel ADDF3 and MPYF3 instructions

10-119 to 10-121
parallel ADDF3 and STF instructions

10-35 to 10-36
parallel ADDI3 and MPYI3 instructions

10-130 to 10-132
parallel ADDI3 and STI instructions

10-40 to 10-41
parallel AND3 and STI instructions

10-45 to 10-46
parallel ASH3 and STI instructions

10-54 to 10-55
parallel FIX and STI instructions 1 0-77 to 10-78
parallel FLOAT and STF instructions

10-80 to 10-81
parallel instructions advantages 11-132
parallel LDF and LDF instructions

10-91 to 10-92
parallel LDF and STF instructions

10-93 to 10-94
parallel LDI and LDI instructions

10-100 to 10-101
parallel LDI and STI instructions

10-102 to 10-103
parallel LSH3 and STI instructions

10-112 to 10-114
parallel MPYF3 and ADDF3 instructions

10-119to 10-121
parallel MPYF3 and STF instructions

10-122 to 10-123
parallel MPYF3 and SUBF3 instructions

10-124 to 10-126
parallel MPYI3 and ADDI3 instructions

10-130 to 10-132
parallel MPYI3 and STI instructions

10-133 to 10-134
parallel MPYI3 and SUBI3 instructions

10-135 to 10-137
parallel NEGF and STF instructions

10-140 to 10-141
parallel NEGI and STI instructions

10-143 to 10-144
parallel NOT and STI instructions

10-149 to 10-150

assembly language instructions (continued)
parallel OR3 and STI

instructions 1 0-154 to 10-155
parallel STF and ABSF instructions

10-23 to 10-24
parallel STF and ADDF3 instructions

10-35 to 10-36
parallel STF and FLOAT instructions

10-80 to 10-81
parallel STF and LDF instructions

10-93 to 10-94
parallel STF and MPYF3 instructions

10-122 to 10-123
parallel STF and NEGF instructions

10-140 to 10-141
parallel STF and STF instructions

10-176 to 10-177, 10-180 to 10-181
parallel STF and SUBF3 instructions

10-190 to 10-191
parallel STI and ABSllnstructions

10-27 to 10-28
parallel STI and ADDI3 instructions

10-40 to 10-41
parallel STI and AND3 instructions

1 0-45 to 1 0-46
parallel STI and ASH3 instructions

1 0-54 to 1 0-55
parallel STI and FIX instructions 10-77 to 10-78
parallel STI and LDI instructions

10-102 to 10-103
parallel STI and LSH3 instructions

10-112to 10-114
parallel STI and MPYI3 instructions

10-133 to 10-134
parallel STI and NEGI instructions

10-143 to 10-144
parallel STI and NOT instructions

10-149 to 10-150
parallel STI and OR3 instructions

10-154 to 10-155
parallel STI and SUBI3 instructions

10-195 to 10-196
parallel STI and XOR3 instructions

10-209 to 10-210
parallel SUBF3 and MPYF3 instructions

10-124 to 10-126
parallel SUBF3 and STF instructions

10-190 to 10-191
parallel SUBI3 and MPYI3 instructions

10-135 to 10-137

assembly language Instructions (continued)
parallel SUBI3 and STI instructions

10-195 to 10-196
parallel XOR3 and STI instructions

10-209 to 10-210
POP floating-point 10-157
POP integer instruction 10-156
POPF instruction 10-157
PUSH floating-point 10-159
PUSH integer instruction 10-158
PUSHF instruction 10-159
register syntax 1 0-18
repeat block 10-170
repeat single 10-171 to 1 0-172

Index

restore clock to regular speed 10-115
RETlcondinstruction 10-160 to 10-161
return from subroutine conditionally 10-162
RETScond instruction 10-162
return from interrupt conditionally

10-160 to 10-161
RND instruction 1 0-163 to 1 0-164
ROL instruction 1 O~ 165
ROLC instruction 10-166 to 10-167
ROR Instruction 10-168
RORC instruction 10-169
rotate

left 10-165
left through carry 10-166 to 10-167
right 10-168
right through carry 10-169

round floating-point 1 0-163 to 10-164
RPTB instruction 10-170
RPTS instruction 10-171 to 10-172
SIGI instruction 10-173
signal, interlocked 10-173
software interrupt 10-200
STF and ABSF instructions (parallel)

10-23 to 10-24
STF and ADDF3 instructions (parallel)

10-35 to 10-36
STF and FLOAT Instructions (parallel)

10-80 to 10-81
STF and LDF instructions (parallel)

10-93 to 10-94
STF and MPYF3 instructions (parallel)

10-122 to 10-123
STF and NEGF instructions (parallel)

10-140 to 10-141
STF and STF instructions (parallel)

10-176 to 10-177

Index-5

Index

assembly language instructions (continued)
STF and SUBF3 instructions (parallel)

10-190 to 10-191
STF instruction 10-174
STFI instruction 10-175
STI and ABSI instructions (paralleQ

10-27 to 10-28
STI and ADDI3 instructions (parallel)

10-40 to 10-41
STI and AND3 instructions (parallel)

1 0-45 to 1 0-46
STI and ASH3 instructions (parallel)

10-54 to 1 0-55
STI and FIX instructions (parallel)

10-77 to 10-78
STI and LDI instructions (parallel)

10-102 to 10-103
STi and LSH3 Instructions (paraJiei)

10-112 to 10-114
STI and MPYI3 instructions (parallel)

10-133 to 10-134
STI and NEGI instructions (parallel)

10-143 to 10-144
STI and NOT instructions (parallel)

10-149 to 10-150
STI and OR3 instructions (parallel)

10-154 to 10-155
STI and STI instructions (parallel)

10-180 to 10-181
STI and SUBI3 instructions (parallel)

10-195 to 10-196
STI and XOR3 instructions (parallel)

10-209 to 10-210
STI instruction 10-178
STII instruction 10-179
store floating-point 10-174
store floating-point, interlocked 10-175
store integer 10-178
store integer, interlocked 10-179
SUBB instruction 10-182
SUBB3 instruction 10-183 to 10-184
SUBC instruction 10-185 to 10-186

integer division 11-27 to 11-30
SUBF instruction 10-187
SUBF3 and MPYF3 instructions (paralleQ

10-124 to 10-126
SUBF3 and STF instructions (parallel)

10-190 to 10-191
SU BF3 instruction 10-188 to 10-189
SUBI instruction 10-192

Index-6

assembly language instructions (continued)
SUBI3 and MPYI3 instructions (parallel)

10-135 to 10-137
SUBI3 and STI instructions (parallel)

10-195 to 10-196
SUBI3 instruction 10-193 to 10-194
SUBRB instruction 10-197
SUBRF instruction 10-198
SUBRI instruction 10-199
subtract floating-point 10-187

3-operand instruction 10-188 to 10-189
subtract integer 10-192

3-operand instruction 10-193 to 10-194
subtract integer conditionally 10-185 to 10-186
subtract integer with borrow 10-182

3-operand instruction 10-183 to 10-184
subtract reverse floating-point 10-198
subtract reverse integer 10-199
subtract reverse integer with borrow 10-197
SWI instruction 10-200
symbols used to define 10-15 to 1 0-18
syntax options 10-16 to 10-18
test bit fields 10-203

3-operand instruction 10-204 to 10-205
trap conditionally 10-201 to 10-202
TRAPcond instruction 10-201 to 10-202
TSTB instruction 10-203
TSTB3 instruction 10-204 to 10-205
XOR instruction 10-206
XOR3 and STI instructions (parallel)

10-209 to 10-210
XOR3 instruction 1 0-207 to 10-208

auxiliary (ARO--AR7) registers 3-3
auxiliary register ALUs 2-6
auxiliary register arithmetic units (ARAUs) 5-5

m
bank switching

external bus 12-13to 12-18
programmable 7-30 to 7-32

bank switching techniques 12-13 to 12-19
Bcond instruction 10-56 to 10-57
BcondD instruction 10-58 to 10-59
biquad 11-60
bit manipulation 11-23 to 11-24
bit-reversed addressing 5-29 to 5-30, 11-25

FFT algorithms 5-29 to 5-30

bitwise exclusive-OR instruction 10-206
3-operand instruction 10-207

bitwise logical-complement instruction 10-148
bitwise logical-ANO instruction 10-42

3-operand instruction 1 0-43

bitwise logical-ANON instruction 10-47
3-operand instruction 1 0-48

bitwise logical-OR instruction 10-151
3-operand instruction 1 0-152

block
moves 11-25
repeat 11-18
repeat modes 6-2 to 6-7

control bits 6-3
nested block repeats 6-7
operation 6-3 to 6-4
RC register value 6-6 to 6-7
restrictions 6-6
RPTB instruction 6-4 to 6-5
RPTS instruction 6-5

repeat registers (RC, RE, RS) 3-11, 6-2
size (8K) register 3-4

block diagram
architectural 2-3
functional 1-5

boot loader 3-26
external memory loading 3-30
interrupt and trap vector mapping 3-33
invoking 3-26
mode selection 3-29
operations 3-26
precautions 3-35
serial-port loading 3-33

boot loader source code G-1 to G-6
8R instruction 1 0-60
branch conflicts 9-4 to 9-6
branch unconditionally (delayed) instruction

1 0-58, 1 0-61

branch unconditionally (standard) instruction
1 0-56, 10-60

branches 6-8
delayed 6-8 to 6-9, 11-17

8RO instruction 10-61

breakdown of numbers 8-9 to 8-10

buffered signals 12-43
MPSO 12-42

buffering 12-41

bulletin board service (88S) 8-5 to 8-6
bus operation 7-1 to 7-32

external 2-26
internal 2-22

buses
OMA 2-22
program 2-22

busy-waiting example 6-14
byte-wide configured memory 3-31

C (HLL) routines 11-131 to 11-134
C compiler 8-2
'C30, memory maps 2-14
'C30 power dissipation 0-1 to 0-32

FFT assembly code 0-30 to 0-32
photo of 100 for FFT 0-29
summary 0-28

'C31
memory maps 2-15
interrupt and trap memory maps 3-34
reserved memory locations 2-31

'C3x OSPs 1-2
cache

architecture 3-21 to 3-23
control bits 3-24

cache clear bit (CC) 3-24
cache enable bit (CE) 3-24
cache freeze bit (CF) 3-25

hit 3-23
instruction 2-12
memory 2-11 , 3-21

algorithm 3-23 to 3-24
architecture 3-21
instruction 3-21

miss 3-23
segment 3-24
word 3-23

CALL instruction 6-1 0, 1 0-62
call subroutine conditionally instruction 10-63
call subroutine instruction 1 0-62
CALLcond instruction 6-1 0, 1 0-63 to 1 0-64
calls 6-10t06-11
carry flag 10-12
cautions x
C-callable routines 11-131

Index

Index-7

Index

central processing unit 2-4
block diagram 2-5
registers 2-8

circular addressing 5-24 to 5-28
algorithm 5-26
circular buffer 5-24
FIR filters 5-28. 11-58
operation 5-27

clkout 8-21. 8-22

CLKR pins 8-20

CLIO(pins 8-19

clock mode
timer interrupt 8-11
timer pulse generator 8-8 to 8-9

clock oscillator circuitry 12-27 to 12-29

clocking of memory accesses 9-23 to 9-30
data loads and stores 9-24 to 9-30
program fetches 9-23

CMPF instruction 10-65

CMPF3 instruction 10-66 to 10-67

CMPI instruction 10-68

CMPI3 instruction 10-69 to 10-70

COMBO F-6

companding 11-53 to 11-57

compare floating-point instruction 10-65
3-operand instruction 10-66

compare integer instruction 10-68
3-operand instruction 1 0-69

compiler B-2

compression
A-law 11-56
U-Iaw 11-54

computed GOTO 11-22

condition codes and flags 10-10 to 10-13

condition flags 10-10to 10-13
floating-point underflow 10-11
latched floating-point underflow 10-11
latched overflow 10-11
negative 10-11
overflow 10-12
zero 10-11

conditional-branch addressing modes 2-16.5-23

conditional delayed branches 6-8
compare instructions 6-8
extended-precision registers 6-8

Index-8

connector
dimensions. mechanical 12-43 to 12-45
12-pin header 12-39

consumer electronics F-20 to F-24

context switching 11-11 to 11-15
context restore for 'C3x 11-14 to 11-16
context save for 'C3x 11-12 to 11-13

control registers. external interface 7-2 to 7-5
expansion bus 7-5 to 7-6
primary bus 7-3 to 7-4

conversion
floating-point to integer 4-22 to 4-23
integer to floating-point 4-24
time to frequency domain (FFTs)

11-73 to 11-125

counter
example 6-14
register (timer) 8-3. 8-8

CPU 2-4 to 2-10
block diagram 2-5
general 2-4
interrupt

DMA Interaction 6-30
latency 6-30
processing cycle 6-29

interrupt flag register (IF) 3-9
register file 2-7. 3-2 to 3-12
registers 2-7 to 2-1 O. 3-2 to 3-12

auxiliary (ARO-AR7) 2-8, 3-3
block repeat (RS, RE) 3-11
block size (8K) 2-9, 3-4
CPU/DMA interrupt enable (IE) 3-7
data-page pointer (DP) 2-9, 3-4
extended precision (R~7) 2-8, 3-3
I/O flag (IOF) 2-9, 3-10
index (IR1, IRO) 2-9,3-4
interrupt enable (IE) 2-9, 3-7
interrupt flag (IF) 2-9, 3-9
listo' 3-2
program counter (PC) 2-10,2-22,3-11
repeat count (RC) 2-10, 3-11, 6-2
repeat end address (RE) 2-10, 3-11, 6-2
repeat start address (RS) 2-10,3-11, 6-2
reserved bits 3-12
status register (ST) 2-9,3-4, 10-11
system stack pointer (SP) 2-9, 3-4

transfer. with serial-port transmit polling
8-38 to 8-39

current calculations 0-26 to 0-27
average 0-27
data output 0-26 to 0-27
processing 0-26

m
O/A converter interface 12-23 to 12-26
O/A input/output system 12-32 to 12-35
OAC F-23
data

converters F-17
loads and stores 9-24 to 9-29

operations with parallel stores 9-27 to 9-29
parallel multiplies and adds 9-29
three-operand instructions 9-24 to 9-27
two-operand instructions 9-24

data formats 4-1 to 4-24
floating-point formats 4-4 to 4-9

conversion between formats 4-8 to 4-9
extended-precision 4-6 to 4-7
short 4-4 to 4-5
single-precision 4-6

floating-point to integer conversion 4-22 to 4-23
floating-point addition and subtraction

4-14 to 4-17
floating-point multiplication 4-10 to 4-13
integer formats 4-2

short 4-2
single-precision 4-2 to 4-3

integer to floating-point conversion 4-24
normalization using NORM 4-18 to 4-19
rounding with RNO 4-20 to 4-21
unsigned-integer formats 4-3

short 4-3
single-precision 4-3 to 4-4

data-page pointer (OP) register 2-9, 3-4
data-rate timing operation

fixed 8-30
burst mode 8-30
continuous mode 8-30

variable 8-34
burst mode 8-34
continuous mode 8-35

data-receive register 8-24
data-transmit register 8-23,8-27,8-30,8-32
OBcondinstruction 10-71 to 10-72
OBcondO instruction 10-73 to 1 0-74

debugger B-3
decode unit 9-2
decrement and branch conditionally (delayed)

instruction 10-73
decrement and branch conditionally (standard)

instruction 10-71
delayed branches 6-8 to 6-9, 11-17

advantages 11-132
conditional 6-8
incorrectly placed 6-6

dependencies 0-2 to 0-3
dequeue (stacks) 5-31, 5-33
development support B-1 to B-10

tools B-2 to B-6
bulletin board service 8-5 to 8-6
code generation tools 8-2

assembler/linker B-2
C compiler B-2
compiler B-2
linker B-2

digital filter design package 8-2
documentation 8-5
hotline 8-5
literature 8-5
seminars 8-6
system integration and debug

tools 8-3 to 8-4
debugger B-3
emulation porting kit (EPK) B-4 to B-5
emulator B-3
evaluation module (EVM) B-3
simulator B-3
XDS51 0 emulator B-3

Index

technical training organization (TTO) work­
shop 8-6

third parties 8-4
workshops 8-6

device suffixes B-9 to B-10
diagnostic applications 12-45 to 12-46
digital audio F-21
digital electronics F-20 to F-24
digital filter design package B-2
dimenSions, 12-pin emulator connector

12-43 to 12-45
direct

addressing 5-4
memory access 2-29

disabled interrupts by branch 6-8
displacements 5-5

Index-9

Index

dissipation, power 0-1 to 0-32
algorithm partitioning 0-4
dependencies 0-2 to 0-3
FFT assembly code 0-30 to 0-32
photo of 100 for FFT 0-29
power requirements 0-2
power supply current requirements 0-2
test setup description 0-4 to 0-5

divide clock by 16 instruction 10-106

division 11-26 to 11-33
floating-point 11-31 to 11-33

OMA
architecture 2-29
block moves 8-43, 11-25
buses 2-22
channel 9-2
channel synchronization 8-54 to 8-56
controller 2-22, 8-43 to 8-64

block diagram 2-29
destination register 8-49 to 8-53
destination/source address register 8-47
general 2-29
initialization reconfiguration 8-57
Interrupt 8-56

CPU interaction 6-30
processing cycle 6-29

interrupt-enable register 8-47 to 8-49
maximum transfer rates 8-53
memory transfer 8-49 to 8-53
memory-mapped registers 8-43
programming hints 8-57 to 8-58
setup and use examples 8-58 to 8-64
source register 8-49 to 8-53
synchronization of channels 8-54 to 8-56
timing

expansion bus destination 8-52
on-chip destination 8-50
primary bus destination 8-51

transfer-counter register 8-47

documentation v, vii, B-5

OR pins 8-20

dry pack C-7

dummy fetch 9-4

OX pins 8-19

Index-10

electrical
characteristics

pinout and pin assignments 13-2 to 13-15
signal descriptions 13-16 to 13-24
signal transition levels 13-29
summary D-28

specifications 13-25 to 13-28

emulation porting kit (EPK) B-4 to B-5

emulator B-3
connection to target system 12-41 to 12-43

MPSD mechanical dimensions
12-43 to 12-45

connector, mechanical dimensions
12-43 to 12-45

MPSO connector, 12-pin header
12-39 to 12-40

pod interface 12-40
signal buffering 12-41

emulator cable, signal timing, MPSO
12-40 to 12-41

emulator pod
MPSO timings 12-41
parameters 12-41

evaluation module (EVM) B-3

event counters 8-2

example circuit 12-13 to 12-46

example instruction 10-19 to 1 0-21

execute unit 9-2

expansion
A-law 11-57
bus. See expansion buses and external buses
U-Iaw 11-55

expansion buses 7-2
functional timing of operations 7-6
I/O cycles 7-11 to 7-32
programmable wait states 7-28 to 7-29

expansion bus control register 7-5 to 7-6

expansion bus interface 12-19 to 12-26
AlO converter 12-19
O/A converter 12-23
ready generation 12-9 to 12-13

functions 12-11

extended-precision
arithmetic 11-38 to 11-41
floating-point format 4-6 to 4-7
addition example 11-39
multiplication example 11-40
subtract example 11-39

extended-precision (R7-RO) registers 3-3

external
buses (expansion, primary) 2-26,7-1

bank switching 12-13 to 12-18
expansion bus interface 12-19 to 12-26
external interrupts 2-26
interlocked instructions 2-26
primary bus interface 12-4 to 12-18
ready generation 12-9 to 12-13
wait states 12-9 to 12-13

devices 12-3
interfaces 12-2

external bus operation 2-26,7-1 to 7-32
external interface control registers 7-2 to 7-5

expansion bus 7-5 to 7-6
primary bus 7-3 to 7-4

external interface timing
expansion bus 7-6 to 7-27
expansion-bus I/O cycles 7-11 to 7-32
primary-bus cycles 7-6 to 7-10

programmable bank switching 7-30 to 7-32
programmable wait states 7-28 to 7-29

external interface, control registers 7-2 to 7-5

external interface timing 7-6 to 7-27
expansion bus I/O cycles 7-11 to 7-32
primary bus cycles 7-6 to 7-1 0

external interrupts 6-23

external memory loader header 3-30

external ready generation 12-1 0 to 12-11

external reset signal 6-18

II
fast Fourier transforms (FFT) 11-25,

11-73 to 11-125, 0-26

fetch unit 9-2

FFT 11-73 to 11-125

FFT algorithms 5-29
bit-reversed addressing 5-29

filters 11-58 to 11-67
adaptive 11-67
FIR 11-58t011-60
IIR 11-60 to 11-66
lattice 11-125to 11-130
LMS algorithm 11-67

FI R filters 5-28, 11-58 to 11-60
circular addressing 5-28, 11-58

Index

FIX and STI instructions (parallel) 1 0-n to 10-78

FIX instruction 10-75 to 10-76

fixed data-rate timing operation, timing 8-30
burst mode 8-30
continuous mode 8-30

fixed point 1-4

flag
carry 10-12
condition

floating-point underflow 10-11
latched floating-point underflow 10-11
latched overflow 10-11
negative 10-11
overflow 10-12
zero 10-11

FLOAT and STF instructions
(parallel) 10-80 to 10-81

FLOAT instruction 4-24,10-79

floating point 1-4
addition 4-14t04-17

examples 4-16 to 4-18
conversion to integer 4-22 to 4-23
division 11-26,11-31 to 11-33
format 4-4 to 4-9

conversion 4-8 to 4-9, 11-44 to 11-48,
11-49 to 11-52

extended-precision 4-6 to 4-7
IEEE definition 11-43
short 4-4 to 4-5
single-precision 4-6
TMS320C3xdeflnltion 11-42 to 11-44

IEEE to TMS320, 11-42 to 11-52
inverse 11-31 to 11-33
multiplication 4-10 to 4-13

examples 4-12 to 4-14
flowchart 4-11

normalization 4-18 to 4-19
normalized 4-14
operation 4-1 to 4-24
rounding value 4-20 to 4-21
square root 11-34

Index-11

Index

floating point (continued)
subtraction 4-14 to 4-17

examples 4-16 to 4-18
TMS320 to IEEE 11-42 to 11-52
underflow 4-15

floating-point-to-integer conversion instruction
10-75

floating-point underflow condition flag 10-11
frame sync 8-32, 8-33
FSR pins 8-20
FSX pins 8-19

functional block diagram 1-5

genera! addres.sing modes 2-16; 5-19 to 5-20
general-purpose applications 1-4
generation, TMS320C3x DSPs 1-2
global memory 6-12,6-15
global-control register 8-2

DMA 8-47
register bits 8-45 to 8-47

serial port 8-13,8-15 to 8-18
bits summary 8-15 to 8-18

timer 8-3 to 8-8
register bits summary 8-4 to 8-6

GOTO 11-22

m
hardware applications 12-1 to 12-46

expansion bus interface 12-19 to 12-26
AID converter 12-19 to 12-22
D/A converter 12-23 to 12-27

low-power mode interrupt interface
12-36 to 12-38

primary bus interface 12-4 to 12-18
bank switching techniques 12-13 to 12-19
ready generation 12-9 to 12-13
zero-wait-state to static-RAMs 12-4 to 12-8

serial-port interface 12-32 to 12-35
system configuration options 12-2 to 12-3

categories of interfaces 12-2
typical block diagram 12-3 to 12-4

system control functions 12-27 to 12-31
clock oscillator circuitry 12-27 to 12-29
reset signal generation 12-29 to 12-39

Index-12

hardware applications (continued)
XDS target design

considerations 12-39 to 12-46
connections between emulator and target

system 12-41 to 12-43
diagnostic applications 12-45 to 12-46
mechanical dimensions for emulator

connector 12-43 to 12-45
MPSD emulator cable signal timing

12-40 to 12-41
MPSD emulator connector 12-39 to 12-40

hardware control 6-1

hardware reset 11-2

HOlY F-20
header

12-pin 12-39
dimensions

mechanical 12-43 to 12-45
12-pin header 12-39

signal descriptions, 12-pin header 12-39
straight, unshrouded 12-39

hints for assembly coding 11-131 to 11-132
hotline 8-5

D
I/O flags register (IOF) 3-10
lACK instruction 6-29, 10-82

IDLE instruction 10-83
IDLE2 power management mode 6-36 to 6-37

IDLE2 instruction 10-84 to 10-85, 12-36 to 12-38

IE register bits summary, CPU register file 3-8

IF register bits summary, CPU register file 3-9

I/O flag register (IOF), CPU register file 3-10

IIR filters 11-60 to 11-66

illegal instructions 10-9
index (IRO,IR1) register 3-4

indirect addressing 5-5 to 5-16
ARAUs 5-5
auxiliary register 5-5
parallel addressing mode 5-22
three-operand addressing mode 5-21
with postdisplacement 5-10
with postindex 5-14 to 5-17
with predisplacement 5-8 to 5-10
with preindex 5-12 to 5-14

individual instructions 10-14 to 10-210
example 10-19to 10-21
symbols and abbreviations 1 0-14 to 1 0-15

initialization
OMA 8-57
processor 11-2 to 11-5

input clock 12-27

instruction
cache 3-21
memory

three-operand reads 9-24 to 9-27
two-operand accesses 9-24

opcodes A-1 to A-6
register (IR) 2-22

instruction cache 2-12

instruction set 10-22 to 10-210
categories 10-2
example instruction 10-19 to 10-21
summary

alphabetical 2-17 to 2-21
function listing 10-2 to 10-9
table 2-17 to 2-21

instructions
assembly language 10-1 to 1 0-18
illegal 10-9
interlocked operations 1 0-6
load-and-store 10-2
low-power control operations 10-5
parallel operations 10-7 to 10-8
program control 10-5
three-operand 10-4
two-operand 10-3

INT~NT3 signals 3-18,3-19,6-24

integer
division 11-26, 11-27 to 11-30
format 4-2

short integer 4-2
signed 4-2
single-precision integer 4-2
unsigned 4-3

integer-to-floating-point conversion 4-24
instruction 1 0-79

interfaces
expansion bus 2-26, 12-19 to 12-26

AID converter interface 12-19 to 12-22
D/A converter 12-23 to 12-26

low-power-mode interrupt 12-36 to 12-38

interfaces (continued)
primary bus 2-26, 12-4 to 12-18

See also primary bus interface

Index

bank switching techniques 12-13 to 12-19
ready generation 12-9 to 12-13
zero-wait-state to static RAMs 12-4 to 12-8

serial port 12-32 to 12-35
system control, clock circuitry 12-27 to 12-29
types 12-2

interlocked operations 6-12 to 6-17
busy-waiting loop 6-14
external flag pins (XFO, XF1) 6-12
instructions 6-13
loads and stores 6-12
multiprocessor counter 6-14

interlocked operations instructions 1 0-6

internal
bus operation 2-22
clock 8-10

internal circuitry current requirement 0-5 to 0-8
internal bus operations 0-6 to 0-9
internal operations 0-5
quiescent 0-5

internal interrupts 6-23

interrupt 6-23 to 6-35
acknowledge instruction 10-82
enable (IE) register 3-7

bits summary 3-8
flag (IF) register 3-9

bits summary 3-9

interrupts 2-26
considerations ('C3x) 6-31 to 6-34
context switching 11-11 to 11-15

context restore for 'C3x 11-14 to 11-16
context save for 'C3x 11-12 to 11-13

control bits 6-26 to 6-27
global control register 6-27
interrupt enable register (IE) 6-26
interrupt flag register (IF) 6-26
status register (ST) 6-26

CPU/OMA interaction 6-30
OMA 8-56
flag register behavior 6-27
latency (CPU) 6-29 to 6-30
prioritization and control

6-25 to 6-26, 6-34 to 6-35, 11-16
processing 6-27 to 6-30

Index-13

Index

interrupts (continued)
serial port 8-29

receive timer 8-29
receiver 8-29
transmit timer 8-29
transmitter 8-29

service routines 11-9
example 11-16

timer 8-2,8-11
vectors 3-18, 3-19, 6-35

table 6-23 to 6-25
inverse 11-31 to 11-33
inverse lattice filter 11-126
IOF register bits summary, CPU register file 3-11
IOSTR6 signal 7-2, 7-6

key features
'C30 1-6
'C31 1-8

II
latched floating-point overflow and underflow

condition flags 10-11
lattice filters 11-125 to 11-130
LDE instruction 10-86
LDF and LDF instructions (parallel) 10-91 to 10-92
LDF and STF instructions (parallel) 1 0-93 to 10-94
LDF instruction 10-87
LDFcond instruction 10-88 to 10-89
LDFI instruction 10-90
LDI and LDI instructions (parallel)

10-100 to 10-101
LDI and STI instructions (parallel)

10-102 to 10-103
LDI instruction 10-95 to 1 0-96
LDI cond instruction 10-97 to 10-98
LDII instruction 10-99
LDM instruction 10-104
LDP instruction 10-105
linker 6-2
literature v to viii 6-5
LMS algorithm filters 11-67
load data page pointer Instruction 10-1 05

Index-14

load floating-point conditional instruction 1 0-88
load floating-point exponent Instruction 1 0-86
load floating-point mantissa Instruction 10-104
load floating-point interlocked instruction 10-87
load Integer conditionally instruction 10-97
load Integer Instruction 10-95
load Integer, interlocked instruction 10-99
load-and-store instructions 10-2
loader mode selection 3-30
logical operations 11-23 to 11-34

bit manipulation 11-23 to 11-24
bit-reversed addressing 11-25 to 11-26
block moves 11-25
extended-precision arithmetic 11-38 to 11-41
floating-point format conversion 11-42 to 11-52
integer and floating-point division

11-26 to 11-33
square root 11-34

logical shift instruction 10-107
3-operand Instruction 10-109

long-immediate addressing 2-16, 5-17
looping 11-18 to 11-21

block repeat 11-18 to 11-20
single-instruction repeat 11-20 to 11-26

LOPOWER instruction 10-106
LOPOWER mode 6-38
low-power control instructions 10-5
low-power idle instruction 10-84
low-power-mode interrupt interface 12-36 to 12-38
low-power-mode wakeup example

11-133to 11-134
LRU cache update 3-21
LSH Instruction 10-107 to 10-108
LSH3 and sn instructions (paralleQ

10-112 to 10-114
LSH3 instruction 1 0-1 09 to 10-111

matrix-vector multiplication 11-70
MAXSPEED instruction 10-115
memory 2-11,3-13,3-21

accesses (pipeline) clocking 9-23 to 9-29
addressing modes 2-16
cache 2-11,3-21, 11-132

899 also cache
DMA memory transfer 8-49 to 8-53

memory (continued)
general organization 2-11
global 6-12,6-15
maps 2-13,3-13,3-17

'C30 2-74,3-75
'C37 2-75,3-76

microcomputer mode 3-13
microprocessor mode 3-13
pipeline conflicts 9-10 to 9-17

execute only 9-13 to 9-15
hold everything 9-15 to 9-17
program fetch incomplete 9-12
program wait 9-10 to 9-13
resolving 9-21 to 9-22

quick access 11-132
memory addressing

modes 2-16
parallel multiplies and adds 9-29
three-operand instructions 9-24
two-operand instructions 9-24

memory maps
'C30 2-14,3-15
'C31 2-15,3-16

memory organization, block diagram 2-12
microcomputer mode 2-13,3-14,3-17
microcomputer/boot loader mode 3-17
microprocessor mode 2-13, 3-13, 3-17
modem applications F-17 to F-19
MPSD emulator

buffered transmission signals 12-42
cable signal timing 12-40 to 12-41
connector 12·39 to 12·40
no signal buffering 12-41

MPYF instruction 9-4,10-116
MPYF3 and ADDF3 instructions (parallel)

10-119to 10-121
MPYF3 and STF instructions (parallel)

10·122 to 10-123
MPYF3 and SUBF3 instructions (parallel)

10-124 to 10-126
MPYF3 instruction 10-117 to 10-118
MPYI instruction 10-127
MPYI3 and ADDI3 instructions (paralleQ

10-130 to 10-132
MPYI3 and STI instructions (parallel)

10-133 to 10-134
MPYI3 and SUBI3 instructions (parallel)

10-135 to 10-137

MPYI3 instruction 10-128 to 10-129
MSTRB signal 7-2,7-6
multimedia applications F-2 to F-4

multimedia-related devices F-4
system design considerations F-2 to F-3

multiple processors 6-12
multiplication

floating-point 4-10
examples 4-12 to 4-14
flowchart 4-11

matrix-vector 11-70 to 11-73
multiplier 2·6
multiply floating-point instruction 10-116

3-operand instruction 10-117
multiply integer instruction 10-127

3-operand instruction 10-128
multiprocessor support 6-12

m
negative condition flag 10-11
negative floating-point instruction 10-139
negative integer instruction 10-142

Index

negative integer with borrow instruction 10-138
NEGB instruction 10-138
NEGF and STF instructions (parallel)

10-140 to 10-141
NEGF instruction 10-139
NEGI and STI instructions (paralleQ

10-143 to 10-144
NEGI instruction 10-142
nested block repeats 6-7
no operation instruction 10-145
NOP instruction 10-145
NORM instruction 4-18 to 4-19,10-146 to 10-147
normalization, floating-point value 4-14,

4-18 to 4-19
normalize instruction 10-146
NOT and STI instructions (paralleQ

10-149 to 10-150
NOT instruction 10-148

m
operations with parallel stores 9-27 to 9-29
optional assembler syntax 10-16 to 10-18

Index-15

Index

options overview (system configuration) 12-2
OR instruction 10-151
OR3 and STI instructions (parallel)

10-154 to 10-155
OR3 instruction 10-152 to 10-153
ordering information B-7 to B-10
ORing of the ready signals 12-9 to 12-10
output driver circuitry current

requirement 0-9 to 0-17
capacitive load dependence 0-16 to 0-18
data dependency 0-14 to 0-16
expansion bus 0-13 to 0-14
primary bus 0-10 to 0-12

output value formats 10-1 0
overflow 4-15, 4-22
overflow condition flag 10·12

parallel ABSF and STF instructions 10-23 to 10-24
parallel ABSI and STI instructions 10-27 to 10-28
parallel ADDF3 and MPYF3 instructions

10-119 to 10-121
parallel ADDF3 and STF instructions

10-35 to 10-36
parallel ADDI3 and MPYI3 instructions

10-130 to 10-132
parallel ADDI3 and STI instructions 10-40 to 10-41
parallel addressing modes 2-16,5-21 to 5-22
parallel AND3 and STI instructions 10-45 to 10-46
parallel ASH3 and STI instructions 10-54 to 10-55
parallel bus 12-19

See also expansion bus Interlace
parallel FIX and STI instructions 10-77 to 10-78
parallel FLOAT and STF instructions

10-80 to 10-81
parallel instruction set summary 2-23 to 2-24
parallel instructions advantages 11-132
parallel LDF and LDF instructions 10-91 to 10-92
parallel LDF and STF instructions 10-93 to 10-94
parallel LDI and LDI instructions 10-100 to 10-101
parallel LDI and STI instructions 10-102 to 1 0-103
parallel LSH3 and STI instructions

10-112 to 10-114

Index-16

parallel MPYF3 and ADDF3 instructions
10-119 to 10-121

parallel MPYF3 and STF instructions
10-122 to 10-123

parallel MPYF3 and SUBF3 instructions
10-124 to 10-126

parallel MPYI3 and ADDI3 instructions
10-130 to 10-132

parallel MPYI3 and STI instructions
10-133 to 10-134

parallel MPYI3 and SUBI3 instructions
10-135 to 10-137

parallel multiplies and adds 9-29
parallel NEGF and STF instructions

10-140 to 10-141
parallel NEGI and STI instructions

10-143 to 10-144
parallel NOT and STI instructions

10-149 to 10-150
parallel operations instructions 10-7 to 10-8
parallel OR3 and STI instructions

10-154 to 10-155
parallel STF and ABSF instructions 10-23 to 10-24
parallel STF and ADDF3 instructions

10-35 to 1 0-36
parallel STF and FLOAT instructions

10-80 to 10-81
parallel STF and LDF instructions 10-93 to 10-94
parallel STF and MPYF3 instructions

10-122 to 10-123
parallel STF and NEGF instructions

10-140 to 10-141
parallel STF and STF instructions

10-176 to 10-177
parallel STF and SUBF3 instructions

10-190 to 10-191
parallel STI and ASSI instructions 10-27 to 10-28
parallel STI and ADDI3 instructions 10-40 to 10-41
parallel STI and AND3 instructions 10-45 to 10-46
parallel STI and ASH3 instructions 10-54 to 10-55
parallel STI and FIX instructions 10-77 to 10-78
parallel STI and LDI instructions 10-102 to 10-103
parallel STI and LSH3 instructions

10-112 to 10-114
parallel STI and MPYI3 instructions

10-133 to 10-134
parallel STI and NEGI instructions

10-143 to 10-144

parallel STI and NOT instructions
10-149 to 10-150

parallel STI and OR3 instructions
10-154 to 10-155

parallel STI and STI instructions 1 0-180 to 1 0-181

parallel STI and SUBI3 instructions
10-195 to 10-196

parallel STI and XOR3 instructions
10-209 to 10-210

parallel SUBF3 and MPYF3 instructions
10-124 to 10-126

parallel SUBF3 and STF instructions
10-190 to 10-191

parallel SUBI3 and MPYI3 instructions
10-135 to 10-137

parallel SUBI3 and STI instructions
10-195 to 10-196

parallel XOR3 and STI instructions
10-209 to 10-210

part numbers B-7 to B-10
breakdown of numbers B-9 to B-10
device suffixes B-9 to B-10
prefix designators B-8 to B-9

part ordering B-1 to B-10

PC-relative addressing 5-17 to 5-18

period register (timer) 8-2, 8-8

peripheral bus 2-27
general architecture 2-27
map 3-20
peripherals on

DMA controller 8-43 to 8-64
serial port 2-28, 8-13 to 8-42
timers 2-28, 8-2

register diagram 2-27

peripheral modules, block diagram 2-27

peripherals 2-27,8-1 to 8-64
DMA controller 8-43 to 8-64

CPU/DMA interrupt enable register
8-47 to 8-49

destination- and source-address registers
8-47

global-control register 8-47
hints for programming 8-57 to 8-58
initialization/reconfiguration 8-57
interrupts 8-56
memory transfer operation 8-49 to 8-53
programming examples 8-58 to 8-64

Index

peripherals, DMA controller (continued)
synchronization of DMA channels

8-54 to 8-56

pin

transfer-counter register 8-47
serial ports 8-13 to 8-42

data-transmit register 8-23
data-receive register 8-24
FSRlDRlCLKR port control register 8-20
FSX/DX/CLKX port control register

8-18 to 8-19
functional operation 8-30 to 8-36
global-control register 8-15 to 8-18
initialization/reconfiguration 8-36
interrupt sources 8-29
operation configurations 8-24 to 8-26
receive/transmit timer control register

8-21 to 8-22
receive/transmit timer counter register 8-22
receive/transmit timer period register 8-23
timing 8-26 to 8-29
TMS320C3x interface examples

8-36 to 8-46
timers 8-2 to 8-12

global-control register 8-3 to 8-8
initialization/reconfiguration 8-12 to 8-15
interrupts 8-11
operation modes 8-10 to 8-11
period and counter registers 8-8
pulse generation 8-8 to 8-9

assignments 13-6, 13-7
states at reset 6-19

pinout and pin assignments 13-2 to 13-15
PGA 13-2 to 13-7
PQFP

'C30 13-8 to 13-11
'C31 13-12 to 13-15

pipeline
conflicts 9-4 to 9-17

avoiding 11-132
delayed branches 9-6
registers 9-7 to 9-9
standard branches 9-4 to 9-6

memory accesses clocking 9-23 to 9-30
memory conflicts 9-10 to 9-17

execute only 9-13 to 9-15
hold everything 9-15 to 9-17
program fetch incomplete 9-12
program wait 9-10 to 9-13
resolving 9-21 to 9-22

Index-17

Index

pipeline (continued)
operation 9-1 to 9-30

clocking of memory accesses 9-23 to 9-30
data loads and stores 9-24 to 9-30
program fetches 9-23
branch conflicts 9-4 to 9-6
memory conflicts 9-10 to 9-23
register conflicts 9-7 to 9-9

resolving memory conflicts 9-21 to 9-22
resolving register conflicts 9-18 to 9-20
structure 9-2 to 9-3

pod interface, emulator 12-40

POP floating-point instruction 10-157

POP integer instruction 10-156

POPF instruction 1 0-157

power dissipation 0-1 to 0-32
algorithm partitioning 0-4
characteristics 0-2 to 0-4
dependencies 0-2 to 0-3
FFT assembly code 0-30 to 0-32
photo of 100 for FFT 0-29
power requirements 0-2
power supply current requirements 0-2
summary 0-28
test setup description 0-4 to 0-5

power supply current requirements 0-2

PQFP reflow soldering precautions C-7 to C-8

prefix designators B-8 to B-9

primary bus 7-2
See also external buses
bus cycles 7-6 to 7-10
control register 7-3 to 7-4
functional timing of operations 7-6
programmable bank switching 7-31
programmable wait states 7-28 to 7-29
ready generation, segmentation of address

space 12-11

primary bus interface 2-26. 12-4 to 12-18
bank switching techniques 12-13 to 12-19
ready generation 12-9 to 12-13

ANDing of the ready signals 12-10
example circuit 12-13 to 12-46
external ready generation 12-10 to 12-11
ORing of the ready signals 12-9 to 12-10
ready contro//ogic 12-11 to 12-12

zero-wait-state to static-RAMs 12-4 to 12-8

processor initialization 11-2 to 11-5

Index-18

program
buses 2-22
counter (PC) 2-22, 3-11
fetches 9-23
flow 6-1

program control 11-6
computed GOTOs 11-22 to 11-23
delayed branches 11-17
instructions 10-5
interrupt service routines 11-9 to 11-16

context switching 11-11 to 11-16
example 11-16
priority 11-16

repeat modes 11-18 to 11-21
block repeat 11-18 to 11-20
single-instruction repeat 11-20 to 11-26

software stack 11-8 to 11-9
subroutines 11-6 to 11-8

program fetch incomplete 9-12

program flow control 6-1 to 6-38
calls, traps, and returns 6-1 0 to 6-11
delayed branches 6-8 to 6-9
interlocked operations 6-12 to 6-17
interrupts 6-23 to 6-35

control bits 6-26 to 6-27
CPU interrupt latency 6-30
CPU/DMA interaction 6-30
prioritization 6-25 to 6-26
prioritization and control 6-34 to 6-36
processing 6-27 to 6-30
TMS320C30 considerations 6-32 to 6-34
TMS32OC3x considerations 6-31 to 6-32
vector table 6-23 to 6-25

repeat modes 6-2 to 6-7
nested block repeats 6-7 to 6-23
RC register value after repeat mode

6-6 to 6-7
repeat-mode control bits 6-3
repeat-mode operation 6-3 to 6-4
restrictions 6-6
RPTB instruction 6-4 to 6-5
RPTS instruction 6-5

reset operation 6-18 to 6-22
TMS320LC31 power management

mode 6-36 to 6-38
IDLE2 6-36 to 6-37
LOPOWER 6-38

program wait 9-10 to 9-13

programmable
bank switching 7-30 to 7-32
wait states 7-28 to 7-29

programming tips 11-131 to 11-134
C-callable routines 11-131
hints for assembly coding 11-131 to 11-132
low-power mode wakeup example

11-133 to 11-134

pulse mode
timer interrupt 8-11
timer pulse generator 8-8 to 8-9

PUSH floating-point instruction 10-159

PUSH integer instruction 10-158

PUSHF instruction 10-159

m
quality C-1 to C-8

queue (stacks) 5-31,5-33

m
RAM. See memory

RC register value 6-6 to 6-7

read unit 9-2

ready control logic 12-11 to 12-12

ready generation 12-9 to 12-13
ANDing of the ready signals 12-10
example circuit 12-13 to 12-46
external ready generation 12-10 to 12-11
functions 12-11
ORing of the ready signals 12-9 to 12-10
ready control logic 12-11 to 12-12

receive shift register (RSR) 8-24

receive!transmit timer
control register (serial port) 8-21 to 8-22
counter register (serial port) 8-22
period register (serial port) 8-23

reflow soldering precautions C-7 to C-8

register addressing 5-3

register conflicts 9-7 to 9-9

register file, CPU 2-7

registers
auxiliary (AR7-ARO) 3-3
block size (BI<) 2-9, 3-4, 5-24
buses 2-22

registers (continued)
conflicts (resolving) 9-18 to 9-20
counter (timer) 8-8
CPU interrupt flag (IF) 3-9
CPUlDMA interrupt-enable (IE) 3-7,

8-47 to 8-49
data-page pointer (DP) 3-4
destination, extended-precision registers

(R~R7) 6-8
destination register (R7-RO)

condition flags 10-20
DMA

destination and source address 8-47
global-control register 8-47
transfer-counter register 8-47

extended precision (R~R7) 2-8, 3-3
FSR/DR/CLKR serial port control 8-20
FSX/DX/CLKX serial port control 8-18
functional groups 9-7
I/O flag (IOF) 2-9,3-10
index (IRO, IR1) 2-9,3-4
interrupt enable (IE) 2-9
interrupt flag (IF) 2-9, 6-33
maximum use 11-132
memory-mapped peripheral 3-20
period (timer) 8-8
program counter (PC) 2-10,2-22,3-11
receive!transmit timer control 8-21
repeat

count (RC) 2-10
count address (RC) 6-2
end address (RE) 2-10, 6-2
start address (RS) 2-10, 6-2

repeat mode operation 6-3 to 6-4
reserved bits 3-12
serial port 8-13 to 8-42
serial port global-control 8-15 to 8-18

bits summary 8-15 to 8-18
status (ST) 3-4
status register (ST) 2-9, 10-11
system stack pointer (SP) 2-9,3-4,5-31
timer global-control 8-3

reliability C-1 to C-8
stress testing C-2 to C-6

repeat
count register (RC) 3-11, 6-2
end address register (RE) 3-11, 6-2
mode 6-2 to 6-7,11-18 to 11-21

block repeat 11-18 to 11-20

Index

Index-19

Index

repeat, mode (continued)
control bits 6-3
maximum number of repeats 6-3
nested block repeats 6-7
operation 6-3 to 6-4
RC register value 6-6 to 6-7
restrictions 6-6
RPTB instruction 6-4 to 6-5
RPTS instruction 6-5
single-instruction repeat 11-20 to 11-26

start address register (RS) 3-11 , 6-2

repeat block instruction 10-170

reserved area, unpredictable results 2-13

reserved memory locations
TMS320C31, 2-31

reset 3-17
operation 5-18 to 5-22
pin states 6-19
vectors 3-18,3-19,6-35

RESET signal, generation 12-29 to 12-31

resolving register conflicts 9-18 to 9-20

restore clock to regular speed instruction 10-115

RETlcondinstruction 6-10, 10-160 to 10-161

RETScond instruction 6-10, 10-162

return from interrupt conditionally instruction
10-160

return from subroutine 6-10

return from subroutine conditionally instruction
10-162

returns 6-1 0 to 6-11

RINTO, RINT1 signals 3-18,3-19,6-24

RND instruction 10-163 to 10-164

ROL instruction 1 0-165

ROLC instruction 10-166 to 10-167

ROM. See memory

ROR instruction 10-168

RORC instruction 10-169

rotate left instruction 10-165

rotate left through carry instruction 10-166

rotate right instruction 10-168

rotate right through carry instruction 10-169

round floating-point instruction 10-163

rounding of floating-point value 4-20 to 4-21

RPT8 instruction 6-4 to 6-5, 10-170

RPTS instruction 6-5, 1 0-171 to 10-172

Index-20

scan paths, T8C emulation connections for 'C3x
12-46

segment start address (SSA) 3-21

segmentation of address space 12-11

semaphores 6-15

seminars 8-6

serial port 8-13 to 8-42
clock 8-13, 8-27

timer 8-37
timing 8-26 to 8-29

clock configurations 8-24 to 8-26
continuous transmit and receive mode 8-28
CPU transfer with transmit polling 8-38 to 8-39
data-receive register 8-24
data-transmit register 8-23
fixed date-rate timing 8-30

burst mode 8-30
continuous mode 8-30

frame sync 8-32, 8-33
functional operation 8-30 to 8-36
global-control register 8-13, 8-15 to 8-18

bits summary 8-15 to 8-18
handshake mode 8-16, 8-28 to 8-30, 8-37, 8-38

direct connect 8-29
initialization reconfiguration 8-36 to 8-42
interface 12-32 to 12-35

handshake mode example 8-37 to 8-38
serial AlC interface example 8-40
serial AID and DIA interface example

8-40 to 8-46
interrupt sources 8-29

receive timer 8-29
receiver 8-29
transmit timer 8-29
transmitter 8-29

operation configurations 8-24 to 8-26
port control register

FSR/DR/CLKR 8-20
FSR/DR/CLKR bits summary 8-20
FSXlDXlCLKX 8-18 to 8-19
FSXlDXlCLKX bits summary 8-19

receive/transmit timer
control register 8-21 to 8-22
counter register 8-22
period register 8-23

registers 8-13, 8-42
timing 8-26 to 8-29

serial-port loading 3-33

servo control/disk drive applications F-14 to F-16

servo control-related devices F-16

short-immediate addressing 5-16 to 5-17

SIGI instruction 10-173

signal
descriptions 13-16 to 13-24

'C30 13-16 to 13-21
'C31 13-22 to 13-29

transition levels 13-29
TTL-level inputs 13-29 to 13-30
TTL-level outputs 13-29

signal buffering for emulator connections 12-41

signal descriptions 13-1, 13-16 to 13-24
pinout and pin assignments 13-2 to 13-15

signal, interlocked instruction 10-173

signals
12-pin header 12-39
buffered 12-39, 12-43
buffering for emulator connections

12-41 to 12-43
no buffering 12-41
timing 12-40 to 12-41

signed-precision, unsigned integer format 4-3

simulator B-3

single-instruction repeat 11-20 to 11-21

single-precision
floating-point format 4-6
integer format 4-2

16-bit-wide configured memory 3-32

software applications 11-1 to 11-34
application-oriented operations 11-53 to 11-67

adaptive filters 11-67
companding 11-53 to 11-57
fast Fourier transforms (FFT)

11-73 to 11-125
FIR filters 11-58 to 11-60
IIR filters 11-60 to 11-66
lattice filters 11-125 to 11-131
matrix-vector multiplication 11-70 to 11-73

logical and arithmetic operations 11-23 to 11-34
bit manipulation 11-23 to 11-24
bit-reversed addressing 11-25 to 11-26
block moves 11-25
extended-precision arithmetic 11-38 to 11-41
floating-point format conversion

11-42 to 11-53

software applications, logical and arithmetic
operations (continued)

integer and floating-point division
11-26 to 11-33

square root 11-34
processor initialization 11-2
program control 11-6 to 11-22

computed GOTOs 11-22 to 11-23
delayed branches 11-17
interrupt service routines 11-9 to 11-16
repeat modes 11-18 to 11-21
software stack 11-8 to 11-9
subroutines 11-6 to 11-8

programming tips 11-131 to 11-134
C-cal/able routines 11-131

Index

hints for assembly coding 11-131 to 11-132
low-power-mode wakeup example

11-133 to 11-134

software control 6-1

software development tools B-2 to B-6
bulletin board service (BBS) B-5 to B-6
code generation tools B-2

assembler/linker 8-2
C compiler 8-2
compiler 8-2
linker 8-2

digital filter design package B-2
documentation B-5
hotline B-5
literature B-5
seminars B-6
system integration and debug tools B-3 to B-4

debugger 8-3
emulation porting kit (EPK) 8-4 to 8-5
emulator 8-3
evaluation module (EVM) 8-3
simulator 8-3
XDS510 emulator 8-3

technical training organization (TIO) work­
shop B-6

third parties B-4
workshops B-6

software interrupt instruction 10-200

software stack 11-8 to 11-9

soldering precautions C-7 to C-8

speech
encoding F-3
memories F-12
synthesis applications F-11 to F-13

Index-21

Index

square root 11-34

stack, software 11-8 to 11-9
pOinter (SP) reg ister 3-4, 5-31, 11-8 to 11-9

stack management 5-31 to 5-34

stack queues 5-33

stacks 5-32 to 5-33
growth 5-32
implementation of high-to-Iow 5-32
implementation of low-to-high 5-33

standard branches 6-8

status register (ST) 3-4, 1 0-11
bits summary 3-6
CPU register file 3-5
global interrupt enable (GIE) bit

'C30 interrupt considerations 6-32
'C3x interrupt considerations 6-31

STF and ABSF instructions (parallel)
1 0-23 to 10-24

STF and ADDF3 instructions (parallel)
1 0-35 to 1 0-36

STF and FLOAT instructions (parallel)
10-80 to 10-81

STF and LDF instructions (parallel) 10-93 to 10-94

STF and MPYF3 instructions (parallel)
10-122 to 10-123

STF and NEGF instructions (parallel)
10-140 to 10-141

STF and STF instructions (parallel)
10-176 to 10-177

STF and SUBF3 instructions (parallel)
10-190 to 10-191

STF instruction 10-174

STFI instruction 10-175

STI and ABSI instructions (parallel) 10-27 to 10-28

STI and ADDI3 instructions (parallel)
1 0-40 to 1 0-41

STI and AND3 instructions (parallel)
1 0-45 to 10-46

STI and ASH3 instructions (paralleQ
1 0-54 to 10-55

STI and FIX instructions (parallel) 10-77 to 10-78

STI and LDI instructions (parallel)
10-102 to 10-103

STI and LSH3 instructions (parallel)
10-112 to 10-114

Index-22

STI and MPYI3 instructions (parallel)
10-133 to 10-134

STI and NEGI instructions (parallel)
10-143 to 10-144

STI and NOT instructions (parallel)
10-149 to 10-150

STI and OR3 instructions (parallel)
10-154to 10-155

STI and STI instructions (parallel)
10-180 to 10-181

STI and SUBI3 instructions (parallel)
10-195 to 10-196

STI and XOR3 instructions (parallel)
10-209 to 10-210

STI instruction 10-178
STII instruction 10-179
store floating-point instruction 10-174

store floating-point, interlocked instruction 10-175
store integer instruction 1 0-178
store integer, interlocked instruction 1 0-179
STRB signal 7-2, 7-6
stress testing C-2 to C-6
style (manual) viii
SU BB instruction 10-182
SUBB3 instruction 10-183 to 10-184
SUBC instruction 10-185 to 10-186
SUBF instruction 10-187
SUBF3 and MPYF3 instructions (parallel)

10-124 to 10-126
SUBF3 and STF instructions (parallel)

10-190 to 10-191

SU BF3 instruction 1 0-188 to 1 0-189
SUBI instruction 10-192

SUBI3 and MPYI3 instructions (parallel)
10-135 to 10-137

SUBI3 and STI instructions (parallel)
10-195 to 10-196

SUBI3 instruction 10-193to 10-194
SUBRB instruction 10-197
SUBRF instruction 10-198
SUBRI instruction 10-199
subroutines

computed GOTO 11-22
context switching 11-11 to 11-15

context restore for 'C3x 11-14 to 11-16
context save for 'C3x 11-12 to 11-13

subroutines (continued)
interrupt priority 11-16 to 11-18
program control 11-6 to 11-8
runtime select 11-20 to 11-21

subtract example 11-39

subtract floating-point instruction 1 0-187
3-operand instruction 1 0-188

subtract integer conditionally instruction 1 0-185
subtract integer instruction 10-192

3-operand instruction 1 0-193

subtract integer with borrow instruction 1 0-182
3-operand instruction 10-183

subtract reverse floating-point instruction 1 0-198
subtract reverse integer instruction 10-199

subtract reverse integer with borrow instruction
10-197

supply current calculations 0-26 to 0-27
average 0-27
data output 0-26 to 0-27
experimental results 0-27
processing 0-26

SWI instruction 10-200
symbols (used in manual) viii

symbols and abbreviations 10-14 to 10-15

synchronize two processors example 6-17

syntaxes, assembler 10-16 to 10-18
system

control functions 12-27 to 12-31
clock oscillator circuitry 12-27 to 12-29
reset signal generation 12-29 to 12-31

integration 2-32
system configuration

categories of interfaces 12-2
options overview 12-2 to 12-3
typical system block diagram 12-3 to 12-4

system management 5-31 to 5-34
system stack pointer 5-31

I]
target, system, connection 12-39 to 12-46
target cable 12-39,12-43

target system, connection to emulator
12-41 to 12-43

technical assistance x

Index

technical training organization (ITO) workshop
B-6

telecommunications applications F-5 to F-10

telecommunications-related devices F-7

test bit fields instruction 10-203
3-operand instruction 10-204

test bus controller 12-45

test load circuit 13-28
test setup description 0-4 to 0-5

third parties B-4
32-bit-wide configured memory 3-32

three-operand addressing modes 2-16,
5-20 to 5-21

three-operand instructions 1 0-4

timer 2-28
control register 8-11

receive/transmit 8-21 to 8-22
counter register 8-8

receive/transmit 8-22
global-control register 8-3 to 8-8

bits summary 8-4 to 8-6
I/O port configurations 8-1 0
initialization!reconfiguration 8-12 to 8-15
interrupts 8-11
operation modes 8-10 to 8-11
output generation examples 8-9
period register 8-2, 8-8

receive/transmit 8-23
pulse generation 8-8 to 8-9
registers 8-42
timing figure 8-7

timers 8-2 to 8-12
counter 8-2

timing
external interface 7-6 to 7-27

expansion bus I/O cycles 7-11 to 7-32
primary bus cycles 7-6 to 7-10

parameters 13-30 to 13-67
changing the XF pin from an input to an

output 13-44
changing the XF pin from an output to an

input 13-43
data rate timing modes 13-55 to 13-60
general-purpose I/O timing 13-63 to 13-65

peripheral pin I/O modes 13-63 to 13-65
peripheral pin I/O timing 13-63

interrupt acknowledge timing 13-54
interrupt response timing 13-52 to 13-53

Index-23

Index

timing, parameters (continued)
loading when the XF pin is configured as an

output 13-42
memory read/Write timing 13-32 to 13-37
reset timing 13-45 to 13-50
SHZ pin timing 13-51
timer pin timing 13-66 to 13-67
X2!GLKIN, H1, and H3 13-30 to 13-31
XFO and XF1 timing when executing LDFt or

LDII 13-38 to 13-39
XFO and XF1 timing when executing S/GI

13-41
XFO and XF1 timing when executing STFI or

STII 13-40

TINTO, TINT1 signals 3-18,3-19,6-24

TLC32046, F-3

TLC32070, F-16

TMS320
OSP evolution 1-3
family, general description 1-2

TMS320C30
FFT assembly code 0-30 to 0-32
memory maps 2-14
photo of 100 for FFT 0-29
power dissipation 0-1 to 0-32
summary 0-28

TMS320C30 and TMS320C31 differences 2-30
data/program bus differences 2-30
development considerations 2-31
effects on the IF and IE interrupt registers 2-31
reserved memory locations 2-30
serial-port differences 2-30
user program/data ROM 2-31

TMS320C31
interrupt and trap memory maps 3-34
memory maps 2-15
reserved memory locations 2-31

TMS320C3x block diagram
architectural 2-3
functional 1-5

TMS320C3x OSPs 1-1 to 1-2

TMS320C3x family, general description 1-2

TMS320C3x interfaces 12-1

TMS320C3x
serial-port interface examples 8-36 to 8-42

Index-24

TMS320LC31 power management
modes 6-36 to 6-38
IOLE2 6-36 to 6-37
LOPOWER 6-38

total supply current calculation 0-18 to 0-25
average current 0-22
average current versus peak current 0-22
combining 0-18 to 0-19
dependencies 0-19 to 0-20
design equation 0-21 to 0-22
peak current 0-22
thermal management considerations

0-23 to 0-25

trap conditionally instruction 10-201
trap vectors 3-18, 3-19

TRAPcondinstruction 6-10,10-201 to 10-202
..... - """ ", .. ~ ~ .. n +"" t::. -t .. "ICltJi:II ";;'-I'IU-'''''''''''''''I'

interrupt considerations
'G30 6-32 to 6-34
'G3x 6-31

TSTB instruction 1 0-203

TSTB3 instruction 10-204 to 10-205

two-operand instructions 1 0-3

II
U-Iaw compression 11-54

U-Iaw expansion 11-55

underflow 4-14

unsigned-integer format 4-3
short 4-3
single-precision 4-3

user state management 5-31

variable data-rate timing operation 8-34
burst mode 8-34
continuous mode 8-35

vectors
interrupts 3-17, 6-35
reset 3-17, 6-35
trap 3-17

video signal processing F-21

voice synthesizers F-11

wait states
external bus 12-9 to 12-13
programmable 7-28 to 7-29
zero 12-4 to 12-8

workshops B-6

II
XDS, target design considerations 12-39 to 12-46

connections between emulator and target
system 12-41 to 12-43

designing MPSD emulator connector
12-39 to 12-40

diagnostic applications 12-45 to 12-46

Index

XDS, target design considerations (continued)
mechanical dimensions of emulator connector

12-43 to 12-45
MPSD emulator cable signal timing

12-40 to 12-41
XDS51 0 emulator B-3
XFO, XF1 signals 2-26
XINTO, XINT1 signals 3-18,3-19,6-24
XOR instruction 10-206
XOR3 and STI instructions (parallel)

10-209 to 10-210
XOR3 instruction 10-207 to 10-208

zero condition flag 1 0-11
zero-logic interconnect of 'C3x 6-16
zero-overhead looping 6-2
zero-wait-states 12-4 to 12-8

Index-25

TI Worldwide
Sales Offices
ALABAMA: Huntavllle: 4970 Corporate Drive,
NW Suite 125H, Huntsville, AL 35805-6230,
(205) 430-0114.
ARIZONA: Phoenix: 2525 E. Camelback,
Suite 500, Phoenix, A:Z 85016, (602) 224-7800.
CALIFORNIA: Irvtne: 1920 Main Street,
Suite 900, Irvine, CA 92714, (714) 660-1200;
San Diego: 5625 Ruffin Road, Suite 100,
San Diego, CA 92123, (619) 278-9600;
San Joee: 2825 North First Street, Suite 200,
San Jose, CA 95134, (408) 894-9000;
Woodland Hilla: 21550 Oxnard Street, Suite 700,
Woodland Hills, CA 91367, (818) 704-8100.
COLORADO: Aurora: 1400 S. Potomac Street,
Suite 101, Aurora, CO 80012, (303) 368-8000.
CONNECTlCU-r. Wallingford: 1062 Barnes
Industrial Park Road, Sulle 303, Wallingford,
CT 06492, (203) 265-3807.
FLORIDA: Orlando: 370 S. North Lake Boulevard,
Suite 1008, Altamonte Springs, FL 32701 ,
(407) 260-2116;
Fort Lauderdale: Hillsboro Center, Suite 110,
600 W. Hillsboro Boulevard, Deerfield Beach, FL
33441, (305) 425-7820; Tampa: 4803 George
Road, Suite 390, Tampa, FL 33634-6234,
(813) 882-0017.
GEORGIA: Atlanta: 5515 Spalding Drive,
NOfCfOSS, GA30092-2550, (4C4) 662-7967.
ILLINOIS: Arlington Heights: 515 West
Algonquin, Arlington Heights, IL 60005,
(708) 640-2925.
INDIANA: Indianapolis: 550 Congressional Drive,
Suite 100, Carmel, IN 46032, (317) 573-6400;
Fort Wayne: 103 Airport North Office Park,
Fort Wayne, IN 46825, (219) 489-3860.
KANSAS: Kansas City: 7300 College Boulevard,
Lighton Plaza, Suite 150, Overland Park, KS
66210, (913) 451-4511.
MARYLAND: Columbia: 8815 Centre Park Drive,
Sutte 100, Columbia, MD 21045, (410) 964-2003.
MASSACHUSETTS: Boston: Bay Colony
Corporate Center, 950 Winter Street, Suite 2800,
Waltham, MA 02154, (617) 895-9100.
MICHIGAN: Detroit: 33737 W. 12 Mile Road,
Farmington Hills, MI48331, (313) 553-1500.
MINNESOTA: Minneapolis: 11000 W. 78th Street,
Suite 100, Eden Prairie, MN 55344,
(612) 828-9300.
NEW JERSEY: Edison: 399 Thornall Street,
Edison, NJ 08837-2236, (908) 906-0033.
NEW MEXICO: Albuquerque: 3916 Juan Tabo
Place NE, Suite 22, Albuquerque, NM 87111,
(505) 345-2555.
NEW YORK: East Syracuse: 5015 Campuswood
Drive, East Syracuse, NV 13057, (315) 463-9291;
Poughkeepsie: 300 Westage Business Center,
Suite 250, Fishkill, NY 12524, (914) 897-2900;
Long Island: 48 South Service Road, Suite 1 ~O,
Melville, NY 11747, (516) 454-6601;
Rochester: 2851 Clover Street, Pittsford, NY
14534, (716) 385-6700.
NORTH CAROLINA: Charlotte: 8 Woodlawn
Green, Suite 100, Chariotte, NC 28217,
(704) 522-5487; Raleigh: Hlghwoods Tower 1,
3200 Beach Leaf Court, Suite 206,
Raleigh, NC 27604, (919) 876-2725.
OHIO: Cleveland: 23775 Commerce Park Road,
Beachwood, OH 44122-5875, (216) 765-7528;
Dayton: 4035 Colonel Glenn Highway, Suite 310,
Beavercreek, OH 45431-1601, (513) 427-6200.

©1994 Texas Instruments Incorporated

OREGON: Portland: 6700 SW. 105th Street,
Suite 110, Beaverton, OR 97005, (503) 643-6758.
PENNSYLVANIA: Philadelphia: 600 W.
Germantown Pike, Suite 200, Plymouth Meeting,
PA 19462, (215) 825-9500.
PUERTO RICO: Hato Rey: 615 Mercantll Plaza
Building, Suite 505, Hato Rey, PR 00919,
(809) 753-8700.
TEXAS: Austin: 12501 Research Boulevard,
Austin, TX 78759, (512) 250-6769;
Dallas: 7839 Churchill Way, Dallas, TX 75251,
(214) 917-1264; Houston: 9301 Southwest
Freeway, Commerce Park, Suite 360,
Houston, TX 77074, (713) 778-6592;
Midland: FM 1788 & 1-20, Midland, TX
79711-0448, (915) 561-7137.
UTAH: Salt Lake City: 2180 South 1300 East,
Suite 335, Sait Lake City, UT 541 06,
(801) 466-8973.
WISCONSIN: Milwaukee: 20825 Swenson Drive,
Suite 900, Waukesha WI 53186, (414) 798-1001.
CANADA: Ottawa: 303 Moodie Drive. Suite 1200,
Mallorn Centre, Nepean, Ontario, Canada
KZH 9R4, (613) 726-3201; Toronto: 280 Centre
Street East, Richmond Hili, Ontario, Canada
L4C lBl, (416) 884-9181; Montreal: 9460Trans
Canada Highway, SI. Laurent, Quebec, Canada
H4S lR7, (514) 335-8392.
MEXICO: Texas Instruments de Mexico SA de
C.V., Xola 613, Modulo 1-2, Colina del Valle,
03100 Mexico, D.F., 5-639-9740.

AUSTRALIA (& NEW ZEALAND): Texas
Instruments Australia Ltd .. 6-10 Talavera Road,
North Ryde (Sydney), New South Wales,
Australia 2113, 2-878·9000; 14th Floor, 380 Street,
Kilda Road, Melbourne, Victoria, Australia 3000,
3-696-1211.
BELGIUM: Texas Instruments Belgium S.A./N.V.,
Avenue Jules Bordetlaan 11, 1140 Brussels,
Belgium, (02) 2423080.
BRAZIL: Texas Instrumentos Electronlcos do
Brasil Llda., Av. Eng. Lulz Carlos Berrlnl, 1461, 11
andar, 04571-903, Sao Paulo, SP, Brazil,
11-535-51.3S.
DENMARK: Texas Instruments AlS, Borupvang
2D, 2750 Ballerup. Denmark. (44) 687400.
FINLAND: Texas Instruments OV, Teknllkantie 12,
02150 Espoo, Finland, (0) 43 542033.
FRANCE: Texas Instruments France, 8-10 .
Avenue Morane-Saulnier, B.P. 67, 78141 Vehzy­
Vlllacoublay Cedex, France, (1) 30 70 10 01.
GERMANY: Texas Instruments Deutschland
GmbH Haggertystra~e 1, 85356 Frelslng,
Germany (08161) 80-0; Kirchhorster StraBe 2,
30659 Hannover, Germany, (0511) 90 49 60;
Maybachstr~e II, 73760 Ostflldern, Germany,
(0711) 34 03 O.
HONG KONG: Texas Instruments Hong Kong Ltd.,
8th Floor, World Shipping Centre, 7 Canton Road,
Kowloon, Hong Kong, 737-0338.
HUNGARY: Texas Instruments Representation,
Budaorsl u.50, 3rd floor, 1112 Budapest,
Hungary, (1) 269 8310.
INDIA: Texas Instruments India Private ltd.,
AL-Aabeeb, 150/1 Infantry Road, Bangalore
560 001 , India, (91-80) 226-9007.
IRELAND: Texas Instruments Ireland Ltd.,
7/8 Harcourt Street, Dublin 2, Ireland,
(01) 475 52 33.
ITALY: Texas Instruments Italla S.p.A., Centro
Direzlonale Colleoni, Palazzo Perseo-Vla
Paracelso 12, 20041 Agrate Brlanza (Mi), Italy,
(039) 63 221; Via Castello della Magliana, 38,
00148 Roma, Italy (06) 657 26 51.

~TEXAS
INSTRUMENTS

JAPAN: Texas Instruments Japan ltd., Aoyama
FUJI Building 3-6-12 KIta-Aoyama Mlneto-ku, Tokyo,
Japan 107, 03-498-12111; MS Shlbaura
Building 9F, 4-13-23 Shlbaura, Mlnato-ku,. TQkyo,
Japan 108, 03-769-8700; Nissho-lwai Building 5F,
2-5-8 Imabashl, Chuou-ku, Osaka, Japan 54f,
06-204-1881; Dal·nlToyota Building Nlshl-kan 7F,
4-10-27 Melekl, Nakamura-ku, Nagoya, Japan 450,
052-583-8691; Kanazawa Oyama-cho Dalichl
Selmel Building 6F, 3-10 Oyama-cho,
Kanazawa-shl, Ishikawa, Japan 920,
0762-23-5471; Matsumoto Showa Building 6F,
1-2-11 Fukashl, Matsumoto-shl, Nagano, Japan
390 0263-33-1060; Dallchl Olympic Tachlkawa
Building 6F, 1-25-12, Akebono-cho, Tachlkawa-shl,
Tokvo, Japan 190, 0425-27-6760; Yokohama
Buslness Park east Tower 10F, 134 Goudo-cho,
Hodogaya-ku, Yokohama-shl, Kanagawa, Japan
240 045-338-1220; Nlhon Selmel Kyoto Yasaka
Building 5F, 843-2, Higashi Shlokohjl-cho,
Hlgashl-lru, Nlshlnotoh-In, Shlokoh/l-dori,
Shlmogyo-ku, Kyoto, Japan 600,075-341-7713;
Sumitomo Selmel Kumagaya Building 8F, 2-44
Yayol, Kumagaya-shl, Saltama, Japan 360,
0485-22-2440; 4262, A:za Takao, Oaza Kawasaki,
HIJI-Machl, Hayaml-Gun, Oita, Japan 879-15,
0977-73-1557.
KOREA: Texas Instruments Korea ltd., 28th Floor,
Trade Tower, 159-1, Samsung-Dong, Kangnam-ku
Seoul, Korea, 2-551-2800.
MALAYSIA: Texas Instruments, Malaysia, SON.
BHD., Lot 36.1 HBox 93, Menara Maybank,
100 Jalan TUn Perak, 50050 Kuala Lumpur,
Malaysia, 50-3-230-6001.
NORWAY: Texas Instruments Norge AlS, P.B. 106,
Brln Svelen 3, 0513 Oslo 5, Norway,
(02) 2647570.
PEOPLE'S REPUBLIC OF CHINA: Texas
Instruments China Inc .. Beijing Representative
Office, 7-05 CITIC Building, 19 Jlanguomenwal
Dajle, BeiJing, China, 500-2255, Ext. 3750.
PHILIPPINES: Texas Instruments Asia ltd.,
Philippines Branch, 14th Floor, Ba-Lepanto Building,
8747 Paseo de Roxas, 1226 Makati, Metro Manila,
Philippines, 2-817-6031.
PORTUGAL: Texas Instruments Equlpamento
Electronlco (Portugal) LDA., Eng. Frederico Ulricho,
2650 Moreira Da Mala, 4470 Mala, Portugal
(2) 948 10 03.
SINGAPORE (& INDONESIA, THAILAND): Texas
Instruments Singapore (PTE) Ltd.,
990 Bendemeer Road, Singapore 1233,
(65) 390-71 00.
SPAIN' Texas Instruments Espana SA,
clGobelas 43, 28023, Madrid, Spain, (1) 372 80 51;
Parc Technologic Del Valles, 08290 Cerdanyola,
Barcelona, Spain, (3) 31 791 80.
SWEDEN: Texas Instruments International Trade
Corporation (Sverigeflllalen), Box 30, 16493,
lsa~ordsgatan 7, Kista, Sweden, (08) 752 58 00.
SWITZERLAND: Texas Instruments Swltz.eriand
AG, Rledstrasse 6, CH-8953 Dletlkon, SWitzerland,
(01)7442811.
TAIWAN: Texas Instruments Taiwan Umlted,
Taipei Branch, 23th Floor, Sec. 2, Tun Hua S.
Road, Taipei 1 06, Taiwan, Republic of China,
(2) 378-6800.
UNITED KINGDOM: Texas Instruments ltd.,
Manton Lane, Bedford, England, MK41 7PA,
(0234) 270 111.

A0294

Printed in U.S.A.

Printed in U.S.A., October 1994
2558539·9761 revision J

~1ExAs
INSTRUMENTS

SPRU0310

